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Ch. 2 Review of Fluid Mechanics

1. Hydromechanics and Hydrostatics
2. Pascal’s Principle
3. Hydrostatic Pressure
4. Archimedes’ Principle and Buoyant Force
5. The Equation of Continuity and Bernoulli Equation
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1. Hydromechanics and Hydrostatics
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Introduction to Hydromechanics

 Today, the branch of physics, which encompasses the 
theories and laws of the behavior of water and other 
liquids, is known as hydromechanics.

 Hydromechanics itself is subdivided into three fields:

(1) Hydrostatics, which deals with liquids at rest.
(2) Hydrodynamics, which studies liquids in motion.
(3) Hydraulics, dealing with the practical and engineering 

applications of hydrostatics and hydrodynamics.

6
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

Meaning of Hydrostatics

What is Hydrostatics?

Hydrostatics (from Greek hydro, meaning water, and 
statics meaning rest, or calm) describes the behavior 
of water in a state of rest.

This science also studies the forces that apply to 
immersed and floating bodies, and the forces exerted 
by a fluid.
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Definition of Pressure

 Pressure*
Let a small pressure-sensing device be 
suspended inside a fluid-filled vessel.
We define the pressure on the piston from the 
fluid as the force divided by area, and it has 
units Newton per square meter called ‘Pascal’.

One newton per square meter is one Pascal.

We can find by experiment that at a given 
point in a fluid at rest, the pressure have the 
same value no matter how the pressure sensor 
is oriented.
Pressure is a scalar, having no directional 
properties, and force is a vector quantity. 
But       is only the magnitude of the force.

F
P

A





2(1 Pa 1 / )N m

F
A

Pressure 
Sensor

Vacuum

A
F


A: Magnitude of normal force on area  
: Surface area of the piston

F F A

F
* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.361, 2004
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Hydrostatics mainly consists of two principles.

1. Pascal’s principle (also Pascal’s law) says that
the pressure applied to an
enclosed fluid is transmitted undiminished.

2. Archimedes’ principle states that the buoyant force
on an immersed body has the same magnitude as the
weight of the fluid which is displaced by the body.

Two Principles of Hydrostatics



2017-01-24

5

9
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

Definition of Fluid

 What is a Fluid?*

A fluid, in contrast to a solid, is a substance that can flow, because it 
cannot withstand a shearing stress. 

It can, however, exert a force in the direction perpendicular to its 
surface.

: Magnitude of perpendicular force between the two cubes
: Area of one face of one of the cubes

F
A



F F A

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.360, 2004
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2. Pascal’s Principle
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Pascal’s Principle

 We will now consider a fluid element in static equilibrium in 
a closed container filled with a fluid which is either a gas or a 
liquid. The velocity of flow is everywhere zero.

 At first, we will neglect gravity. If a force F is applied on the 
cap of the container with an area A in this direction, then a 
pressure of F/A is applied.

F A

A

0
lim
A

F
P

A 






n

: Magnitude of force

FD

AD

FD

FD
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Pascal’s Principle

Pascal’s Principle

In the absence of gravity, the pressure is the same
everywhere in this container.
That is what's called Pascal's principle.

A change in the pressure applied an enclosed fluid is 
transmitted undiminished to every portion of the fluid 
and to the walls of its container*.

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.366, 2004
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Application of the Pascal’s Principle

 The idea of a Hydraulic jack

2F

2d

1d

1A 2A
1F

Pascal’s Principle: 
A change in the pressure applied an 

enclosed fluid is transmitted 
undiminished to every portion of the 
fluid and to the walls of its container*.

1 2

1 2

F F

A A
Pascal’s Principle: 

Consider a vessel with two pistons 
having area A1 and area A2. The vessel 
is filled with liquid everywhere. 
Now a force F1 on A1 and a force F2 on 

A2 are applied. So the pressure on the 
left piston is F1/A1. 
According to the Pascal’s principle, 

everywhere in the fluid, the pressure 
must be the same. The pressure on the 
right piston, F2/A2 must be the same as 
the pressure F1/A1, if the liquid is not 
moving. The effect of gravity does not 
change the situation very significantly.
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Example of Design of Hydraulic Jack (1/5)

2F

2d

1d

1A 2A
1F

2

1

100
A

A
Example) If             , then            .2

1

100
F

F


1 2

1 2

F F

A A
Pascal’s Principle: 

(Pascal’s Principle)
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Example of Design of Hydraulic Jack (2/5)

2F

2d

1d

1A 2A
1F

1 2

1 2

F F

A A
Pascal’s Principle: 

1 1 2 2Ad A dDisplaced Volume:
(Incompressible fluid)
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Example of Design of Hydraulic Jack (3/5)

2F

2d

1d

1A 2A
1F

1 2
1 1 2 2 2 2

2 1

A A
Fd F d F d

A A

  
   
  

Conservation of Energy:

1 2

1 2

F F

A A
Pascal’s Principle: 

1 1 2 2Ad A dDisplaced Volume:
(Incompressible fluid)

1F 1d
(Pascal’s Principle) (Displaced Volume)
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Example of Design of Hydraulic Jack (4/5)

1 2

1 2

F F

A A
Pascal’s Principle: 2F

2d

1d

1A 2A
1F

1 1 2 2Ad A dDisplaced Volume:
(Incompressible fluid)

1 1 2 2Fd F dConservation of Energy:

2

1

100
A

A
Example) If

1 2100d d

1 2100F F

1 1 2 2Fd F d

100

100

(Pascal’s Principle)

(Displaced Volume)

→

→

∴ Conservation of Energy is satisfied.
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Example of Design of Hydraulic Jack (5/5)

[Example]
A force of 30 N is applied to the smaller cylinder of a hydraulic jack.
If the area of this cylinder is 10 cm2 and the area of the large cylinder is 100 cm2

what is the force exerted by the large cylinder?

[Solution]
Force (F2) = F1A2/A1 = 30100/10 = 300 N

Change of a Flat Tire by using hydraulic jack

1A

1F
2F

2A
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3. Hydrostatic Pressure
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Hydrostatic Pressure (1/9)

 Hydrostatic Pressure

As every diver knows, the pressure increases with depth
below the water. 

As every mountaineer knows, the pressure decreases 
with altitude as one ascends into the atmosphere. 

The pressure encountered by the diver and the 
mountaineer are usually called hydrostatic pressures, 
because they are due to fluids that are static (at rest).

Here we want to find an expression for hydrostatic 
pressure as a function of depth or altitude.
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Hydrostatic Pressure (2/9)

Now, gravity, of course, has an 
effect on the pressure in the 
fluid.
Hydrostatic pressure is due to 

fluids that are static (at rest).
Thus, there has to be static 

equilibrium. 

Consider a fluid element in the 
fluid itself and assume the upward 
vertical direction as the positive z-
coordinate.
The mass of the fluid element
is the volume times the density, 
and the volume is face area times 
delta z, and then times the density, 
which may be a function of z.

= Density of the fluid element
= Mass of the fluid element
= Horizontal base (or face) area
= Force that acts at the bottom surface (due 

to the water below the rectangular solid)
= Force that acts at the top surface (due to 

the water above the rectangular solid)
= Pressure at 
= Pressure at

zP

z dzP+z dz+

z

2F

1F

dm⋅g

z

( )zr
( )dm A dz zr= ⋅ ⋅

( )zr
dm
A

1F

2F

z dzP+

zP
z dz+
z

Fluid ElementFluid Element
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Hydrostatic Pressure (3/9)

mF z

1 2 0dm   F F g

0z(Static Equilibrium :       )

Newton’s 2nd Law : 

0F

= Density of the fluid element
= Mass of the fluid element
= Horizontal base (or face) area
= Force that acts at the bottom surface (due 

to the water below the rectangular solid)
= Force that acts at the top surface (due to 

the water above the rectangular solid)
= Pressure at 
= Pressure at

zP

z dzP+z dz+

z

2F

1F

dm ⋅g

z

( )zr
( )dm A dz zr= ⋅ ⋅

( )zr
dm
A

1F

2F

z dzP+

zP
z dz+
z

Fluid ElementFluid Element

z dz

( )dm A dz z  

z

z

z dzP

zP
( )z

2F

1F

dmg

Fluid Particle

Free-body diagram for the fluid element

To describe the behavior of the fluid element, we apply the 
Newton’s 2nd law to the free body diagram for the fluid 
element, as shown in the figure.

The gravitational force acting on the fluid element is delta m 
times g in the downward direction. The pressure force, which is 
always perpendicular to the surfaces, acting on the bottom 
surface is F1 in the upward direction, whereas the pressure 
force acting on the top surface is F2 in the downward direction.

We only consider forces in the vertical direction, because all 
forces in the horizontal direction will cancel, for obvious 
reasons. The fluid element is not going anywhere. It is just 
sitting still in the fluid. Thus, the fluid element is in static 
equilibrium.

For the fluid element to be in static equilibrium, the upward 
force F1 minus downward force F2 minus delta mg must be zero.
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Hydrostatic Pressure (4/9)

Reference) Static Equilibrium

If a fluid is at rest in a container, all 
portions of the fluid must be in static 
equilibrium (at rest with respect to the 
observer). 
Furthermore, all points at the same 
depth must be at the same pressure.
If this was not the case, a given portion 
of the fluid would not be in equilibrium.

For example, consider the small block 
of fluid. If the pressure were greater on 
the left side of the block than on the 
right, FL would be greater than FR, and 
the block would accelerate and thus 
would not be in equilibrium.

LF RF
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Hydrostatic Pressure (5/9)

mF z

1 2 0dm   F F g

Newton’s 2nd Law : 
= Density of the fluid element
= Mass of the fluid element
= horizontal base(or face) area
= Force that acts at the bottom surface(due 
to the water below the rectangular solid)
= Force that acts at the top surface(due to 
the water above the rectangular solid)
= Pressure at 
= Pressure at

zP

z dzP+z dz+

z

2F

1F

dm ⋅g

z

( )zr
( )dm A dz zr= ⋅ ⋅

( )zr
dm
A

1F

2F

z dzP+

zP
z dz+
z

( ) 0z z dzP A P A A dz z g     

( ) 0z z dzP P dz z g    

( )z dz zP P dz z g     

( )z z dzP P dz z g   
( 1) 

Three forces act on vertically.
Thus we can consider magnitude of vectors only.

Fluid ElementFluid Element
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Hydrostatic Pressure (6/9)

( )z dz zP P
z g

dz
 

  

( )z dz zP P dz z g     
( )dz

0
lim ( )z dz z

dz

P P dP
z g

dz dz





   

: Change of Hydrostatic Pressure
(Due to gravity)

( )
dP

z g
dz

   

mF z

1 2 0dm   F F g

Newton’s 2nd Law : 
= Density of the fluid element
= Mass of the fluid element
= horizontal base(or face) area
= Force that acts at the bottom surface(due 
to the water below the rectangular solid)
= Force that acts at the top surface(due to 
the water above the rectangular solid)
= Pressure at 
= Pressure at

zP

z dzP+z dz+

z

2F

1F

dm ⋅g

z

( )zr
( )dm A dz zr= ⋅ ⋅

( )zr
dm
A

1F

2F

z dzP+

zP
z dz+
z

Fluid ElementFluid Element
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Hydrostatic Pressure (7/9) ( )
dP

z g
dz

   : Change in Hydrostatic Pressure
(Due to gravity)

( )dP z g dz   

Integrate from    to    .2z1z

z = Density of a fluid
= Pressure at  
= Pressure at2P

1z

2z

Integrate by z

1P

2P

1P

zr

z
2z

1z

In the fluidIn the fluid

2 2

1 1

( )
P z

P z

dP z g dz    

Calculate the pressure difference 
between     and    .2z1z

Most liquids are practically incompressible. In other 
words, the density of the liquid cannot really change.
And so therefore, we could always use the constant 
density, , instead of the varying density (z). We will 
assume from now on that fluids are completely 
incompressible. We can, then, do a very simple 
integration.

We have now dP in the L.H.S, which we can integrate 
from some value P1 to P2. And that equals now minus rho 
g dz in the R.H.S, integrated from z1 to z2.
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Hydrostatic Pressure (8/9)

2 2

1 1

( )
P z

P z

dP z g dz    
z = Density of a fluid
= Pressure at  
= Pressure at2P

1z

2z

Integrate by 
z

1P

2P

1P

zr

z
2z

1z

In the fluidIn the fluid

2

1

2 1

P

P

dP P P L.H.S: 

2 2

1 1

2 1( ) ( )
z z

z z

z g dz g dz g z z          R.H.S: 

Assume : Incompressible Fluid

L.H.S=R.H.S

(   = constant)

: Pascal’s Principle (also Pascal’s Law)2 1 2 1( )P P g z z    

Calculate the pressure difference 
between     and    .2z1z
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Hydrostatic Pressure (9/9)

1 2 2 1( )P P g z z  
2 1 2 1( )P P g z z   

Hydrostatic Pressure (Incompressible fluid due to gravity) 

The pressure at a point in a fluid in static equilibrium
depends on the depth of that point, but not on any 
horizontal dimension of the fluid or its container.*

We multiply a minus sign here, so we switch these around:  g 
times z2 minus z1.
What it means is we see immediately that if z2 minus z1 is positive, 

i.e. z2 is higher than z1, the pressure at P1 is larger than the 
pressure at P2.
This is the hydrostatic pressure.

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.363, 2004

z = Density of a fluid
= Pressure at  
= Pressure at2P

1z

2z

Integrate by 
z

1P

2P

1P

zr

z
2z

1z

In the fluidIn the fluid
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Three Basic Characteristics of Pressure in a Body of Fluid

<Graphic presentation of the concept of hydrostatic pressure>

* Polevoy, S. L.., Water Science and Engineering, Blackie Academic and Professional, pp.78, 1996

1 2 3 4P P P P= = = 2 1P P> 90P 

Hydrostatic pressure 
at any point in a 
body of water is 
equal in all 
directions.

Pressure in a body 
of water increases 
with depth of water.

Hydrostatic pressure 
is always applied 
perpendicular to any 
submerged body.
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4. Archimedes’ Principle and Buoyant 
Force



2017-01-24

16

31
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

Archimedes’ Principle and Buoyant Force (1/4)

 Static equilibrium of a rigid body in a fluid

L
B
D
T
sw
obj

= Length of the barge
= Breadth of the barge
= Depth of the barge
= Draft of the barge(=z2-z1)
= Density of the fluid
= Density of the barge

2P

1PL

B

D

T
2z

1z

z

1F

2F

mg

Consider a simple box shaped barge 
that floats in a fluid. That means the 
barge is in static equilibrium.
Thus, the gravitational force on the 
barge in the downward direction 
must be equal to a net upward force 
on it from the surrounding fluid, so 
called ‘buoyant force’.

The length of the barge is L, the breadth is B, 
the depth is D, the immersed depth is T, its 
density is obj, and the density of the fluid is 
sw.
Let be the upward vertical direction as the 

positive z-coordinate. We define, then, the 
level of the bottom surface as z1 and the level 
of the immersed depth as z2. 
On the top surface of the barge, there is the 

atmospheric pressure P2, which is the same as 
it is on the fluid. And on the bottom surface 
we have a pressure P1 in the fluid.

32
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Archimedes’ Principle and
Buoyant Force (2/4)

 Static equilibrium of a barge in a fluid

1 2 0m  F F g : Force which contains the hydrostatic pressure
: Force which contains the atmospheric pressure2F

1F

1 2F F : Buoyant Force BF

m F z

0z(Static Equilibrium:       )

0F

L
B
D
T
sw
obj

= Length of barge
= Breadth of barge
= Depth of barge
= Draft of barge(=z2-z1)
= Density of sea water
= Density of a barge

2P

1PL

B

D

T
2z

1z

z

1F

2F

mg

Newton’s 2nd Law: 

Assumption: Buoyant force of air is neglected.

1 2 swP P gT  (Pascal’s Law)  

To describe the behavior of the barge in the fluid, we apply the Newton’s 2nd law to the barge as shown in the figure.
The gravitational force acting on the barge is mass, m, times g in the downward direction. The hydrostatic pressure force,
which is always perpendicular to the surfaces, acting on the bottom surface is F1 in the upward direction, whereas the 
atmospheric pressure force acting on the top surface is F2 in the downward direction.
We only consider forces in the vertical direction, because all forces in the horizontal direction will cancel. If there were 
any net tangential component force, then the barge would start to move. The barge, however, is static, that means the 
barge is not moving anywhere. It is just sitting still in the fluid. Thus, the barge is in static equilibrium. For the barge to be 
in static equilibrium, the upward force F1 minus downward force F2 minus delta mg must be zero. Here the net upward 
hydrostatic pressure force, F1-F2, is so called the ‘Buoyant force’.
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Archimedes’ Principle and
Buoyant Force (3/4)

 Buoyant force: 1 2BF F F 

1 2( ) ( )BF L B P L B P     

1 2( ) ( )L B P P   

Assumption: Buoyant force of air is neglected.

1 2 swP P gT 

( )B swF L B gT  

( )B swF L B T g    

Substitution:  (Pascal’s Law)

L
B
D
T
sw
obj

= Length of barge
= Breadth of barge
= Depth of barge
= Draft of barge(=z2-z1)
= Density of sea water
= Density of a barge

2P

1PL

B

D

T
2z

1z

z

1F

2F

mg
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Archimedes’ Principle and
Buoyant Force (4/4)

Buoyant force is the weight of the displaced fluid.

This is a very special case of a general principle 
which is called Archimedes’ Principle.

( )B swF L B T g    
Volume

Mass

Archimedes’ Principle*

When a body is fully or partially submerged in a fluid, a 
buoyant force FB from the surrounding fluid acts on the 
body. The force is directed upward and has a magnitude 
equal to the weight of the fluid which is displaced by the 
body.

L
B
D
T
sw
obj

= Length of barge
= Breadth of barge
= Depth of barge
= Draft of barge(=z2-z1)
= Density of sea water
= Density of a barge

2P

1PL

B

D

T
2z

1z

z

1F

2F

mg

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.368, 2004



2017-01-24

18

35
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

[Reference] Buoyant Force of Air

 Static equilibrium of a barge
1 2( ) ( )BF L B P P   

(Due to gravity)

1 2 ( )sw airP P gT g D T    
3 31.2 / , 1025 /air swkg m kg m  

Ratio of     to     is             , 

So buoyant force of air is negligible.

sw air
1025

854
1.2
 ( )air sw 

Apply Pascal’s Law:
32

1 1

( )
zP

P z

dP z g dz    
2

1

2 1

P

P

dP P P L.H.S: 

R.H.S: 
3 32

1 1 2

( )
z zz

sw air

z z z

z g dz gdz gdz         
32

1 2

zz

sw air

z z

g dz g dz    
2 1 3 2( ) ( )sw airg z z g z z     

(Air, sea water: incompressible)

1 2 swP P gTr- =

L
B
D
T
sw
obj

= Length of barge
= Breadth of barge
= Depth of barge
= Draft of barge(=z2-z1)
= Density of sea water
= Density of a barge

2P

1PL

B

D

T
2z

1z

z

1F

2F

mg
3z

L.H.S=R.H.S 

(z1~z2: fluid, z2~z3: air)
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Archimedes’ Principle and Buoyant Force
- Example: Archimedes and Crown Problem (1/2)

 Apparent weight of a body in a fluid

apparent actual magnitude of

weight weight buoyant force

     
      

     

Weight Loss

If we place a crown on a scale that is calibrated 
to measure weight then the reading on the 
scale is the crown’s weight. However, if we do 
this underwater, the upward buoyant force on 
the crown from the water decreases the reading.

That reading is then an apparent weight. In 
general, an apparent weight is the actual weight 
of a body minus the buoyant force on the body.

1W

V
crown
immersedW

w

=Weight of the crown
=Volume of the crown
=Density of the crown
=Weight immersed in water
=Density of the water

1W immersedW

T

mg

mg

BF T

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.369, 2004
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Archimedes lived in the third century B.C. Archimedes had been given 
the task to determine whether a crown was pure gold. He had the great 
vision to do the following: He takes the crown and he weighs it in a 
normal way. So the weight of the crown - we call it W1 - is the volume of 
the crown times the density of which it is made. If it is gold, it should be 
19.3 gram per centimeter cube (19.3 ton/m3), and so volume of the crown 
x rho crown is the mass of the crown and multiplying mass by g is the 
weight of the crown. Cf. Silver: 10.49 ton/m3

Now he takes the crown and he immerses it in the water. And he has a 
spring balance, and he weighs it again. And he finds that the weight is 
less and so now he has the weight immersed in the water.
So what he gets is the weight of the crown minus the buoyant force, 
which is the weight of the displaced water. And the weight of the 
displaced water is the volume of the crown times the density of water 
times g. And so V x rho w x g is ‘weight loss’.
And he takes W1 and divides by the weight loss and it gives him rho of 
the crown divided by rho of the water. And he knows rho of the water, so 
he can find rho of the crown. It’s an amazing idea; he was a genius.

Archimedes’ Principle and Buoyant Force
- Example: Archimedes and Crown Problem (2/2)

1 crownW V g

immersed crown wW V g V g  
WLoss: Weight Loss(Buoyant Force)

1 crown crown

Loss w w

V gW

W V g

 
 

 

1W

V
crown
immersedW

w

=Weight of the crown
=Volume of the crown
=Density of the crown
=Weight immersed in water
=Density of the water

1W immersedW

T

mg

mg

BF T

Question)
Is the crown made of pure gold?

Answer)

* Serway, R. A., College Physics, 8th Ed., Brooks/Cole, pp.287, 2009.

(Apparent Weight)

(Measure)

(Measure) (Known)

(Find & Compare)

38
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

Archimedes’ Principle and Buoyant Force
- Condition for Floating

 For this barge to float, the buoyant 
force must be equal to gravitational 
force.

BF mg

( ) ( )sw objL B T g L B D g       

( )T D

sw obj 

sw obj 

: Float

Necessary condition for floating

: Sink

 Condition for floating
L
B
D
T
sw
obj

= Length of barge
= Breadth of barge
= Depth of barge
= Draft of barge
= Density of sea water
= Density of a barge

2P

1PL

B

D

T
2z

1z

z

1F

2F

mg
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Archimedes’ Principle and Buoyant Force
- Example: Floating Iceberg

Question)
What percentage of the volume
of ice will be under the level of the water?

Answer)

3 30.92g/cm , 1.0g/cmice w  

tot ice uw wMg V g V g  

Underwater Volume
0.92

Total Volume
uw ice

tot w

V

V




  

92% of the iceberg is in underwater.

* Ohanian, H. C., Physics, 2nd Ed., W. W. Norton & Company, pp.478, 1989

M
Vtot
Vuw
ρice
ρw
g

GF

BF

B

G

: Mass of iceberg
: Total volume of iceberg  
: Volume underwater
: Density of the ice,
: Density of underwater
: Acceleration of gravity

uw ice

tot w

V

V






40
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (1/6)

Question)

A boat with an anchor on board floats in a swimming pool that is 
somewhat wider than the boat. Does the pool water level move up, 
move down, or remain the same if the anchor is

(a) Dropped into the water or
(b) Thrown onto the surrounding ground?
(c) Does the water level in the pool move upward, move downward, or 

remain the same if, instead, a cork (or buoy) is dropped from the 
boat into the water, where it floats?

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.377, 2004
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Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (2/6)
Question)

A boat with an anchor on board floats 
in a swimming pool that is somewhat 
wider than the boat. Does the pool 
water level move up, move down, or 
remain the same if the anchor is

(a) Dropped into the water

Answer)

The volume under the water level is composed of the water and the 
volume displaced by the boat and anchor. After the anchor is dropped 
into the water, the buoyant force exerted on the anchor cannot 
compensate the weight of the anchor.
Thus the water level moves down.

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.377, 2004
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Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (3/6)

1h 2h

Stage1 Stage2

If the shape of water tanks are same, the waterline will be proportional to total 
volume (volume of water + volume displaced by the boat and the anchor).

,1
1

TotalV
h

A
 ,2

2
TotalV

h
A



,1  TotalV

TotalV
: Bottom area 
: Total volume

A
h : Waterline

,2TotalV
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Example: Waterline will change? (4/6)
(a) Dropped into the water (1/2)

1h 2h

,2 ,2Total Boat Anchor WaterV V V V  

Stage1 Stage2

,1BoatV

WaterVWaterV

,2BoatV

AnchorV

,1 ,1Total Boat WaterV V V 

AnchorV

1h : Height of the waterline in stage 1

2h : Height of the waterline  in stage 2

,1BoatV : Displaced volume by the ship with the anchor

,2BoatV : Displaced volume by the ship without the anchor

AnchorV : Displaced volume by the anchor

WaterV : Volume of the water which is invariant

BaotW : Weight of the boat

AnchorW : Weight of the anchor

Water : Density of the water Anchor : Density of the anchor

M Mg W
V

g g  
  

TotalV
h

A


,1
Baot Anchor

Boat
Water

W W
V

g



,2 ,Boat

Boat
Water

W
V

g
 Anchor

Anchor
Anchor

W
V

g


Boat Anchor
Water

Water Anchor

W W
V

g g 
  Boat Anchor

Water
Water

W W
V

g


 

Anchor Water 

(floating condition)
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Example: Waterline will change? (4/6)
(a) Dropped into the water (2/2)

1h 2h

Stage1 Stage2

M Mg W
V

g g  
  

TotalV
h

A


Luggage Water 
,1

Boat Anchor
Total Water

Water

W W
V V

g


 
,2

Boat Anchor
Total Water

Water Anchor

W W
V V

g g 
  

,1 ,2 ( ) ( )Boat Anchor Boat Anchor
Total Total Water Water

Water Water Water Anchor

W W W W
V V V V

g g g g   
      

( ) ( )Anchor Anchor

Water Anchor

W W

g g 
 

1 1
( , )Anchor Water

Anchor Water

 
 

 

,1 ,2 1 2,  Total TotalV V h h   The waterline will go down!

1 1
( ) 0Anchor

Water Anchor

W

g  
  

AnchorV

,1BoatV
,2BoatV

AnchorV
WaterVWaterV
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Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (5/6)
Question)

A boat with an anchor on board floats 
in a swimming pool that is somewhat 
wider than the boat. Does the pool 
water level move up, move down, or 
remain the same if the anchor is

(b) Thrown onto the surrounding ground

Answer)

After the anchor is thrown onto the surrounding ground, the 
ground supports the weight of the anchor. So buoyant force exerted 
on the anchor is zero. 
Thus the water level moves down.

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.377, 2004
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Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (6/6)
Question)

A boat with an anchor on board floats 
in a swimming pool that is somewhat 
wider than the boat. Does the pool 
water level move up, move down, or 
remain the same if the anchor is

(c) If, instead, a cork is dropped from the boat into the water, where it 
floats, does the water level in the pool move upward, move downward, 
or remain the same?

Answer)

After the cork is dropped from the boat into the water, the cork 
floats in the water. So the buoyant force exerted on the cork has the 
same magnitude as that of the weight of the cork. Thus the volume 
displaced by the cork remains the same. 
And the water level also remains the same.

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.377, 2004
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Archimedes’ Principle and Buoyant Force
- Example: Floating Down the River (1/2)

Question)*

A raft is constructed of wood having a density of 600 kg/m3. Its 
water plane area is 5.7 m2, and its volume is 0.60 m3. When the 
raft is placed in fresh water of density 1,000 kg/m3, as in the 
figure, to what depth does the raft sink in the water?

Hint)
The magnitude of the upward buoyant force acting on the raft must 

equal the weight of the raft if the raft is to float. In addition, from 
Archimedes' Principle the magnitude of the buoyant force is equal to the 
weight of the displaced water.

<A raft partially submerged in water>

A

h

* Serway, R. A., College Physics, 8th Ed., Brooks/Cole, pp.273, 2009.
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Archimedes’ Principle and Buoyant Force
- Example: Floating Down the River (2/2)

Answer)
The magnitude of the upward buoyant force (B) acting on the raft equals 

the weight of the displaced water, which in turn must equal the weight of 
the raft:

Because the area A and density        are known, we can find the depth h
to which the raft sinks in the water:

The weight of the raft is

Therefore, substitution into (1) gives

water

water water waterB gV gAh  

raft

water

w
h

gA


5

3 2 2

3.5 10 N
0.060m

(1000 / )(9.8 / )(5.7 )
h

kg m m s m


 

……… (1) 

<A raft partially submerged in water>

A

h

Question)*

3 2 3 3(600 / )(9.8 / )(0.60 ) 3.5 10raft wood raftw gV kg m m s m N   

* Serway, R. A., College Physics, 8th Ed., Brooks/Cole, pp.273, 2009.
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Archimedes’ Principle and Buoyant Force
- Example: 302,000DWT VLCC

Question)

A 302,000DWT VLCC has a mass of 41,000 metric tons when empty 
and it can carry up to 302,000 metric tons of oil when fully loaded.
Assume that the shape of its hull is approximately that of a 
rectangular parallelepiped of 300m long, 60m wide, and 30m high.

(a) What is the draft of the empty tanker, 
that is, how deep is the hull 
submerged in the water? 
Assume that the density of the sea 
water is                .

(b)  What is the draft of the fully loaded 
tanker?

31.025Mg/m
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Freeboard

1/2 Molded breadth(B,mld)

Scantling draft

Dead riseBaseline

Camber

Scantling waterline

CL

Molded depth(D,mld)

Keel

Deck plating

Deck beam

Centerline

Archimedes’ Principle and Buoyant Force
- Freeboard (1/2)

( ) ( )mld deckplatingFreeboard Depth D Draft T t  
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Archimedes’ Principle and Buoyant Force
- Freeboard (2/2)

* Polevoy, S. L.., Water Science and Engineering, Blackie Academic and Professional, p.93-97, 1996

TF

F
T

S

W

WNA

– Tropical Fresh Water

– Fresh Water

– Winter North Atlantic

TF

F

T

S

W

WNA

– Tropical Sea Water

– Summer Sea Water

– Winter Sea Water

The heaviest water is in 
the North Atlantic in 
winter time. Ships there 
displace much less water 
than in other areas of the 
world ocean.

The density of water in the 
world ocean is 1.026 g/cm3.
The density of water in the 

North Atlantic is 1.028 g/cm3.

The density of water in 
navigable tropical rivers is 
0.997 g/cm3.

Tropical fresh water is 
lightest. It occurs in 
tropical rivers (Amazon, 
Congo, and others). 
Some of these rivers are 
navigable by ocean 
steamers.

