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Point group
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Space group
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Symmetry

SEDUL NATIDNAL UNIVERSITY

> All repetition operations are called symmetry operations.

v' Symmetry consists of the repetition of a pattern by the application of specific rules.

» When a symmetry operation has a locus, that is a point, or a line, or a plane that is
left unchanged by the operation, this locus is referred to as the symmetry element.

Symmetry operation | Geometrical representation | Symmetry element
Rotation Axis (line) Rotation axis
Inversion Point (center) Inversion centef (center of symmetry)
Reflection Plane __— Mirror plane l
Translation vecto/ Translation ve[tor
_ \ y
\\\\\ ////
rotation AN
@/ v
rotation reflection inversion
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Symmetry operation, symmetry elements

SEDUL NATIDNAL UNIVERSITY

1) Translation (2) Rotation; 1 2 3 4 6

(

(3) Reflection;, M (= 2) (4) Inversion (center of symmetry ) (= 1)
(5) Rotation-inversion; 1 (=center of symmetry), 2 (= mirror), 3, 4, 6

(6) Screw axis; rotation + translation 24, 34, 35, 41, 45, 43, 64,---, 65

(7) Glide plane; reflection + translation, a, b, ¢, n, d

Rotafcion Scrgw Glide
axlis axis plane
J \ B G B
n ] \
rotation inversion : | ICIK i (gide lane 74 48
IR Py ¥R
oo ‘
| [ I S ———
| ! !
glo @ AN :
.............. P = R
reflection  translation A 3 A 3,
Ott Chap 10
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Rotation Axis

SEDUL NATIDNAL UNIVERSITY

> general plane lattice
> 180° rotation about the central lattice point A - coincidence

- 2-fold rotation axis; symbol 2, § (normal to plane of paper),
(parallel to plane of paper)

Order (multiplicity) of the rotation axis n=——=—

/ / / / ’ /
! A : A LI?C ‘A
s U, o
. . . a) é: .:jc VA
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Equivalent vs. Identical

SEDUL NATIDNAL UNIVERSITY

» Two objects are EQUIVALENT

v When they can be brought into coincidence by application of a

symmetry operation.
» Two objects are IDENTICAL

v When no symmetry operation except lattice translation is involved.

v' equivalent by translation

/S—
A
» All A’s are equivalent to one another A U A
s U fs
» A is not equivalent to B Ca % Va
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Rotation Axis

. 0 0.0 0 .
> n-fold axis = 360" _ 27 @ minimum angle required to reach a position

¢ ¢ indistinguishable from the starting point

» Axis with n > 2 will have at least 2 other points lying in a plane L to it.

v" 3 non-colinear points define a plane. & must be a lattice plane.

(translational periodicity)

3-fold axis A 4-fold axis W 6-fold axis @
¢©=90° n=4

- —

e i

> In space lattices and consequently in crystals,
only 1-, 2-, 3-, 4-, and 6-fold rotation axes can occur.
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Why there is no 5-fold rotation axis?

SEDUL NATIDNAL UNIVERSITY

» The points generated by rotation axis must fulfil the conditions for being a
lattice plane --- parallel lattice lines should have the same translation period
(all the lattice points should have identical surroundings).

3-fold
rotation axis > Lattice translation moves | > IV

» 4 points produce a unit mesh of a lattice plane

- 3 fold axes are compatible with space lattice

No 5-fold rotation axis in space lattice
> 11-V and llI-IV parallel but not equal or integral ratio

@= 72° n=5 - no 5-fold axes in space lattice

3 » This structure does not have translational symmetry in 3-dimensions

. 7 - do not have finite unit cell > quasicrystal
&) v'Quasi — because there is no translational symmetry
; v Crystal — because they produce discrete, crystal-like diffraction patterns
g ’ > It is impossible to completely fill the area in 2-dimensions with
pentagons without creating gaps
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Rotation axis > why 1, 2, 3, 4 and 6 only ?

SEDUL NATIDNAL UNIVERSITY

> limitation of @ set by translation periodicity

6 B = m_é where m is an integer
B B ma = a—2acos@
m=1-2cos@

cosp=——
% 2

A == A m |[coso@| o n
a 1 1 on | 1)
0 o | 13 : 6 '
1,2,3, 4,6 T |0 [ w24
2 |- | 2w3 | 131
3 4 T i_z_:
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Symmetry operation vs Symmetry element, Proper vs Improper

SEDUL NATIDNAL UNIVERSITY

> Rotation by 60° around an axis - symmetry operation

rotational symmetry operations

» 6-fold rotation axis is a symmetry element which contains six

> Proper symmetry elements

v'Rotation axes, screw axes, translation vectors

> Improper symmetry elements

vInverts an object in a way that may be imaged by
comparing right & left hands

vInverted object is called an enantiomorph of the
direct object (right vs left hand)

v'Center of inversion, roto-inversion axes, mirror plane,
glide plane
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rotation inversion

reflection  translation

Symmetry Element

Type of symmelry element | Written swmbaol Giraphical symbal
Center of Symmetry T o
Parpendicular In plane ol
b papar paper
Mirror plane m s — N\
Glice plane i e | j i
gl in plang
. arroe shows
of papar alkle direchinn
slide ool of
plang of papor
n s
1
Retation 2 ] »
3 'y
1 *
: &
Serew Axis 2, '] o
Mo A A
% 4, & &
6 B B B B L S AR
Inversion Axis 3 A
1 (]
| B £ Y
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Reflection

