<text><section-header><text><text><text>

≻ Lattice

- ➢ Reciprocal lattice
- ➤ Miller indices
- > Interplanar spacing
- > 14 Bravais lattices, 7 crystal systems
- > 32 Point groups, 230 Space groups
- ➢ PDF card
- > International tables for crystallography

- <u>Crystal</u> an anisotropic, homogeneous body consisting of a three-dimensional periodic ordering of atoms, ions, or molecules
- <u>Crystal</u> solid chemical substances with a 3-dimensional periodic array of atoms, ions, or molecules
- > This array \rightarrow <u>Crystal Structure</u>
- <u>Crystallography</u> concerned with the laws governing the <u>crystalline state</u> of solid materials with the arrangement of atoms (molecules, ions) in crystals and with their physical and chemical properties, their synthesis and their growth. (Ott)
- Perfect crystal vs. crystals with defects
- > Xtallography is a language.
- > Nature does not allow any gap because it is a high energy configuration.
- > Nature does not care about symmetry.
- > Symmetry is in our head only, not in crystal.
- > Nature has only one principle --- energy should be minimized.

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Lattice

- > Crystal Structure the 3-dimensional periodic arrangement of atoms in the crystal
- ➤ Lattice (격자) an infinite array of points in space, where each point has <u>identical</u> <u>surroundings</u> to all others

>What is the structure of the molecules within a crystal? \rightarrow motif

>What is the nature of the geometrical array which defines the way the molecules

are arranged in space? → lattice

Crystal Structure

- ✓ lattice points occupied by atoms, ions, or molecules
- ✓ lattice points- all identical, collection of
 ✓ objects must be identical
- rectangular unit cell projected on a-b plane
- basis molecule ABC
- > A: 0,0,0
- B: x₁,y₁ z₁

> Crystals; solid chemical substance with a long-range threedimensional periodic array of atoms, ions, or molecules

→ This array is called a **crystal structure**.

Parameters to define a unit cell

Basis vectors : \vec{a} \vec{b} \vec{C} Lattice parameters : $a \ b \ c \ \alpha \ \beta \ \gamma$

7 crystal systems

System	Conventional unit cell		
Triclinic	$\mathbf{a_1} \neq \mathbf{a_2} \neq \mathbf{a_3}$	$\alpha\neq\beta\neq\gamma$	
Monoclinic	$\mathbf{a_1} \neq \mathbf{a_2} \neq \mathbf{a_3}$	$lpha=\gamma, \ \ eta\geq 90^\circ$	
Orthorhombic	$\mathbf{a_1} \neq \mathbf{a_2} \neq \mathbf{a_3}$	$lpha=eta=\gamma=90^\circ$	
Tetragonal	$\mathbf{a_1} = \mathbf{a_2} \neq \mathbf{a_3}$	$\alpha=\beta=\gamma=90^\circ$	
Trigonal	$\mathbf{a_1}=\mathbf{a_2}=\mathbf{a_3}$	$\alpha=\beta=\gamma\neq90^{\circ}$	
Hexagonal	$\mathbf{a_1} = \mathbf{a_2} \neq \mathbf{a_3}$	$lpha=eta=90^\circ, \gamma=120^\circ$	
Cubic	$\mathbf{a_1}=\mathbf{a_2}=\mathbf{a_3}$	$\alpha=\beta=\gamma=90^\circ$	

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

TIDNAL UI

Lattice plane (Miller index)

	m, n,	∞	:∞	when	no	intercepts	with	axes.
--	-------	----------	----	------	----	------------	------	-------

Intercepts @ (mnp)	2	1	3		
Reciprocals	1/2	1	1/3		
Miller indicies	3	6	2		
(362) plane					

> (hkl) is // to (n*h n*k n*l) \rightarrow (110) // (220) // (330) // (440)

> Planes are orthogonal if (hkl) • (h'k'l') = 0.

- > Some planes may be equivalent because of symmetry. \rightarrow In a cubic crystal, (100) (010) and (001) are equivalent. \rightarrow family of planes {100}
- [h00] is // to a-axis, [0k0] // b-axis, [00l] // c-axis

Miller index ; the smallest integral multiples of the reciprocals of the plane intercepts on the axes

Plane (hkl) Family of planes {hkl}

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

14

Lattice plane (Miller indices)

[uvw] & (hkl)
[uvw]	a lattice line through the origin and point uvw
direction	the infinite set of lattice lines which are parallel to it and
line	have the same lattice parameter
(hkl)	the infinite set of parallel planes which are apart from each
plane	other by the same distance (d)

7 crystal systems, 14 Bravais lattices

Xtal systems	a1, a2, a3, α, β	, γ	Bravais lattice	Lattice symbol
	o1 - o2 - o2	a a	Simple	Р
Cubic	dI = dZ = dS	a	Body-centered	I
	$\alpha = \beta = \gamma = 90^{\circ}$		Face-centered	F
Tatus as a al	a1 = a2 ≠ a3	c c	Simple	Р
Tetragonal	$\alpha = \beta = \gamma = 90^{\circ}$		Body-centered	I
		Simple	Р	
Orthorhombic	a1 ≠ a2 ≠ a3	C C	Body-centered	I
	$\alpha = \beta = \gamma = 90^{\circ}$	a a	Base-centered	С
		\longrightarrow	Face-centered	F
Rhombohedral	a1 = a2 = a3, α = β = γ < 120	$\circ, \neq 90^{\circ}$ $a^{\alpha}a^{\alpha}a^{\alpha}a^{\alpha}a^{\alpha}a^{\alpha}a^{\alpha}a^{\alpha}$	Simple	R
Hexagonal	a1 = a2 \neq a3, α = β = 90°, γ :	= 120°	Simple	Р
Monoclinic		Simple	Р	
	at \neq az \neq as, $\alpha = \gamma = 90^{\circ} \neq \beta$		Base-centered	С
Triclinic	a1 \neq a2 \neq a3, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$		^c Simple	Р

Tetragonal latticesOrthorhombic lattices $a1 = a2 \neq a3$
 $\alpha = \beta = \gamma = 90^{\circ}$ $a1 \neq a2 \neq a3$
 $\alpha = \beta = \gamma = 90^{\circ}$ P simple tetragonalPCImage: Delta delta

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

octahedral & tetrahedral interstices in cubic closed-packed (CCP) lattice

octahedral & tetrahedral interstices in hexagonal closed-packed (HCP) lattice

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses