Symmetry Point group Bravais lattice Space group

Ott Chapter 6, 7, 8, 9 (9.2, 9.6, 9.7 제외, Fig 9.4 포함), 10
Sherwood \& Cooper Chapter 3.1 ~ 3.8
Hammond Chapter 2.1 ~ 2.5; 3.1 ~ 3.3; 4.1 ~ 4.7; 5.1 ~ 5.6; 12.5.1 ~ 12.5.2
Krawitz Chapter 1.1 ~ 1.8; 2.1 ~ 2.4

Symmetry

> All repetition operations are called symmetry operations.
\checkmark Symmetry consists of the repetition of a pattern by the application of specific rules.
> When a symmetry operation has a locus, that is a point, or a line, or a plane that is left unchanged by the operation, this locus is referred to as the symmetry element.

Symmetry operation	Geometrical representation	Symmetry element		
Rotation	Axis (line)	Rotation axis		
Inversion	Point (center)	Inversion center (center of symmetry)		
Reflection	Plane	Mirror plane		
Translation	vector	Translation veptor		

Symmetry operation, symmetry elements

(1) Translation
(2) Rotation; 12346
(3) Reflection;
$\mathbf{m}(=\overline{\mathbf{2}})$
(4) Inversion (center of symmetry) (= $\overline{\mathbf{1}}$)
(5) Rotation-inversion; $\overline{\mathbf{1}}$ (=center of symmetry), $\overline{\mathbf{2}}$ (= mirror), $\overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{6}}$
(6) Screw axis; rotation + translation $\mathbf{2}_{1}, \mathbf{3}_{1}, \mathbf{3}_{2}, \mathbf{4}_{1}, \mathbf{4}_{2}, \mathbf{4}_{3}, \mathbf{6}_{1},---\mathbf{6}_{5}$
(7) Glide plane; reflection + translation, $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{n}, \mathbf{d}$

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Rotation Axis

> general plane lattice
$>180^{\circ}$ rotation about the central lattice point $\mathrm{A} \rightarrow$ coincidence
\rightarrow 2-fold rotation axis; symbol 2, (normal to plane of paper), \rightarrow (parallel to plane of paper)

Order (multiplicity) of the rotation axis $n=\frac{360^{\circ}}{\phi}=\frac{2 \pi}{\phi}$

> Two objects are EQUIVALENT
\checkmark When they can be brought into coincidence by application of a symmetry operation.
> Two objects are IDENTICAL
\checkmark When no symmetry operation except lattice translation is involved.
\checkmark equivalent by translation
>All A's are equivalent to one another
A is not equivalent to B

Rotation Axis

n-fold axis $n=\frac{360^{\circ}}{\phi}=\frac{2 \pi}{\phi} \quad \phi$: minimum angle required to reach a position
Axis with $\mathrm{n}>2$ will have at least 2 other points lying in a plane \perp to it.
$\checkmark 3$ non-colinear points define a plane. \rightarrow must be a lattice plane. (translational periodicity)

3-fold axis
4-fold axis

$$
\phi=90^{\circ}, n=4
$$

6-fold axis
$\phi=60^{\circ}, n=6$

In space lattices and consequently in crystals, only $1-, 2-, 3-, 4-$, and 6 -fold rotation axes can occur.
> The points generated by rotation axis must fulfil the conditions for being a lattice plane --- parallel lattice lines should have the same translation period (all the lattice points should have identical surroundings).

No 5-fold rotation axis in space lattice
$>\| I-V$ and III-IV parallel but not equal or integral ratio

$$
\begin{aligned}
& \phi=72^{\circ}, \mathrm{n}=5 \quad \rightarrow \text { no } 5 \text {-fold axes in space lattice } \\
& >\text { This structure does not have translational symmetry in 3-dimensions } \\
& \rightarrow \text { do not have finite unit cell } \rightarrow \text { quasicrystal } \\
& \checkmark \text { Quasi - because there is no translational symmetry } \\
& \checkmark \text { Crystal - because they produce discrete, crystal-like diffraction patterns } \\
& >\text { It is impossible to completely fill the area in 2-dimensions with } \\
& \text { pentagons without creating gaps }
\end{aligned}
$$

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses
Ott Chap 6
7

Rotation axis > why $1,2,3,4$ and 6 only ?

limitation of ϕ set by translation periodicity

	$\vec{b}=m \vec{a} \quad$ where m is an integer			
	$m a=$	-2a	人s ϕ	
	$\cos \phi=\frac{1-m}{2}$			
	m	$\cos \phi$	ϕ	n
a	-1	1	2π	\cdots
	0	1/2	$\pi / 3$	16
1, 2, 3, 4, 6	1	0	$\pi / 2$	141
	2	- $1 / 2$	$2 \pi / 3$	131
	3	-1	π	! 21

$>$ Rotation by 60° around an axis \rightarrow symmetry operation
>6-fold rotation axis is a symmetry element which contains six rotational symmetry operations

> Proper symmetry elements

\checkmark Rotation axes, screw axes, translation vectors
> Improper symmetry elements
\checkmark Inverts an object in a way that may be imaged by comparing right \& left hands
\checkmark Inverted object is called an enantiomorph of the direct object (right vs left hand)
\checkmark Center of inversion, roto-inversion axes, mirror plane, glide plane

Symmetry Element

Type of symmetry element	Written symbol	Graphic	ymbol
Center of Symmetry	T	0	
		Perpendicular to paper	in plane of paper
Mirror plane	m		
Glide plane	$a \mathrm{~b}$ c	glide in plane of paper	
	n	glide out of plane of paper	$\sqrt{1}$
Rotation	2	0	\longrightarrow
	3	A	
	4		
	6		
Screw Axis	21		\checkmark
	$33_{1} \quad 32$	1 -	
	$\begin{array}{llll}4_{1} & \mathbf{4}_{2} & \mathbf{4}_{3}\end{array}$		
	$\begin{array}{llllll}6_{1} & 6_{2} & 6_{3} & 6_{4} & 6_{5}\end{array}$		
Inversion Axis	$\overline{3}$	A	
	$\overline{4}$	(4)	
	$\overline{6}$	d	

(a)

rectangular

- up

Lattice line tilted

centered rectangular

- down

Black \& Red; enantiomorphs

- down, left

O up, right
Ott Chap 6 Hammond Chap 4

Inversion

$>$ inversion, center of symmetry or inversion center, $\overline{1} \circ$

Hammond page 82

All lattices are centrosymmetric.

www.gh.wits.ac.za/craig/diagrams/

Compound Symmetry Operation

compound symmetry operation
\checkmark two symmetry operation in sequence as a single event
combination of symmetry operations
$\checkmark 2$ or more individual symmetry operations are combined, which are themselves symmetry operations.

4 \& 1bar are not present
b)
$4 \& m$ are present

Table 5.1. Compound symmetry operations of simple operations. The corresponding symmetry elements are given in round brackets

	Rotation	Reflection	Inversion	Translation
Rotation	\times	Roto- reflection	Roto- inversion	Screw rotation
Reflection	(Roto- reflection axis)	\times	2-fold rotation	Glide reflection
Inversion	(Roto- inversion axis)	(2-fold rotation axis)	\times	Inversion
Translation	(Screw axis)	(Glide plane)	(Inversion centre)	\times

Rotoinversion

compound symmetry operation of rotation and inversion
rotoinversion axis n
$1,2,3,4,6 \rightarrow \overline{\mathbf{1}}$ (= center of symmetry), $\overline{\mathbf{2}}$ (= mirror), $\overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{6}}$

O up, right

Rare case of "compound symmetry operation = combination of symmetry operation"

A $3 \cong 3+1$

ott Chap14

Symmetry elements of a Cube (정육면체)

> center of symmetry
$>$ nine mirror planes
$>$ six diad axis
$>$ four triad axis
$>$ three tetrad axis

직각 방향 : 3 개

면 대각선 방향 : 6 개

$X=2$

$X=3$

$X=4$

Symmetry elements of a Tetrahedron \& Octahedron

> Symmetry elements of a octahedron \equiv those of a cube
> Symmetry elements of a tetahedron
\checkmark six mirror planes
\checkmark three $\overline{4}$ (inverse tetrad axis)
\checkmark Four 3-fold rotation axis

Point group

$>$ Complete set of symmetry elements \rightarrow symmetry group
$>$ Limited \# of symmetry elements (ten) \& all valid combination among them $\rightarrow 32$ crystallographic symmetry groups $\rightarrow 32$ point groups
> Limited \# of symmetry elements (ten) + the way in which they interact with each other \rightarrow limited \# of completed sets of symmetry elements (32 symmetry groups $=\underline{32}$ point groups)
$>$ Point group - a group of point symmetry operations whose operation leaves at least one point unmoved (lattice translation is not considered in point group.)
$>$ Point group \leqslant symmetry elements in these groups have at least one common point and, as a result, they leave at least one point of an object unmoved.

When a symmetry operation has a locus (that is a point, a line, or a plane) that is left unchanged by the operation, this locus is referred to as the symmetry element.

32 Point Groups

> The point groups are made up from point symmetry operation and combinations of them (translation is excluded).
$>X$: x-fold rotation axis
> m : mirror plane
$>\overline{\mathbf{1}}$: inversion centre
$>\bar{X}$: rotoinversion axis
$>\mathrm{X} 2: \mathrm{X}$-fold rotation axis +2 -fold rotation axis $(\mathrm{X} \perp 2)$
$>X m(\mathrm{~m}): X+m(X / / m)$
$>\bar{X} 2(2): \bar{X}+2$-fold axis $(X b a r \perp 2)$
$>\bar{X} \mathrm{~m}: \bar{X}+\mathrm{m}(\mathrm{X} / / \mathrm{m})$
$>\mathrm{X} / \mathrm{mm}: \mathrm{X}+\mathrm{m} 1+\mathrm{m} 2(\mathrm{X} \perp \mathrm{m} 1, \mathrm{X} / / \mathrm{m} 2)$

32 point groups

Table 8.2. The 32 point groups

Crystal system	Point groups	
Triclinic	$\overline{\mathrm{l}}$	1
Monoclinic	2/m	m, 2
Orthorhombic	$\begin{aligned} & 2 / \mathrm{m} \mathrm{2/m} 2 / \mathrm{m} \\ & (\mathrm{mmm}) \end{aligned}$	$\mathrm{mm} 2,222$
Tetragonal	$\begin{aligned} & 4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \\ & (4 / \mathrm{mmm}) \end{aligned}$	$\begin{aligned} & \overline{4} 2 \mathrm{~m}, 4 \mathrm{~mm}, 422 \\ & 4 / \mathrm{m}, \overline{4}, 4 \end{aligned}$
Trigonal	$\begin{aligned} & \overline{3} 2 / \mathrm{m} \\ & (\overline{3} \mathrm{~m}) \end{aligned}$	3m, 32, $\overline{3}, 3$
Hexagonal	$\begin{aligned} & 6 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \\ & (6 / \mathrm{mmm}) \end{aligned}$	$\begin{aligned} & \overline{6} \mathrm{~m} 2,6 \mathrm{~mm}, 622 \\ & 6 / \mathrm{m}, \overline{6}, 6 \end{aligned}$
Cubic	$\begin{aligned} & 4 / \mathrm{m} \overline{3} 2 / \mathrm{m} \\ & (\mathrm{~m} \overline{3} \mathrm{~m}) \end{aligned}$	$\underset{(\mathrm{m} 3 \mathrm{~m})}{\mathrm{m},} 432,2 / \mathrm{m} \overline{3}, 23$

full symbols (short symbols)

Total 32

CHAN PAKK, MSE, SNU sprıng-LULL Crystal Structure Analyses

Symmetry directions

Xtal systems	Symmetry directions			
Triclinic	a	b	c	$a 1 \neq a 2 \neq a 3, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
Monoclionic	a	b	c	$a 1 \neq a 2 \neq a 3, \alpha=\gamma=90^{\circ} \neq \beta$
Orthorhombic	a	b	c	$a 1 \neq a 2 \neq a 3, \alpha=\beta=\gamma=90^{\circ}$
Tetragonal	c	$<a>$	$<110>$	$a 1=a 2 \neq a 3, \alpha=\beta=\gamma=90^{\circ}$
Trigonal	c	$<a>$	-	$a 1=a 2=a 3, \alpha=\beta=\gamma<120^{\circ} \neq 90^{\circ}$
Hexagonal	c	$<a>$	$<210>$	$a 1=a 2 \neq a 3, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
Cubic	$<a>$	$<111>$	$<110>$	$a 1=a 2=a 3, \alpha=\beta=\gamma=90^{\circ}$

$>$ Combination of symmetry elements \& their orientations w.r.t. one another defines the crystallographic axes.
> Axes can be chosen arbitrarily, but are usually chosen w.r.t. specific symmetry elements present in a group.
$\checkmark / /$ rotation axes or $\perp \mathrm{m}$
> All possible 3-D crystallographic point groups can be divided into a total of 7 crystal systems based on the presence of a specific symmetry elements or specific combination of them present in the point group symmetry.
$>$ (7 crystal systems) X 5 (types of lattices) $\rightarrow 14$ different types of unit cells are required to describe all lattices (14 Bravais lattices).

7 Crystal systems, 6 Crystal family

Table 2.6 Seven crystal systems and the corresponding characteristic symmetry elements.

Crystal system	Characteristic symmetry element or combination of symmetry elements
Triclinic Monoclinic Orthorhombic	No axes other than onefold rotation or onefold inversion Unique twofold axis and/or single mirror plane
Trigonal Tetree mutually perpendicular twofold axes, either rotation or Thversion Hexagonal Cubic	Unique threefold axis, either rotation or inversion
	Unique fourfold axis, either rotation or inversion Unique sixfold axis, either rotation or inversion diagonals of a cube

Trigonal \& hexagonal can be described in the same type of the lattice \rightarrow six crystal family

Characteristic symmetry elements of the 7 crystal systems

Table 8.9. Characteristic symmetry elements of the seven crystal systems

Crystal system	Point groups ${ }^{\text {a }}$	Characteristic symmetry elements
Cubic	$\begin{gathered} 4 / \mathrm{m} \overline{3} 2 / \mathrm{m} \\ \overline{4} 3 \mathrm{~m}, 432,2 / \mathrm{m} \overline{3}, 2 \underline{3} \end{gathered}$	4 A
Hexagonal	$\begin{gathered} \underline{6} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \\ \underline{6} \mathrm{~m} 2, \underline{\mathrm{~mm}}, \underline{622} \\ \underline{6} / \mathrm{m}, \underline{6}, \underline{6} \end{gathered}$	- or ${ }^{\text {d }}$
Tetragonal	$\begin{gathered} \frac{4}{4} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \\ \underline{4} 2 \mathrm{~m}, 4 \mathrm{~mm}, \frac{422}{}, \\ \underline{4} / \mathrm{m}, \underline{4}, \underline{4} \end{gathered}$	$\begin{gathered} 1 \text { or } 1 \square \\ (3 \boldsymbol{\text { or }} 3 \end{gathered}$
Trigonal	$\begin{gathered} \overline{3} 2 / \mathrm{m} \\ \underline{3} \mathrm{~m}, \underline{32}, \underline{\overline{3}}, \underline{3} \end{gathered}$	14 (remember that m normal to 3 gives $\overline{6} \Rightarrow$ hexagonal
Orthorhombic	$\frac{2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}}{\mathrm{~mm} 2,222}$	2 and/or m in three orthogonal directions
Monoclinic	$\frac{2 / \mathrm{m}}{\underline{\mathrm{~m}}, \underline{2}}$	2 and/or m in one direction
Triclinic	$\begin{aligned} & \overline{1} \\ & \underline{1} \end{aligned}$	$\overline{1}$ or 1 only

Characteric symmetry elements are underlined.

3D Bravais lattices

The 14 Bravais lattices in 3 dimensions are obtained by coupling one of the 7 lattice systems (or axial systems) with one of lattice centerings. Each Bravais lattice refers to a distinct lattice type.
$>$ The lattice centerings are
\checkmark Body (I): one additional lattice point at center of the cell.

\checkmark Face (F): additional lattice points at centers of all the faces of the cell.
\checkmark Base (A, B or C): additional lattice points at centers of each pair of cell faces.

Not all the combinations of crystal systems and lattice centerings are needed to describe the possible lattices.
$>$ There are in total $7 \times 5(\mathrm{P}, \mathrm{I}, \mathrm{F}, \mathrm{C}, \mathrm{R})=35$ possible combinations, but many of these are in fact equivalent to each other.
\checkmark For example, the tetragonal F lattice can be described by a tetragonal I lattice by different choice of crystal axes.
\rightarrow This reduces the number of combinations to $14 . \rightarrow 14$ Bravais lattices

> 7 crystal systems (6 crystal families) X 5 types of lattices
\rightarrow only 14 different types of unit cells are required to describe all lattices using conventional crystallographic symmetry $\rightarrow 14$ Bravais lattice
cubic

Space group

- Unit cell translations
- Centering operations (Lattices) (A, B, C, I, F, R)
- Glide planes (reflection + translation) (a, b, c, n, d)
- Screw axes (rotation + translation) $\left(2_{1}, 3_{1}, 3_{2}\right)$
>If translation operations are included with rotation and inversion \rightarrow We have 230 three-dim. space groups
$>$ Space group - symmetry of crystal lattices and crystal structures
$>$ Bravais lattice + point group $\rightarrow 230$ space groups
+ screw axis
+ glide plane
>Hermann-Mauguin symbols (4 positions)
\checkmark First position is Lattice type ($\mathrm{P}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{I}, \mathrm{F}$ or R)
\checkmark Second, third and fourth positions as with point groups
Cmm 2 (35)

$$
P \frac{4}{m}-\frac{2}{m} \text { (225) }
$$

$F \overline{4} 3 m$ (No.216)

Crystal symmetry, 14 Bravais lattice

Crystal System	Bravais Lattices	Symmetry	Symmetry	Axis System
Cubic	P, I, F	m3m	m3m	$a=b=c, \alpha=\beta=\gamma=90$
Tetragonal	P, I	4/mmm	4/mmm	$a=b \neq c, \alpha=\beta=\gamma=90$
Orthorhombic	P, C, I, F	mmm	mmm	$a \neq b \neq c, \alpha=\beta=\gamma=90$
Hexagonal	P	$6 / \mathrm{mmm}$	6/mmm	$a=b \neq c, \alpha=\beta=90, \gamma=120$
Rhombohedral	R	3 m	3 m	$a=b=c, \alpha=\beta=\gamma \neq 90$
Monoclinic	P, C	2/m	2/m	$a \neq b \neq c, \alpha=\gamma=90, \beta \neq 90$
Triclinic	P	1	1	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha \neq \beta \neq \gamma \neq 90$
				$\begin{array}{lll} \mathrm{P3}_{2} 21 \\ \mathrm{P} 3_{2} & 2 & 1 \end{array}$ 6/mmm $6 / \mathrm{m} \mathrm{~m} \mathrm{~m}$

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Symmetry directions, Space group

14 Bravais lattice > space group symbols

	P	C	I	F
Triclinic	P $\overline{1}$			
Monoclinic	P $2 / \mathrm{m}$	C 2 /m		
Orthorhombic	P $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	C $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	I $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	F $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$
Tetragonal	P $4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$		I $4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	
Trigonal	P $6 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	R $\overline{3}$ 2/m		
Hexagonal				
Cubic	P 4/m ${ }^{\text {3 }} 2 / \mathrm{m}$.		I $4 / \mathrm{m} \overline{3} 2 / \mathrm{m}$	F $4 / \mathrm{m}$ 3 $2 / \mathrm{m}$

> The 14 Bravais lattice represent the 14 and only way in which it is possible to fill space by a 3-D periodic array of points.
> All crystals are built up on one of 14 Bravais lattices.
> Any crystal structure has only one Bravais lattice.
$>$ Number of lattice is fixed at 14.
Infinite number of arranging atoms in a cell \leftarrow basis
CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses
plane groups vs. space groups

General \&

 special positions

International Tables for Crystallography

Positions

\checkmark Multiplicity (rank); \# equivalent points in the unit cell
\checkmark Wyckoff letter
\checkmark Site symmetry (point symmetry of the position)
\checkmark Coordinates of the equivalent positions

(1) Cmm 2
$m m 2$

Cmm 2

Orthorhombic
Patterson symmetry Cmmm

(3)

(4) Origin on $m m 2$
(5) Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{2} ; \quad 0 \leq z \leq 1$
(6) Symmetry operations

For $(0,0,0)+$ set
(1) 1

For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$ set
For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+s$
(1) $t\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
(2) $20,0, z$
(3) $m x, 0, z$
(4) $m \quad 0, y, z$
(2) $2 \frac{1}{4}, \frac{1}{2}, z$
(3) $a x, \frac{1}{1}, 2$
(4) $b \quad \frac{1}{4}, y, z$
(1) Headline: Section 2.2.3.

Short Hermann-Mauguin symbol
(Section 2.2.4 and Chapter 12.2)

Schoenflies symbol
(Chapters 12.1 and 12.2)

Full Hermann-Mauguin symbol
(Section 2.2.4 and Chapter 12.3)

Crystal class (Point group)
(Section 10.1.1 and Chapter 12.1)
Crystal system
(Section 2.1.2)
(2) Number of space group [Same as in $/ T$ (1952)]

Patterson symmetry (Section 2.2.5)
(3) Space-group diagrams, consisting of one or several projections of the symmetry elements and one illustration of a set of equivalent points in general position. The numbers and types of the diagrams depend on the crystal system. The diaglams and their axes are described in Section 2.2.6; the graphical symbols of symmetry elements are listed in Chapter 1.4.

For monoclinic space groups see Section 2.2.16; for orthorhombic settings see Section 2.2.6.4.
(4) Origin of the unit cell: Section $2 \cdot 2.7$. The site symmetry of the origin and its location with respect to the symmetry elements are given.
(5) Asymmerric unit: Section 2.2.8. One choice of asymmetric unit is given.
(6) Symmerry operations: Section 2.2 .9 and Part 11. For each point $\bar{x}, \bar{y}, \tilde{₹}$ of the general position that symmetry operation is listed which transforns the initial point x, y, z into the point under consideration. The symbol describes the nature of the operation, its glide or screw component (given between parentheses), if present, and the location of the corresponding symmetry element.

The symmetry operations are numbered in the same way as the corresponding coordinate triplets of the general position. For centred space groups the same numbering is applied in each block, e.g. under 'For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$ set'.
[Contimued on inside back cover]
(1) CONTINUED
(2) Generators selected (1); t(1,0,0);t(0,1,0);t(0,0,1);t(2,t,2,0);(2);(3)
(3)

Positions

Multiplicity, Wyckoff letter, Site symmetry	Coordinates			
	$(0,0,0)+\left(\begin{array}{l}2 \\ 2\end{array} \frac{1}{2}, 0\right)+$			
f	(1) x, y, z	(2) \bar{x}, \bar{y}, z	(3) x, \bar{y}, z	(4) \tilde{x}, y, z

Cmm 2

4	e	$m \ldots$	$0, y, z$	$0, \bar{y}, z$
4	d	$\ldots m$.	$x, 0, z$	$\bar{x}, 0, z$
4	c	$\ldots 2$	$\frac{1}{4}, \frac{1}{4}, z$	$\frac{1}{4}, \frac{3}{4}, z$
2	b	$m m 2$	$0, \frac{1}{2}, z$	
2	a	$m m 2$	$0,0, z$	

(4) Symmetry of special projections

Along [001]c2mm
$\mathbf{a}^{\prime}=\mathbf{a} \quad \mathbf{b}^{\prime}=\mathrm{b}$
$\mathbf{a}^{\prime}=\mathbf{a} \quad \mathbf{b}^{\prime}=\mathrm{b}$
Origin at $0,0, z$

$$
\begin{aligned}
& \text { Along }[100]_{p} \mid \mathrm{ml} \\
& \mathbf{a}^{\prime}=\frac{1 \mathbf{b}}{\mathrm{~b}} \quad \mathrm{~b}=\mathbf{c} \\
& \text { Origin at } x, 0,0
\end{aligned}
$$

Reflection conditions
General:
$h k l: h+k=2 n$
$0 k l: k=2 n$
$h 0 l: h=2 n$
hol: $h=2 n$
$h k 0: h+k=2$
ho : $h=2 \pi$
$0 k=2 n$
Special: as above, plus
no extra conditions
no extra conditions
$h k l: h=2 n$
no extra conditions
no extra conditions

Maximal non-isomorphic subgroups
I $\quad[2] \mathrm{Clm} 1(\mathrm{Cm}, 8) \quad(1 ; 3)+$ $\begin{array}{ll}{[2] \mathrm{Cm} 11(\mathrm{Cm}, 8)} & (1 ; 4)+ \\ (2] \mathrm{Cl112(P,3)} & (1,2)+\end{array}$ $[2] C 112(P 2,3) \quad(1 ; 2)+$
На $[2] P b a 2(32) \quad 1 ; 2 ;(3 ; 4)+\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ [2] Pbm2 $2(P m a 2,28) \quad 1 ; 3 ;(2 ; 4)+\left(1, \frac{1}{2}, 0\right)$ [2] Pma2 (28) $\quad 1 ; 4 ;(2 ; 3)+\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ [2] $P \mathrm{Pmm} 2$ (25) $\quad 1 ; 2 ; 3: 4$
IIb $\quad[2] / \operatorname{ma2} 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(46) ;[2] / b m 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(1 \operatorname{ma} 2,46) ;[2] / b a 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(45) ;[2] / \mathrm{mm} 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(44) ;[2] \mathrm{Ccc} 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(37)$; [2] $\mathrm{Cmc} 2,\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(36) ;[2] \mathrm{Ccm} 2,\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(\mathrm{Cmc} 2,36)$
(6) Maximal isomorphic subgroups of lowest index

IIc [2] Cmm2 $\left(c^{\prime}=2 \mathrm{c}\right)(35) ;[3] \mathrm{Cmm} 2\left(\mathrm{a}^{\prime}=3 \mathrm{a}\right.$ or $\left.\mathrm{b}^{\prime}=3 \mathrm{~b}\right)(35)$
(7) Minimal non-isomorphic supergroups

I [2] Cmmm (65);[2]Cmme (67);[2]P4mm(99);[2]P4bm(100);[2]P4, cm(101):[2]P4,nm(102);[2]P42m(111); [2] $P \overline{4} 2, m(113) ;[3] P 6 \mathrm{~mm}(183)$
II [2] $F m m 2(42) ;[2] P m m 2\left(\mathrm{a}^{\prime}=\frac{1}{2} \mathrm{a}, \mathrm{b}^{\prime}=\frac{1}{2}\right)(25)$
(1) Headline in abbreviated form.
(2) Generators selected: Sections 2.2 .10 and 8.3.5. A set of generators, as selected for these Tables, is listed in the form of translations and numbers of general-position coordinates. The gencrators determine the sequence of the coordinate triplets in the general position and of the corresponding symmetry operations.
(3) Positions: Sections 2.2 .11 and 8.3.2. The general Wyckoff position is given at the top, followed downwards by the various special Wyckoff positions with decreasing multiplicity and increasing site symmetry. For each general and special position its multiplicity, Wyckoff letter, oriented site-symmetry symbol, as well as the appropriate coordinate triplets and the reflection conditions, are listed. The coordinate triplets of the general position are numbered sequentially; cf. Symmetry operations.

Oriented site-symmetry symbol (third column); Section 2.2.12. The site symmetry at the points of a special position is given in oriented form.

Reflection conditions (right-most column): Section 2.2.13.
[Lattice complexes are described in Part 14; Tables 14.2.3.1 and 14.2.3.2 show the assignment of Wyckoff positions to Wyckoff sets and to lattice complexes.]
(4) Symmetry of special projections: Section 2.2.14, For each space group, orthographic projections along three (symmery) directions are listed. Given are the projection direction, the plane group of the projection, as well as the axes and the origin of the projected cell.
(5) Maximal non-isomorphic subgroups: Sections 2.2.15 and 8.3.3.

Type I: translationengleiche or t subgroups;
Type IIa: klassengleiche or k subgroups, obtained by 'decentring' the conventional cell; applies only to space groups with centred cells;
Type IIb: klassengleiche or k subgroups, obtained by enlarging the conventional cell.
Given are:
For types I and Ma: Index [between brackets]; 'unconventional' Hermann-Mauguin symbol of the subgroup; 'conventional' Hermann-Mauguin symbol of the subgroup, if different (between parentheses); coordinate triplets retained in subgroup.
For type IIb: Index [between brackets]; 'unconventional' Hermann-Mauguin symbol of the subgroup; basis-vector relations between group and subgroup (between parentheses); 'conventional' Hermann-Mauguin symbol of the subgroup, if different (between parentheses).
(6) Maximal isomorphic subgroups of lowest index: Sections 2.2.15, 8.3.3 and 13.1.2.

Type IIc: Klassengleiche or k subgroups of lowest index which arc of the same type as the group, i.e have the same standard Hermann-Mauguin symbol. Data as for subgroups of type IIb.
(7) Minimal non-isomorphic supergrotps: Sections 2.2.15 and 8.3.3.

The list contains the reverse relations of the subgroup tables; only types I $(t$ supergroups) and $\boldsymbol{I I}$ (k supergroups) are distinguished. Data as for subgroups of type IIb. International Tables for Crystallography

Symmetry operations, Point groups, Space groups

> Symmetry operations - Translation, Rotation, Reflection, Inversion
$>$ Shape of the unit cell, symmetry within the unit cell, translation of the unit cell \rightarrow define a repeating pattern.
> Point groups (32) - set of symmetry operations about a point in space (except for translation)
$>$ Space groups (230) \leftarrow (32 point groups +7 crystal systems)
> Space (plane) lattice; 3 (2)-dimensional arrays of points in space that have a basic repeating pattern, a unit cell, that can be translated to fill all space

> 3-D, 14 possible lattices, 7 different axis systems

> The application and permutation of all symmetry elements to patterns in space give rise to 230 space groups (instead of 17 plane groups) distributed among 14 space lattices (instead of 5 plane lattices) and 32 point group symmetries (instead of 10 plane point group symmetries).
> Point group symmetry \& space group symmetry has to be distinguished.
> Space group symmetry - the way things are packed together and fill space
$>$ Space group - translational component = point group

Laue class, Laue group; 11 point groups with center of symmetry

Table 2.9 The 11 Laue classes and six "powder" Laue classes.

Crystal system	Laue class	"Powder" Laue class	Point groups
Triclinic	$\overline{1}$	$\overline{1}$	$1, \overline{1}$
Monoclinic	$2 / \mathrm{m}$	$2 / \mathrm{m}$	$2, \mathrm{~m}, 2 / \mathrm{m}$
Orthorhombic	mmm	mmm	$222, \mathrm{~mm} 2, \mathrm{mmm}$
Tetragonal	$4 / \mathrm{m}$	$4 / \mathrm{mmm}$	$4, \overline{4}, 4 / \mathrm{m}$
	$4 / \mathrm{mmm}$	$4 / \mathrm{mmm}$	$422,4 \mathrm{~mm}, \overline{4} \mathrm{~m} 2,4 / \mathrm{mmm}$
Trigonal	$\overline{3}$	$6 / \mathrm{mmm}$	$3, \overline{3}$
	$\overline{3} \mathrm{~m}$	$6 / \mathrm{mmm}$	$32,3 \mathrm{~m}, \overline{3} \mathrm{~m}$
Hexagonal	$6 / \mathrm{m}$	$6 / \mathrm{mmm}$	$6, \overline{6}, 6 / \mathrm{m}$
	$6 / \mathrm{mmm}$	$6 / \mathrm{mmm}$	$622,6 \mathrm{~mm}, \overline{6} \mathrm{~m} 2,6 / \mathrm{mmm}$
Cubic	$\mathrm{m} \overline{3}$	$\mathrm{~m} \overline{3} \mathrm{~m}$	$23, \mathrm{~m} \overline{3}$
	$\mathrm{~m} \overline{3} \mathrm{~m}$	$\mathrm{~m} \overline{3} \mathrm{~m}$	$432, \overline{4} 3 \mathrm{~m}, \mathrm{~m} \overline{3} \mathrm{~m}$

> Laue class \rightarrow Pecharsy page 40
Laue index \rightarrow Hammond page 138

Glide planes \& Screw Axis

i) reflection
ii) translation by the vector \vec{g} parallel to the plane of reflection where $|\vec{g}|$ is called glide component \vec{g} Is one half of a lattice translation parallel to the glide plane.

$$
|\vec{g}|=\frac{1}{2}|\vec{t}|
$$

> Glide plane can only occur in an orientation that is possible for a mirror plane.

Glide Plane

Orthorhombic $\quad \mathbf{P 2} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$

(100), (010), (001) possible

Glide plane // (100) $\rightarrow \frac{1}{2}|\vec{b}|, \frac{1}{2}|\vec{c}|, \frac{1}{2}|\vec{b}+\vec{c}|, \frac{1}{4}|\vec{b} \pm \vec{c}|$

Reflection plus $1 / 2$ cell translation
> a - glide: $a / 2$ translation
$>b$ - glide: $b / 2$ translation
> c - glide: $c / 2$ translation
> n-glide (normal to a): $b / 2+c / 2$ translation
$>n$-glide (normal to b): $a / 2+c / 2$ translation
> n - glide (normal to c): $a / 2+b / 2$ translation
$>d$ - glide : $(a+b) / 4,(b+c) / 4,(c+a) / 4$
$>g$-glide line (two dimensions)

Screw Axis

i) rotation $\phi=\frac{2 \pi}{X}(X=1,2,3,4,6)$
ii) translation by a vector \vec{S} parallel to the axis where $|\vec{s}|$ is called the screw component

$$
\begin{gathered}
|\vec{s}|=\frac{p}{X}|\vec{t}| \quad \mathrm{p}=0,1,2 \ldots, \mathrm{X}-1 \\
X_{p}=X_{0}, X_{1}, \ldots . X_{X-1}
\end{gathered}
$$

Screw tetrads

4_{0} is 4 -fold rotation axis.

41 is a 90° rotation plus $1 / 4$ cell translation (right-handed).
4_{2} is a 90° rotation plus $1 / 2$ cell translation (no handedness).
4_{3} is a 90° rotation plus $3 / 4$ cell translation (right-handed) $=\mathrm{a}$ 90° rotation plus $1 / 4$ cell translation (left-handed).

Sets of points generated by 4_{1} and 4_{3} are a pair of enantiomorphs (mirror images of one another).

40

41

42

43

$>\mathbf{6}_{1} 60^{\circ}$ rotation $+1 / 6$ cell translation (right-handed)
$>\boldsymbol{6}_{\mathbf{2}} 60^{\circ}$ rotation $+1 / 3$ cell translation (right-handed)
$>6_{3} 60^{\circ}$ rotation $+1 / 2$ cell translation (no handedness)
$>\boldsymbol{6}_{4} 60^{\circ}$ rotation $+2 / 3$ cell translation (right-handed $)=(1 / 3$ left-handed)
$>\mathbf{6}_{5} 60^{\circ}$ rotation $+5 / 6$ cell translation (right-handed $)=(1 / 6$ left-handed $)$

International Tables for Crystallography

International Tables for Crystallography Volume A: Space-group symmetry Edited by Theo Hahn

International Tables for Crystallography Brief teaching edition of Volume A:
Space-group symmetry
Edited by Theo Hahn

International Tables for Crystallography Volume H: Powder Diffraction Edited by C.J. Gilmore, J.A. Kaduk and H. Schenk

2019

Part 1. Introduction
Part 2. Instrumentation and sample preparation
Part 3. Methodology
Part 4. Structure determination
Part 5. Defects, texture, microstructure and fibres
Part 6. Software
${ }^{\text {ples }}$ Part 7. Applications

Contents (provisional)

Part 1. Introduction
Overview and principles of powder diffraction (R. E. Dinnebier and S. J. L. Billinge)
Part 2. Instrumentation and sample preparation
Instrumentation - laboratory X-rays $($ A. Kem)
Synchrotron radiation and powder diffraction (A. Fitch)
Synchrotron radiation and powder diffraction (A. Fitch)
Neutrons 0 . Rodrigueze-Carvajal)
Ele
Electrons U. M. Zuoo, J.L.Labbír J. Zhang, T. E. Gorelik and U. Kolb)
Temperature (C. Reiss)
Sample environment - high-pressure devices (A. Katrusiak)
Magnetic and electric fiedds in powder diffraction (H. Ehrenberg and H . Fuess)
Cells for in in situ powder diffraction investigation of chemical reactions $\mathbf{W H}$. Sample preparation (P. Whititield and A. Huq)
Part 3. Methodology
The optics, alignment and calibration of the Bragg-Brentano laboratory X-ray diffractometer (Cline)
Diffraction from powders (P. Stephens)
Data processing - powder diffraction peak profiles (R. B. Von Dreele)
Indexing (A. Altomare, C C Cuocci
Data reduction to $F_{\text {meld }}$ (A . Le Bail)
Whole powder pattern modelling: microstructure determination
Crystallographic databases and powder difiraction (U.A. . .aduk)
The clustering and visualization of powder difiraction data (C G
Quantitative phase analysis $\$. Madsen, N. Scarlett, R. Kleeberg and K. Knorr)
Part 4. Structure determination
Part 4. Structure determination
An overview of currently used structure determination methods for powder diffraction data (K. Shankland)
Solving crystal structures using reciprocal-space methods $(A$. Altomare, C. Cuocci, A. Moltineri and R. R. Rizzi)
Real-space methods for structure solution from powder diftaction dat . Real-space methods for structure solution from powder diffraction datat: application to onolecular struuctures (iW.
The use of supplementary information to solve crystal structures from powder diffraction (A.). Florence) The use of supplementary information to solve crystal structures from powd
Solving and defining inorganic structures (R. Cerny)
Solving and refining zeolite strutues
Solving and refining zeolite structures (L.B. BcCusker and C. Baerlocher)
Magnetic structure determination and refinement using neutron powder diffraction (0 . Rodriguez-Carvajal)
Rietveld refinement (B. H. Toby)
Application of the maximum entropy method to powder diffraction data (O. V. Magdysyuk, S . van Smaalen
Stucture validation (.A. A. Kaduk)
Powder ClF (B. H. Toby)
Part 5. Defects, texture, microstructure and fibre
Domain size and domain size distributions (M. Leoni)
Quantitative text (N. C. Popa)
Thin films and multiliayers (M. Birkholz)
crsstallography and three-dimensional srain mapping (H. F. Pes an
X-ray diffraction from noncrystalline materials: the Debye model (S. Bates)
Nanometre-scale structure from powder diffraction: total scattering and atomic pair distribution function anal
Scattering methods for disordered heterogeneous materials (A.). Allen)
Fibres (P Langan)
Part 6. Software
Part 7. Applications
Macromolecular powder diffraction (1. Margiolaki)
Mining and mineral processing (N. . Y. Scarlet and D.L. Bish)
Ceramic materials and powder diffraction (W . Wong-Ng)
Applications in glass ceramics (S. T. Misture)
Powder diffraction characterization of cements (M. A. G. Aranda, A. G. De La Torre and L. Leon-Reina)

Forensic applications of X-ray powder diffraction (D. F. Rendle)
Materials for energy storage and conversion (M. A. Rodríguez)
X-ray diffraction in the petroleum industry (R. W. Morton and D. E. Simon)
Superconductivity (\mathcal{Q}. Huang)
Organic pigmenstions Schmidu
Selected applications of Rietveld XRD analysis in the aluminium industry (F. R. Feret)
Pow
Powder diffraction in art and archaeology (G. Artioli)

Contents (provisional)

Part 1. Introduction

Overview and principles of powder diffraction (R. E. Dir
Part 2. Instrumentation and sample preparation

Part 3. Methodology

Part 4. Structure determination
 An overview of currently used structure de

Part 5. Defects, texture, microstructure and fibres

Domain size and domain size distributions (M. Leoni)
Stress and strain (N. C. Popa)
Quantitative texture analysis and combined analysis (D. Chateign
Thin films and multilayers (M. Birkholz)
Multigrain crystallography and three-dimensional grain mapping
X-ray diffraction from noncrystalline materials: the Debye model Nanometre-scale structure from powder diffraction: total scatterin Scattering methods for disordered heterogeneous materials (A. J. / Fibres (P. Langan)

Part 6. Software
Software for powder diffraction (C. J. Gilmore, J. A. Kaduk and H.