SEDUL NATIDNAL UNIVERSITY

> reflection, a plane of symmetry or a mirror plane, m, | (bold line), [

1 T e Lattice line tilted
& O P Lattice line // m w.rt. m

1 1
1?; 020 wA 0-Cs0 E i i '// \\
7 ! : : / \
£ SN
G // \\\
7 @ * ‘ d \a
A B
Ott page 62 © »om 5 m
rectangular centered rectangular
® down
O up
4 Black & Red; enantiomorphs
[ J
M,y (M,) down, left
C up, right
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Inversion

SEDUL NATIDNAL UNIVERSITY

» inversion, center of symmetry or inversion center, 1o

o, o
Ott page 63 \ J

Inversion centre

Ott page 64

No inversion centre

All lattices are centrosymmetric. _ o
www.gh.wits.ac.za/craig/diagrams/
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Compound Symmetry Operation
» compound symmetry operation

v’ two symmetry operation in sequence as a

single event

» combination of symmetry operations

v 2 or more individual symmetry operations are
combined, which are themselves symmetry

operations.

SEDUL NATIDNAL UNIVERSITY

compound 4 + lbar con;bination
1 . 4 7@: }
? e R 1

\t i'/ Z \\
/I

4 “F
< — EA
a) 4 b) &

4 & Tbar are
not present

N
~
-

4 & m are present

TableS.1. Compound symmetry operations of simple operations. The corresponding

symmetry elements are given in round brackets

Rotation Reflection Inversion Translation
Rotation X Roto- Roto- Screw
reflection inversion rotation
. Roto- 2-fold Glide
Reflection ( . . . .
reflection axis) x rotation reflection
. Roto- (2-fold .
Inversi ( R . . .
version inversion axis) rotation axis) X Inversion
Translation (Screw axis) (Glide plane) (Inversion X
centre)
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Rotoinversion

SEDUL NATIDNAL UNIVERSITY

» compound symmetry operation of rotation and inversion

> rotoinversion axis

> 1,2,3,4,6 > 1 (=center of symmetry), 2 (= mirror), 3, 4, 6

E 7@ ﬂ]

QO up, right

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses

“compound symmetry ,

operation = combination R ‘
* down, left of symmetry operation” 2@ .

= = 4
3=3+1]/A 0
C J Rare case of \ %/ o5

ott Chaplél




Symmetry elements of a Cube (S HA|)

SEDUL NATIDNAL UNIVERSITY

» center of symmetry

> nine mirror planes : m
T ) ] O O
» six diad axis '®; d O/L
> four triad axis
™ r"
UL O’/J

> three tetrad axis
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Symmetry elements of a Tetrahedron & Octahedron

SEDUL NATIDNAL UNIVERSITY

» Symmetry elements of a octahedron = those of a cube
» Symmetry elements of a tetahedron

v six mirror planes

v’ three 4 (inverse tetrad axis)

v' Four 3-fold rotation axis

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses 16




Point group

SEDUL NATIDNAL UNIVERSITY

» Complete set of symmetry elements - symmetry group

> Limited # of symmetry elements (ten) & all valid combination among them = 32

crystallographic symmetry groups = 32 point groups

> Limited # of symmetry elements (ten) + the way in which they interact with

each other - limited # of completed sets of symmetry elements (32 symmetry

groups = 32 point groups)

» Point group - a group of point symmetry operations whose operation leaves at

least one point unmoved (lattice translation is not considered in point group.)

» Point group € symmetry elements in these groups have at least one common

point and, as a result, they leave at least one point of an object unmoved.

When a symmetry operation has a locus (that is a point, a line, or a plane) that is

left unchanged by the operation, this locus is referred to as the symmetry element.

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses 17

32 Point Groups

SEDUL NATIDNAL UNIVERSITY

» The point groups are made up from point symmetry operation and

combinations of them (translation is excluded).
» X : x-fold rotation axis
» m : mirror plane
> 1 : inversion centre
> X : rotoinversion axis
> X2 : X-fold rotation axis + 2-fold rotation axis (X_L2)
»Xmm) : X+m(X// m)
> X2(2) : X + 2-fold axis (Xbar_L2)
>Xm:X +m(X// m)
>X/mm: X+ ml+m2(X L ml X// m2)

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses 18




32 point groups
Table 8.2. The 32 point groups

SEDUL NATIDNAL UNIVERSITY

f
Crystal system Point groups
Triclinic 1 1 2
Monoclinic 2/m m, 2 3
: 2/m 2/m2/m mm2, 222
h
Orthorfiombic (mmm) 3l symbols
4/m 2/m 2/m 42m, 4mm, 422 short svymbols
Tetragonal (4/mmm) 4fm. 3, 4 7 ( y )
. 32/m 3m, 32, 3,3
Trigonal (Gm) 5
6/m 2/m 2/m 6m2, 6mm, 622
Hexagonal (6/mmm)  6/m, 5,6 i
Cubi 4/m32/m  A3m,432,2/m3,23 | § Total 32
ubic 5 =
(m3m) (m3)

CHAN PARK, MSE, SNU  Spring-2022  Crystal Structure Analyses
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Symmetry directions

SEDUL NATIDNAL UNIVERSITY

Xtal systems

Symmetry directions

Triclinic a b C al #a2 # a3, a # B #y# 90°
Monoclionic a b C al #a2 #a3,a=y=90%
Orthorhombic | g b C al #a2 #a3,a=p=y=90°
Tetragonal C <> Mr=F¥ 0> al =a2 #a3,a=pB=y=90°
Trigonal c <a> - al = a2 = a3, a=B=y< 120° # 90°
Hexagonal C <a = 0= §F. a15=NapNz a3, e = 9EERRVE- 1208
Cubic <> LS O il G20 ol = PasvERE 00

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses
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7 crystal systems

SEDUL NATIDNAL UNIVERSITY

> Combination of symmetry elements & their orientations w.r.t. one another

defines the crystallographic axes.

