Crystallography

\author{
Pecharsky $2^{\text {nd }}$ ed. - Chapter 1, 2, 3
 Cullity - Chapter 2
 Krawitz - Chapter 1, 2
 Hammond - Chapter 1, 2, 3, 4, 5, 6
 Sherwood \& Cooper - Chapter 1, 3
 Jenkins \& Snyder - Chapter 2

Lattice
> Reciprocal lattice
> Miller indices
> Interplanar spacing
> 14 Bravais lattices, 7 crystal systems
> 32 Point groups, 230 Space groups
> PDF card
$>$ International tables for crystallography
> Crystal - an anisotropic, homogeneous body consisting of a three-dimensional periodic ordering of atoms, ions, or molecules
> Crystal - solid chemical substances with a 3-dimensional periodic array of atoms, ions, or molecules
> This array \rightarrow Crystal Structure
> Crystallography - concerned with the laws governing the crystalline state of solid materials with the arrangement of atoms (molecules, ions) in crystals and with their physical and chemical properties, their synthesis and their growth. (Ott)
$>$ Perfect crystal vs. crystals with defects
> Xtallography is a language.
> Nature does not allow any gap because it is a high energy configuration.
> Nature does not care about symmetry.
> Symmetry is in our head only, not in crystal.
> Nature has only one principle --- energy should be minimized.

Lattice

> Crystal Structure - the 3-dimensional periodic arrangement of atoms in the crystal
> Lattice (격자) - an infinite array of points in space, where each point has identical surroundings to all others

$>$ What is the structure of the molecules within a crystal? \rightarrow motif
$>$ What is the nature of the geometrical array which defines the way the molecules are arranged in space? \rightarrow lattice

P; primitive

A, B, and C; end (base)-centered

I; body-centered

$>\mathrm{R}^{\prime}$ rhombohedral
$\checkmark 2 / 3,1 / 3,1 / 3$

F; face-centered
$\checkmark 1 / 2,1 / 2,0$
$\checkmark 1 / 2,0,1 / 2$
$\checkmark 0,1 / 2,1 / 2$

\checkmark Multiplicity $=4$

$\checkmark 1 / 3,2 / 3,2 / 3$
\checkmark Multiplicity $=3$

the number of lattice points in a unit cell

Crystal Structure

Lattice \rightarrow Crystal

\checkmark lattice points occupied by atoms, ions, or molecules
\checkmark lattice points- all identical, collection of objects - must be identical
> basis - molecule ABC
> $A: 0,0,0$
B: $x_{1}, y_{1} z_{1}$
$C: x_{2}, y_{2}, z_{2}$

$$
r=x a+y b+z c
$$

Lattice

$=$

Crystal structure

$$
0 \leq x, y, z \leq 1
$$

Crystals; solid chemical substance with a long-range threedimensional periodic array of atoms, ions, or molecules
\rightarrow This array is called a crystal structure.

Unit cell

the smallest unit of volume that contains all of the structural and symmetry information and that can reproduce a pattern in all of space by translation.

> Various structural units that describe the schematic crystalline structure
> The simplest structural unit \rightarrow unit cell
> The simple cubic lattice becomes the simple cubic crystal structure when an atom is placed on each lattice point

An ASYMMETRIC UNIT

the smallest unit of volume that contains all of the structural information and that can reproduce the UNIT CELL by application of the symmetry operations.

7 crystal systems

System	Conventional unit cell	
Triclinic	$\mathbf{a}_{1} \neq \mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{3}$	$\alpha \neq \beta \neq \gamma$
Monoclinic	$\mathbf{a}_{1} \neq \mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{\mathbf{3}}$	$\alpha=\gamma, \quad \beta \geq 90^{\circ}$
Orthorhombic	$\mathbf{a}_{\mathbf{1}} \neq \mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{3}$	$\alpha=\beta=\gamma=90^{\circ}$
Tetragonal	$\mathbf{a}_{1}=\mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{3}$	$\alpha=\beta=\gamma=90^{\circ}$
Trigonal	$\mathbf{a}_{1}=\mathbf{a}_{\mathbf{2}}=\mathbf{a}_{\mathbf{3}}$	$\alpha=\beta=\gamma \neq 90^{\circ}$
Hexagonal	$\mathbf{a}_{1}=\mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{\mathbf{3}}$	$\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
Cubic	$\mathbf{a}_{1}=\mathbf{a}_{\mathbf{2}}=\mathbf{a}_{3}$	$\alpha=\beta=\gamma=90^{\circ}$

Planes and Lines in the cell

$>$ all points in the plane // to \mathbf{b} and
c axes which cuts a axis @ $3 / 4$
not a Miller index
all points in the plane // to a and b axes which cuts caxis @ 1/2 > not a Miller index

Lattice translations connect structurally equivalent positions (e.g. the body center) in various unit cells.

Shackelford $6^{\text {th }}$ ed. Fig 3.27

Directions

Parallel [uvw] directions share the same notation because only the origin is shifted.
<111> represents all body diagonals.

Family of directions

> Direction [uvw]

$$
\begin{aligned}
& \text { Family of directions } \\
& \text { <uvw> }
\end{aligned}
$$

Lattice plane (Miller index)

$m, n, \infty: \infty$ when no intercepts with axes.

Intercepts @ (mnp)	2	1	3
Reciprocals	$1 / 2$	1	$1 / 3$
Miller indicies	3	6	2
(362) plane			

$>(\mathrm{hkl})$ is $/ /$ to $\left(\mathrm{n}^{* h} \mathrm{n} * \mathrm{k} \mathrm{n}^{*} \mathrm{l}\right) \rightarrow(110) / /(220) / /(330) / /(440)$
$>$ Planes are orthogonal if $(h k l) \cdot\left(h^{\prime} k^{\prime} l^{\prime}\right)=0$.
$>$ Some planes may be equivalent because of symmetry. \rightarrow In a cubic crystal, (100) (010) and (001) are equivalent. \rightarrow family of planes $\{100\}$
$>$ [h00] is // to a-axis, [0k0] // b-axis, [001] // c-axis

Miller index ; the smallest integral multiples of the reciprocals of the plane intercepts on the axes

Plane (hkl) Family of planes \{hkl\}

Direction vs. Planes of Same Indices

cubic

(a)
orthorhombic

(b)

Plans of (a) cubic and (b) orthorhombic unit cells perpendicular to the z-axis, showing the relationships between planes and zone axes of the same numerical indices.

Intercept at ∞

Miller indices ($h k l$):
$\frac{1}{12} \quad \frac{1}{1} \frac{1}{\infty}$

- (210)

Intercept at $\frac{1}{2} a$

(010)

(111)

(020)

(111)

Miller Bravais indices (hkil) for hexagonal system

Miller-Bravais indices (hkil): $\frac{1}{\infty}, \frac{1}{1}, \frac{1}{-1}, \frac{1}{\infty} \rightarrow$ (0110) Note: $h+k=-i$

XRD pattern vs Miller index

<111> angular bracket represents all body diagonals.
[111]

[111] square bracket; line, direction

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses
$\{100\}$ braces represents all faces of unit cells in the cubic system.

(100) round bracket; planes (Parentheses)

Shackelford $6^{\text {th }}$ ed. Fig 3.29
Shackelford $6^{\text {th }}$ ed. Fig 3.32

[uvw] \& (hel)

[UVW]direction line	a lattice line through the origin and point uvw the infinite set of lattice lines which are parallel to it and have the same lattice parameter
(hkl) plane	the infinite set of parallel planes which are apart from each other by the same distance (d)

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses
(220) planes of NaCl
CHAN PARK, MSE, SNU Spring-202

Lattice	No. of lattice points in unit cell	Coordinates of lattice points in unit cell
P	1	$0,0,0$
A	2	$0,0,0 ; 0, \frac{1}{2}, \frac{1}{2}$
B	2	$0,0,0 ; \frac{1}{2}, 0, \frac{1}{2}$
C	2	$0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0$
I	2	$0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
R	3	$0,0,0 ; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$
F	4	$0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0 ; \frac{1}{2}, 0, \frac{1}{2} ; 0, \frac{1}{2}, \frac{1}{2}$

7 crystal systems, 14 Bravais lattices

Xtal systems	$a 1, a 2, a 3, \alpha, \beta, \gamma$	Bravais lattice	Lattice symbol
Cubic	$\begin{aligned} & a 1=a 2=a 3 \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	Simple	P
		Body-centered	1
		Face-centered	F
Tetragonal	$\begin{aligned} & a 1=a 2 \neq a 3 \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	Simple	P
		Body-centered	1
Orthorhombic	$\begin{aligned} & a 1 \neq a 2 \neq a 3 \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	Simple	P
		Body-centered	1
		Base-centered	C
		Face-centered	F
Rhombohedral	$a 1=a 2=a 3, \alpha=\beta=\gamma<120^{\circ}, \neq 90^{\circ}$	Simple	R
Hexagonal	$a 1=a 2 \neq a 3, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	Simple	P
Monoclinic	$a 1 \neq a 2 \neq a 3, \alpha=\gamma=90^{\circ} \neq \beta$	Simple	P
		Base-centered	C
Triclinic	$a 1 \neq a 2 \neq a 3, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$		P

$$
\begin{gathered}
a_{1}=a_{2}=a_{3} \\
\alpha=\beta=\gamma=90^{\circ}
\end{gathered}
$$

$P^{\text {simple }}$ cubic

F face centered cubic

body centered cubic

> cesium iodide (Csl)
$\checkmark \mathrm{a}_{\mathrm{o}}=\mathrm{b}_{\mathrm{o}}=\mathrm{c}_{\mathrm{o}}=4.57 \AA, \mathrm{a}=\mathrm{b}=\mathrm{g}=90^{\circ}$
\checkmark basis
I: $0,0,0 \quad \mathrm{Cs}^{+}: 1 / 2,1 / 2,1 / 2$
Structure: CsCl type
Bravais lattice:simple cubic
Ions/unit cell: $1 \mathrm{Cs}^{+}+1 \mathrm{Cl}^{-}$
CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Tetragonal lattices

$$
\begin{gathered}
a 1=a 2 \neq a 3 \\
\alpha=\beta=\gamma=90^{\circ}
\end{gathered}
$$

P simple tetragonal

| body centered tetragonal

Orthorhombic lattices

$$
\begin{gathered}
a 1 \neq a 2 \neq a 3 \\
\alpha=\beta=\gamma=90^{\circ}
\end{gathered}
$$

$$
\begin{gathered}
a 1 \neq a 2 \neq a 3 \\
\alpha=\gamma=90^{\circ} \neq \beta
\end{gathered}
$$

Simple monoclinic

Base centered monoclinic

$$
\mathrm{a} 1 \neq \mathrm{a} 2 \neq \mathrm{a} 3
$$

$$
\alpha \neq \beta \neq \gamma \neq 90^{\circ}
$$

Trigonal (Rhombohedral) lattice

$$
\begin{gathered}
a 1=a 2=a 3 \\
\alpha=\beta=\gamma<120^{\circ}, \neq 90^{\circ}
\end{gathered}
$$

obtained by stretching a cube along one of its axes

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Hexagonal lattice

Interstitial sites of CCP \& HCP

octahedral \& tetrahedral interstices in cubic closed-packed (CCP) lattice

octahedral \& tetrahedral interstices in hexagonal closed-packed (HCP) lattice

$\mathrm{CaTiO}_{3} ; \mathrm{BaTiO}_{3} ; \mathrm{SrTiO}_{3} ; \mathrm{PbTiO}_{3} ; \mathrm{PbZrO}_{3} ; \mathrm{LaAlO}_{3}$

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