» Axes can be chosen arbitrarily, but are usually chosen w.r.t. specific symmetry

elements present in a group.

v’ // rotation axes or L m

» All possible 3-D crystallographic point groups can be divided into a total of

7 crystal systems based on the presence of a specific symmetry elements or

specific combination of them present in the point group symmetry.

» (7 crystal systems) X 5 (types of lattices) > 14 different types of unit cells are

required to describe all lattices (14 Bravais lattices).

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses 21

7 Crystal systems, 6 Crystal family

SEDUL NATIDNAL UNIVERSITY

Table 2.6 Seven crystal systems and the corresponding characteristic symmetry elements.

Crystal system Characteristic symmetry element or combination of symmetry
elements

Triclinic No axes other than onefold rotation or onefold inversion

Monoclinic Unique twofold axis and/or single mirror plane

Orthorhombic Three mutually perpendicular twofold axes, either rotation or
inversion

Trigonal Unique threefold axis, either rotation or inversion

Tetragonal Unique fourfold axis, either rotation or inversion

Hexagonal Unique sixfold axis, either rotation or inversion

Cubic Four threefold axes. either rotation or inversion, along four body
diagonals of a cube

Trigonal & hexagonal can be described in the same type of the lattice

- six crystal family

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses Pecharsky 2" ed. page 36 22




Characteristic symmetry elements of the 7 crystal systems

~ Table 8.9. Characteristic symmetry elements of the seven crystal systems

"EDUL NATIDNAL UNIVERSITY

Crystal Poi i Characteristic
0 oint groups . y ;
system symmetry elements
. 4/m 32/m
CUblC ng‘ 432. 2,-”11‘13, 23 4 A
6/m2/m 2/m
Hexagonal 6m2, 6mm, 622, oA
6/m,$6,6
/
_ﬂ/mZ/m2,m IMorl®
Tetragonal 42m, 4mm, 422, ;
=S (3 Mor 3@ = cubic)
4/m, 4,4
= 1 A
Trigonal 3m§ %mj 3 (remember that m normal
SRR to 3 gives 6 = hexagonal
% 2/m 2/m 2/m 2 and/or m
S mm2, 222 in three orthogonal directions
A 2/m 2 and/or m
Monoclinic r_g_‘,_g in one direction
T 1 .
Triclinic I 1or1 only

% Characteric symmetry elements are underlined.

Ott page 145 23

3D Bravais lattices

SEDUL NATIDNAL UNIVERSITY

> The 14 Bravais lattices in 3 dimensions are obtained by coupling one of the
7 lattice systems (or axial systems) with one of lattice centerings. Each Bravais
lattice refers to a distinct lattice type.

» The lattice centerings are
v Body (I): one additional lattice point at center of the cell. 5
v’ Face (F): additional lattice points at centers of all the faces of the cell. T

A,

2
b b

v |Base (A, B or C): additional lattice points at centers of each pair of cell faces. |

» Not all the combinations of crystal systems and lattice centerings are needed to
describe the possible lattices.

> There are in total 7 x 5 (P, I, F, C, R) = 35 possible combinations, but many of
these are in fact equivalent to each other.

v

For example, the tetragonal F lattice can be described by a tetragonal | lattice by
different choice of crystal axes.

- This reduces the number of combinations to 14. = 14 Bravais lattices

Lo
To e S

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure

tetragonal °
F lattice | {°

nalyses

Jei

o

.| tetragonal
| lattice

o

<

~Lb

o
o
= o
<
S
j<
1
1
:
< ‘
3
(o]
o
\ [e]

24




14 Bravais lattice

SEDUL NATIDNAL UNIVERSITY

» 7 crystal systems (6 crystal families) X 5 types of lattices

- only 14 different types of unit cells are required to describe all lattices

using conventional crystallographic symmetry - 14 Bravais lattice

. rhombohedral ] b y,
cubic hexagonal ) tetragonal |orthorhombic |monoclinic | triclinic
(trigonal)

. Y. ' 1

P a d 3 ¢ ¢
)
a a a i a a a b
a [ [+
a
a

a b
N
e 2 e
a7 p
CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses Pecharsky 2" ed. 2.11 See Ott Chap 7 25

Space group

SEDUL NATIDNAL UNIVERSITY

*Unit cell translations

*Centering operations (Lattices) (A, B G I, £ R)
*Glide planes (reflection + translation) (g & ¢ n, d)
*Screw axes (rotation + translation) (24, 35, 3,)

{

> If translation operations|are included with rotation and

inversion > We have 230 three-dim. space groups

» Space group - symmetry of crystal lattices and crystal structures

» Bravais lattice + point group -> 230 space groups
+ screw axis
+ glide plane

» Hermann-Mauguin symbols (4 positions)
v'First position is Lattice type (P, A, B, C, |, F or R)

v'Second, third and fourth positions as with point groups

A i
Cmm?2 (35) PEBE (225) F 43m (N0.216)

International Tables for Crystallography, Volume A: Space-group symmetry

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses 26




Crystal symmetry, 14 Bravais lattice

Crystal System I_Bar‘?t\i/?; Symmetry | Symmetry Axis System
Cubic PIF m3m m3m a=b=c, a=B=y=90
Tetragonal P 4/mmm 4/mmm a=b#c, a=p=y=90
Orthorhombic | PC |, F mmm mmm azb#c, a=B=y=90
Hexagonal P 6/mmm 6/mmm | a=b#c, a=B=90, y=120
Rhombohedral R 3m 3m a=b=c, a=B=y#90
Monoclinic PC 2/m 2/m azb#c, a=y=90, B#90
Triclinic P 1 1 azb#c, azBzy#90
Quartz

Crystal System: trigonal P3,21
Bravais Lattice: primitive P 32 > 1
[ | Space Group: P3,21 | 2
Lattice Parameters: 4.9134 x 49134 x 5.4052 A
Atom Positions: / X y z 6/mmm
Si 0470 O 0.667 6
0 0414 0268 0.786 /m m m
CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses 27
Symmetry directions, Space group :
Fmmm
Xtal systems | Symmetry directions Face centered lattice
m _L to a axis
Triclinic m L to b axis
m L to c axis
Monoclinic b
Orthorhombic a b C N
P3,21
Tetragonal c cas <110> Primitive lattice _
3, along the c axis
Lk £ 4 _ | 2 fold rot axis along the a axis
: g y ~ |1 fold rot axis along the <210>
Hexagonal C <a> <210> Fd3m
Face centered lattice

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses

3 fold axis along the <111>
m L to <110>

28




14 Bravais lattice > space group symbols

SEDUL NATIDNAL UNIVERSITY

P C 1 F
Triclinic Pl |
Monoclinic -P2/m C2/m

Orthorhombic | P2/m2/m2/m | C2/m2/m2/m | 12/m2/m2/m | F2/m2/m2/m

Tetragonal P4/m2/m2/m 14/m2/m2/m

Trigonal R32/m
P6/m2/m2/m :

Hexagonal

Cubic P4/m32/m 14/m32/m | F4/m32/m

> The 14 Bravais lattice represent the 14 and only way in which it is possible

to fill space by a 3-D periodic array of points.

VARV

Number of lattice is fixed at 14.

All crystals are built up on one of 14 Bravais lattices.

Any crystal structure has only one Bravais lattice.

> Infinite number of arranging atoms in a cell € basis

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses
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plane groups vs. space groups

10 plane point groupg | 5 plane lattices

\ 7/

Glide (translation + r@

17 plane space groups

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses

SEDUL NATIDNAL UNIVERSITY

Rotation
( Reflection PR
\_nversion (_ranslation

} }

32 point groups 14 space lattices

\. - 240

Screw (translation + rotation)
Glide

4

230 space groups

Krawitz page 25, page 28 30




International Tables for Crystallography

Short Hermann-Maugujn symbol  Schoenflies symbol

SEDUL NATIDNAL UNIVERSITY

POintlgroup Crystal ystem symbol

- 72 /e &
P12/cl

No. 14
mzﬁ 1

Space group number

. /
Full Hermann-Mauguin symb

v

2/m

Patterson symmetry

"4

Monoclinic

Fatterson symmety P12 /m1

D| ;
1 o a = =
/ / ' '
A b=
{ { 1 I
I ; i P
yo8 oy =g e
Projection of “— . =
;ymmetry r‘f y
elements I
—
[ / Projection of a
---------------------------- / general
‘jf“““‘;a_? position
i i ‘}(
Choice of origin | _ .
¢ 4 rigin at 1
Asymmetrlc unit Asymmetric init Ogr<l Oyl 0gog
N Symmetry operations
Symmetry Operatlons (1 @ 20.5.0) 0.} @1 000 @We iz
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International Tables for Crystallography
SEDUL NATIDNAL UNIVERSITY
CONTINUED No. 14 P2/c
Generators selected  (1); #(1,0,00; [0, 1,00 #(2,0,10; (2% (3)
Positions
Muliplicity. Coordinares Reflection conditions
Wyckoff letter,
Sitz symmeny Faneral:
4 ¢ 1 (lyxyz (D Ey+4.T+1 e A @ xT+].E 4+t Wi I=1n
Ok : k=2n
General & General positio o
SpeC|a| 14 1 10,4 10 B k+i=1n
o 0 2 ¢ 1 0,0,} 0.0 . .. BE L k=20
pOSItlonS 208 1 40,0 SpeCIaI pOSItlon B E4+i=2n
2 a8 T 0,0,0 0 B kD=2

Symmetry of zpecial projections
Along [001] p2gm

a=a, b=t

Omgmat 0.0,z

Along [100] plze
a="hb 3
Origin atx.0,0

b =c

Maximal non-izomorphic subgroups

I [2PleliPe,Ty 1,4
RIPI21(PI. 4 12
[21FT(N 13

Ila npons

IIb nens

Maximal isomorphic subgroups of lowest index
Il

Minimal non-izomerphic supergroups

[2] Phca(8l); [2] Pnma (§2); [2] Cmce (64

o J
[21P12/c1(b = i) (P2/e, 13)

Along [010] p2
a =i =a
Origin

a0,

[21P12 jclia =2aora = 2a.c' =2a+c) (P2 fc, 14); [31P12 /el (b =3b) (P2 fc, 14)
1 [2) Pama(32); [21 Pmna (33); [21 Peca (534); 2] Pham (35); [2) Pocn (36); [Z1PBem (37 [21Pnmnm (38); [21 Pben (60);
[1412/m1(C2/m, 12y [21C12 /e 1{C2 e, 15y 2101 2/e1 (C2 /e, 15y [2] P12, /m1 (¢ = 1) (P2, /m, 11}

International Tables for Crystallography

b
0

32
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International Tables for Crystallography

> Positions

SEDUL NATIDNAL UNIVERSITY

v" Multiplicity (rank); # equivalent points in the unit cell

v Wyckoff letter

v' Site symmetry (point symmetry of the position)

v Coordinates of the equivalent positions

Pozitions
. . . Mliplictry, Coordinates
a set of equivalent points with Wyckoff letter
point symmetry (site symmetry) 1 | | 3% Smmeny
General p05|t|on 4 ¢ 1 (13 %,z D Ey+iT+1d R W xi+io+d
Special position|z « T to:  iio
a set of equivalent points with [|2 ¢ 1 0,04 0.:.0
point symmetry higher than 1 |{2 & 1 50,0 i-4-4
2 a1 0,0,0 0,5t
CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses International Tables for Crystallography <33
R 11 :
O Cmm?2 2 mm?2 Orthorhombic
O NO‘ 35 Cmm 2 Patterson syminetry Cmaim AL UNTVE Sl
Crw Hmlm
H
I 4 T = —
| ] |
’ ._.....?__ __1_.__‘ ; T ..................................... T
£ A— } & -— —
B 1 1 =
el % =
| | 3 i
1 8 1 e,
] o
@
|__ AZwm
1 | L
L T F 3
O @ 0 O
HONRGE | O
g Q| O
= Rolen
0 Lo 0| O
: © O © O
bbbk
@ Origin on mm?
B Asymmetricunit 0<r<l 0<y<l O0g:<l
(&) Symmetry operations
For (0,0, 04 st
y 1 252 0.0z 3y mox0,z (4) mr Oz
For {4, 4,0)+ set
1 1(5,4.0) @2 iz (3)a xiz b Lyz

CHAN PARK, M

International Tables for Crystallography
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SEDUL NATIDNAL UNIVERSITY

Headling: Section 2.2.3.
Short Hermann-Mauguin symbol
(Section 2.2.4 and Chaprer 12.2)

Crystal system

Crystal ¢lass (Poml group)
iSection 2.1.2}

Schoentiies svmbol
(Section 10.1.1 and Chapeer 12,1}

{Chapters 121 and 12.2)

Patterson symmetry

Full Hermann-Mauguin symbaol
(Section 2.2.5)

Mumber of space group
(Section 2.2.4 and Chapter 12.3)

[Same as in JT (1952)]

Spece-group diagrams, consisting of one or several projéctions of the symmetry elements and one illustration of a set of equivalent

poinds in general position. The numbers and tvpes of the diagrams depend on the crystal sysiem. The disgrams and their axes are

described in Section 2.2.6; the graphical symbols of symmetry elements are listed in Chapter 1.4. )
For monoclinic space groups see Section 2.2.16: for orthorhonibic settings see Section 2.2.6.4.

&

Origin of the unit cell: Section 2277 The site symmetry of the origin and its location with respect to the symmetry elements are given,

Asvimmervie unir: Section 2.2.8. One choice of agymmetyic uniy is given.

® @ ®

Svimetr) operations: Section 229 and Part 11. For each point 1. ¥, £ of the general position that symimetiy operation is listed which
transforms the initial point v, ¥,  ioto the point under consideration. The symbaol describes the nalure of the operation, its glide or screw
component (given between parentheses), if present, and the location of the corresponding symmetry element.

The symmetry aperations are numberad in the same way as the corresponding coordinale triplets of the general position. For cenired
space groups the same numbering is applied in each block, e.g under “For (4, £ 0+ set”.

[Continned on inside bach cover|
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CONTINUED No. 35 Cmm2
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Generators selected (1), «(1,0,0); (0,103 1(0,0,1): 1(%,4,0): (2); (3)

Positions
Multiplicity,
Whekolf letter,

Coaordinates Reflection conditiong

Site symmetry 0000+ (34,004
General:
O A () Xxz (2) E ¥z (Fxoiz (4) £y el h+k=2n
Okl 2 k=21
ROl h=2n
SO h+k =20
MK : h =2
00 k=72n
Special: as above, plus
4 e . ks 0,71 ni exira conditions
4 d m. 50,2 0z noexira conditions
4 i Sl iz L Rkl : h=2n
2 b mml U3z no extra conditions.
2 @ mm2 0.0,z no extra conditions

#'=a

Originat 0,0,z

I

1a

It

Ifc

&

E

cHA &

Symmetry of special projections
Aleng [001] £ 2mm

b=hb a' =th

Maximal non-isomorphie subgroups

[21CTml (Cmn, 8)
21Cm L 1T, &)
[PIC112(P2.3)

[2] PEal (32)

[2] Plm2 (Paal, 28)
[2] P2 (28)

[2] Pinm2 (25)

Along [100] g 1ol
b=c
Origin at 2, 0.0

Along [010] p11m
=43

w=e

Originat 0, 3.0 j

21 me2 (0 = e (6} [2] J’b;rrE(C' = 2e}(fmal, 46); [2] a2 (o8 = 2eh(45) (2] Linm2 (¢ =2¢) (44% [2] Coc2 e = 26 (37):
[21Cme2 (e =2¢) (36) [2] Com?, (¢ = 2¢) (Cre2,. 36) L i

Maximal isomorphic subgroups of lowest index

[2) Cmm2 (¢! = 2e}(35); [31 Cmen (8 = 3aor b = 3} (35)

Minimal non-isomorphic supergroups

[2) Commitan (B5%, [2] Canrme (67): [2] Pbsivm (99, [2] P b (L00); [2] PA,en {1013 121 P4, 0mn (1025 (2] PAZm (111
International Tables for Crystallography 36

[21 P42, m (113) [3] POmm{183)
[2) Faremn2 (421 [2] Pinin 2 (' = {a,B = 1b)(25)




CHAN

@ Hezelline 10 abbreviated Form.

(3)  Generntors selecied: Sections 2.2, 10 and 8,3.5. A sel of generators, as selected for these Tables, is listed i the forim of translations and
nomhers of general-position coordinates. The gencrators determine the sequence of the coordinute tiplets in the general position and of
the corresponding svmmelry operations,

@ Posirions: Sections 2,201 and 8.3.2. The seaeral Wyckoff position is given at the top, followed downwards by the various special
Wyekell positions with decreasing multiplicity and increasing site symmetry. For each general and special position its ruliplicity,
WyekolT letter, oriented sile-symmelry symbol, ss well ws the appropriate coordinate viplets and the reflection conditions, arg listed.
The coordinate triplets of the eencral position are numbered sequentially; of, Symmetry aperations.

Orieied site-symmetry svnbol (third caln?; Seetion 2.2.1 2, The site symietry at the points of a special position is given in oriented
form,

Reflection conditfons (right-most colupn): Section 2.2.13,

[Laitice complexes are described in Part 14; Tables 14231 and 14.2.3.2 show the assignment of Wyckoff positions to WyckofT sets and
1o latlice complexes.]

Symmeiry of special projecrions: Seetion 2.2.14. For each space group, orthographic projections along three (symmetry} directions are
listed. Given are the projection direction, the plane group of the projection, as well as the wees and the origin of the projected cell.

®

Maximal non-isomorphic subgroups: Sections 2215 and 8.3.3,

p-r
Type I: nanslotionengleiche or r subgroups: :
Type Ma:  klassengleiche or k subgroups. obtained by ‘decentring’ the conventional cell; applies only to space groups with centred
cells:

Type I flarsengleiche or & subgroups, obtained by enlarging the conventional cell.

Giiven are:
; For types I and Tla: Index [between brackets]; "unconventionnl' Hermann—Mauguin symbol of the .qubgmup', ‘conventional”
Hermann--Mauguin symbol of the subgroup, il different (between parentheses); coordinate riplets retained in subgmup._

For type b Index [between brackets]: ‘unconventional’ Hermann-Mauguin syisbel of the subgroup; hu.‘:i&-\'a_:mr _re]nlmns betwen
group and subgroup (between parenthesesy: ‘conventional” Hermann-Mauguin symbol of the subgroup, il different (between
parentheses).

:E} Maximal isomorphic subgroups of lowes! index: Sections 2,215, 833 and 13.1.2.

Type e klassengleicke or & subgroups of lowest index which are of the same type as the group, fe. have the same standard
Hermann-Mauguin symbal, Data as for subgroups of type TTh.

&

Minimal non-isemorphic supergroups: Sections 22,15 and 8.3.3. o
The list contains the reverse relations of the subgroup tables; only types I {1 supergroups) and II (& supergroups) are distinguished,

Dataas for subgroups of type IIb. International Tables for Crystallography
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Symmetry operations, Point groups, Space groups

>
>

A\

Symmetry operations — Translation, Rotation, Reflection, Inversion

Shape of the unit cell, symmetry within the unit cell, translation of the unit cell >
define a repeating pattern.

Point groups (32) — set of symmetry operations about a point in space (except for
translation)

Space groups (230) € (32 point groups + 7 crystal systems)
Space (plane) lattice; 3 (2)-dimensional arrays of pointsin space that have a basic
repeating pattern, a unit cell, that can be translated to fill all space

A\

A\

3-D, 14 possible lattices, 7 different axis systems

The application and permutation of all symmetry elements to patterns in space give
rise to 230 space groups (instead of 17 plane groups) distributed among 14 space
lattices (instead of 5 plane lattices) and 32 point group symmetries (instead of 10
plane point group symmetries).

Point group symmetry & space group symmetry has to be distinguished.
Space group symmetry — the way things are packed together and fill space
Space group — translational component = point group

CHAN

PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses
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Point group

Point groups:
A group of point symmetry operations,

Space groups:
A group of symmetry operations which

VS.
Space group

whose operation leaves at least one point include lattice translations DNIVERSITY
unaltered. Any operation involving
lattice translations is thus excluded
11 1
2 m 2 m 23;abcned
33 33 3,3
4 4 4 1 4,4,4
6 6 & 6 67,063 63,64 65
lattice translations
a,bc ap, by, co
o B,y o, B,y

Order of the symmetry operations
eg 4/m 2/m 2/m
|

| |
C a> <110>

A

Order of the symmetry operations
ey P4 /m 2/m 2/m
| | |

C <a> =<110:>

General form:
Set of equivalent faces each with face
symmetry 1

General position:
Set of equivalent points each with site
symmetry 1

ras_\_'mme tric face unit =
fsphere
multiplicity of general form

V. -
asymmetric unit =
T F;
Vinit cell

multiplicity of general point

Multiplicity of general form of the point
group

Multiplicity of the general position in all space
groups with a P-lattice that are isomorphous
with that point group

CHAN PARK, MSE, SNU S

Special form:
Set of equivalent faces each with face
symmetry >1

Special position: Ott Chap 10
Set of equivalent points each with site
symmeiry >1 39

Laue class, Laue group; 11 point groups with center of symmetry

SEDUL NATIDNAL UNIVERSITY

Table 2.9 The 11 Laue classes and six “powder” Laue classes.
Crystal system Laue class “Powder” Laue class Point groups
Triclinic 1 1 1,1
Monoclinic 2/m 2/m 2, m, 2/m
Orthorhombic mmm mmim 222, mm?2, mmm
Tetragonal 4/m 4/mmm 4,4.4/m

4/mmm 4/mmm 422, 4mm, 4m?2, 4/mmm
Trigonal 3 6/mmm 3,3

3m 6/mmm 32, 3m, 3m
Hexagonal 6/m 6/mmm 6, 6, 6/m

6/mmm 6/mmm 622, 6mm, 6m2, 6/mmm
Cubic m3 m3m 23, m3

m3m m3m 432, 43m, m3m

» Laue class = Pecharsy page 40

» Laue index > Hammond page 138

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses
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Glide planes
& Screw AXxIs

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses 41

SEDUL NATIDNAL UNIVERSITY

!

5
Screw axes ny
o . |
(rotation + translation) o L 1:
|
s Q7 |
RN —~
! 13 t
|__,/""
[T
| H—1A2
|
I . S| ott chap 10
i
! S ) B A
Glide planes .\ M
(reflection + translation) e { (
(glide plane) f : d
=N = N

—

?
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Glide Plane

SEDUL NATIDNAL UNIVERSITY

i) reflection

i) translation by the vector a parallel to the plane of reflection

= : R A
where ‘9‘ is called glide component ?’?{Z@ }M

g Is one half of a lattice translation Jme , ]
parallel to the glide plane, TN e\
g ==t :
ol = S H —

b
—b ———b  » Glide plane can only occur in an
7 i
0 O . 5 4 . .
ol i | orientation that is possible for a mirror
|
a a plane.
CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses Ott Chap 10 £43
Glide Plane

SEDUL NATIDNAL UNIVERSITY

Orthorhombic P2/m2/m2/m
(100), (010), (001) possible

Glide plane // (100) > 3[B, 3[d, 3b+d, 3lb+d

AR

b-glide  c-glide n-glide d-glide

d

n

b} 11(001)

a
a Q

b c

\\D/d

¢ 1(010)

n (100)

i

CHAN PARK, MSE, SNU  Spring-2022 Crystal Str } Ott Chap 10 |




Glide Plane

SEDUL NATIDNAL UNIVERSITY

Reflection plus %2 cell translation

> a - glide: g/2 translation

> b - glide: b/2 translation

» ¢ - glide: ¢/2 translation

» n - glide (normal to &): b/2+¢/2 translation
» n—glide (normal to b): a/2+¢/2 translation
» n—glide (normal to o: a/2+b/2 translation
> d-glide:(a+ H/4, (b+ 9/4, (c+ a/4

> g - glide line (two dimensions)

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses 45

Screw Axis

. . 277. SEDUL NATIDNAL UNIVERSITY
1) rotation 40:7 (X=1,2,3,4,6)

i) translation by a vector S parallel to the axis
where ‘5‘ is called the screw component

~|

X=X U

p
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Screw Axis

21 is a 180° rotation
plus %2 cell translation

|
|
|
|
o— 4
¢

%
|
|
|
|

o—a

\
L;j;
1 ’
i
L
iy

3

N
]
7
i
il
il

SEDUL NATIDNAL UNIVERSITY

3, is a 120° rotation plus
(2/3) cell translation

N
!
!

-,
L
r

A

37 is a 120° rotation plus
(1/3) cell translation

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses
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Screw tetrads

4 is 4-fold rotation axis.

translation (right-handed).

44 is a 90° rotation plus Y4 cell

4, is a 90° rotation plus %2 cell

translation (no handedness).

90° rotation plus % cell

translation (left-handed).

translation (right-handed)

43 is a 90° rotation plus ¥ cell

=a

Sets of points generated by 4, and
4, are a pair of enantiomorphs

(mirror images of one another).

4+ O=—1

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses
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%
L)

&5
"]

|
N

1
i

Lo

0
?404

[V}
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Screw hexads

> 6,
> 6,
> 6,
> 6,
> 6,

60° rotation
60° rotation
60° rotation
60° rotation

60° rotation

—+

+

+

+

+

1/6 cell translation (right-handed)
1/3 cell translation (right-handed)

%> cell translation (no handedness)

2/3 cell translation (right-handed ) =

5/6 cell translation (right-handed ) =

CHAN PARK, MSE, SNU  Spring-2022 Crystal Structure Analyses
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m

e S M
QT_:'-T:? 7
Id:;\i ! E pi

[ ! E T
R e
1 ! b
o0 | TR
B | il

=T -
L 9.

(@)}
N

(@)}
N

(1/3 left-handed)
(1/6 left-handed)
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International Tables for

Crystallography

International Tables for Crystallography Volume A: Space-group symmetry
Edited by Theo Hahn

International Tables for Crystallography Brief teaching edition of Volume A:

Space-group symmetry
Edited by Theo Hahn

International Tables for Crystallography Volume H: Powder Diffraction
Edited by C.J. Gilmore, J.A. Kaduk and H. Schenk
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International Tables
NEW for 2014

Volume H: Powder diffraction

Editors: Christopher J. Gilmore,
James A. Kaduk and Henk Schenk

ISBN 978-1-118-41628-0
IUCr/Wiley

2019

Powder diffraction is the most widely used crystallographic method with applications spanning
all aspects of structural science. This new volume of International Tables will cover all aspects of

the technique with over 50 chapters written by experts in the field.

The volume will be about 800 pages long and will be available both in print and online. It will be split
s AT

into seven overleaf):

(see p

Part 1. Introduction

Part 2, Instrumentation and sample preparation
Part 3. Methodology

Pi T .

" International Tables for

*Crystallography, Volume H, Powder

.Y;‘ Diffraction

Christopher Gilmore, H. U. Schenk

S
ISEN: 978-1-118-41628-0

600 pages
September 2017

Hardcover $310.00

Part 1. Introduction

Part 3. Methodology
Part 4. Structure determination

SEDUL NATIDNAL UNIVERSITY

Part 2. Instrumentation and sample preparation

Part 5. Defects, texture, microstructure and fibres

Part 6. Software
Part 7. Applications

ples

me
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Contents (provisional)

71
"

Part 1. Introduction o
Overview and principles of powder diffraction (R. E. Dinnebier and S. J. L. Billinge) =4
=
Part 2. and sample prep =3
Instrumentation - laboratory X-rays (A. Kern) O g
Synchrotron radiation and powder diffraction (A. Fitch) s
Neutrons {I. Rodriguez-Carvajal) =
Electrons {|. M. Zuo, . L Labd, ). Zhang, T. E. Gorelik and U. Kolb) 47 G
Two-dimensional powder diffraction (B. B. He) s
Temperature (C. Reiss) iﬂ:

Sample environment - high-pressure devices (A, Katrusiaki
Magnetic and electric fields in powder diffraction (H. Ehrenberg and H. Fuess) ——
Cells for in situ powder diffraction investigation of chemical reactions (W. van Beek and P, Pattison)
Sample preparation (P. Whitfield and A. Hug)

Part 3. Methodology

The aptics, alignment and calibration of the Bragg-Brentano laboratary X-ray diffractometer /. Cline)
Diffractien from powders (P. Stephens)

Data processing - powder diffraction peak profiles (R. B. Von Dreele)

Indexing (A. Altomare, C. Cuocci, A. Moltineri and R. Rizzi)

Data reduction to |F,,| (A. Le Bail)

Whole powder pattern modelling: microstructure determination from powder diffraction data (M. Leani)
Crystallographic databases and powder diffraction (1. A. Kaduk)

The clustering and visualization of powder difiraction data (C. Gilmore)

Quantitative phase analysis (. Madsen, N. Scarlett, R. Kleeberg and K. Knarr)

Part 4. Structure determination

An overview of currently used structure determination methads for powder diffraction data (K. Shankland)
Solving crystal structures using reciprocal-space methads (A. Altomare, €. Cuocci, A. Moltineri and R. Rizzi)
Real-space methods for structure salution from powder diffraction data: application to molecular structures (W. |
The use of supplementary information to solve crystal structures from powder diffraction (A. J. Florence)

Solving and refining inorganic structures (R. Cerny)

Solving and refining zeolite structures (L. B. McCusker and C. Baerlocher)

Magnetic structure determination and refinement using neutron powder diffraction (. Rodriguez-Carvajal)
Rietveld refinement (B. H. Toby)

Application of the maximum entropy methed to powder diffraction data (O. V. Magdysyuk, S. van Smaalen and
Structure vafidation (|, A. Kaduk)

Powder CIF (8. H. Toby)

Part 5. Defects, texture, microstructure and fibres

Domain size and domain size distributions (M. Leoni)

Stress and strain (N. C. Popa)

Quantitative texture analysis and combined analysis (0. Chateigner, L. Lutterottl and M. Morales)

Thin films and multilayers (M. Birkholz)

Multigrain crystallography and three-dimensional grain mapping (H. F. Poulsen and G. B. M. Vaughan)

X-ray diffraction from noncrystalline materials: the Debye model (5. Bates)

Nanometre-scale structure from powder diffraction: total scattering and atomic pair distribution function analysi:
Scattering methods for disordered heterogeneous materials (A. J. Allen)

Fibres (P, Langan)

Part 6. Software
Software for powder diffraction (C. J. Gilmare, J. A. Kaduk and H. Schenk)

Part 7. Applications

Macromolecular powder diffraction (1. Margiolaki)

Mining and mineral processing (N. V. Y. Scarlett and D. L. Bish)

Ceramic materials and powder diffraction (W. Wong-Ng)

Applications in glass ceramics (5. T. Misture)

Powder diffraction characterization of cements (M. A. G. Aranda, A. G. De La Torre and L. Leon-Reina)
Fibre diffraction and whole powder pattern fitting in polymers (R, Someshekar)

Powder diffraction and pharmaceuticals . Bernstein, 5. M. Reutzel-Edens and | -O. Henck)
Forensic applications of X-ray powder diffraction (D. F. Rendle)

Materials for energy storage and conversion (M. A. Radriguez)

X-ray diffraction in the petroleum industry (R. W. Morton and D. E. Simon)
Superconductivity {Q. Huang)

Organic pigments (M. Schmidi)

Selected applications of Rietveld XRD analysis in the aluminium industry (F. R. Feret)
Powder diffraction in art and archaeology (G. Artioli)

Contents (provisional)

ERSITY

Part 1. Introduction
Overview and principles of powder diffraction (R. E. Dii

Part 2. Instrumentation and sample preparation

Part 3. Methodology

m ) S ey ¥ [

Part 4, Structure determination
An overview of currently used structure de

Part 5. Defects, texture, microstructure and fibres
Damain size and domain size distributions (M. Leoni)

Stress and strain (M. C. Popa)

Quantitative texture analysis and combined analysis (D. Chateign
Thin films and multilayers (M. Birkholz)

Multigrain crystallography and three-dimensional grain mapping
X-ray diffraction from nencrystalline materials: the Debye model
MNanometre-scale structure from powder diffraction: total scatterin
Scattering methods for disordered heterogeneous materials (A. ). ¢
Fibres (P. Langan)

Part 6. Software
Software for powder diffraction (C. [. Gilmore, ). A. Kaduk and H,

Part 7. Applications
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