TF

WNA

TF

WNA

Freeboard Mark

( )
B

sw

W F

L B T g
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5. The Equation of Continuity
and Bernoulli Equation
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The Equation of Continuity* (1/3)

The Equation of Continuity

The equation of continuity of flow is a mathematical 
expression of the law of conservation of mass for flow.

Here we wish to derive an
expression that relates v 
and A for the steady flow 
of an ideal fluid through
a tube with varying
cross section.

1A

2A

1v 2v

L

L

(a) Time t

(b) Time t+ t

1A 1v

2A

2v

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.311, 2004
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The Equation of Continuity* (2/3)

The Equation of Continuity

The volume     of fluid that has passed through the dashed 
line in that time interval     is

Apply to both the left and
right ends of the tube 
segment, 
we have

V
t

V A x A v t     

1 1 2 2V Av t A v t    

1 1 2 2Av A v 
: Equation of Continuity 
for the flow of an ideal fluid

1A

2A

1v 2v

L

L

(a) Time t

(b) Time t+ t

1A 1v

2A

2v

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.371, 2004



2017-01-24

28

55
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

The Equation of Continuity* (3/3)

The Equation of Continuity

This relation between speed 
and cross-sectional area is 
called the equation of 
continuity for the flow of an 
ideal fluid.

The flow speed increases 
when we decrease the cross-
sectional area through 
which the fluid flows.

1 1 2 2Av A v : Equation of Continuity 
for the flow of an ideal fluid

1A

2A

1v 2v

L

L

(a) Time t

(b) Time t+ t

1A 1v

2A

2v

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.371, 2004
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Bernoulli’s Equation (1/9)

Bernoulli’s Equation
We can apply the principle of conservation of energy to 

the fluid.
Assumption: incompressible fluid (density is constant.)

(1) If this fluid is completely static,
it seems that it is not moving.

1 2 2 1( )P P g z z gh     : Pascal’s Law

h

z

1z

2z

1A

1v

P1

2A

2v

2P



1 2v v
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Bernoulli’s Equation (2/9)

Bernoulli’s Equation
We can apply the principle of conservation of energy to 

the fluid.
Assumption: incompressible fluid

(1) If this fluid is completely static,
it seems that it is not moving.

1 2 2 1( )P P g z z gh     : Pascal’s Law

mgh : Gravitational Potential Energy

Gravitational Potential Energy

Volume
gh 

Have the same 
dimension of 

Energy

Volume

h

z

1z

2z

1A

1v

P1

2A

2v

2P



1 2v v

Mass
=Density

Volume
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Bernoulli’s Equation (3/9)

Bernoulli’s Equation
We can apply the principle of conservation of energy to 

the fluid.
Assumption: incompressible fluid

(2) If we now set this whole machine
in motion, there are three players.

Kinetic Energy Gravitational Potential Rnergy
+  +   P

Volume Volume

21
Constant

2 zv gz P    : Bernoulli’s 
Equation

h

z

1z

2z

1A

1v

P1

2A

2v

2P



1 2v v

Apply 
the Conservation 
of Energy
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Bernoulli’s Equation (4/9)

Example: Eliminate ‘z’ 

If we take z to be a constant,
so that the fluid does not change 
elevation as it flows, 

If we assume that          ,

1 1 2 2Av A v

1 2 1 2A A v v  

By the Equation of Continuity (ideal fluid)

1 2A A

2A
2v

2P

1A

P1

1v


z
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Bernoulli’s Equation (5/9)

Example: Eliminate ‘z’

If we take z to be a constant,
so that the fluid does not change 
elevation as it flows, 

Bernoulli’ Equation becomes

Which tell us that: 
If the speed of a fluid element increases as the element travels 
along a horizontal streamline, the pressure of the fluid must 
decrease, and conversely.*

2 2
1 1 2 2

1 1

2 2
v P v P   

1 2 1 2v v P P  

21
Constant

2 zv gz P   

Bernoulli’s Equation :

2A
2v

2P

1A

P1

1v


z
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Bernoulli’s Equation (6/9)
- Example: Siphon* (: Eliminate ‘P’) (1/3)

(a) With what speed does the liquid emerge from the tube at z1?
(b) Theoretically, what is the greatest possible height d that a siphon 

can lift water?

d

2z

1z

2 1 atmP 
2 0v 

1v
1 1 atmP 

h


d

z

Figure on the right side shows a 
siphon, which is a device for 
removing liquid from a container, 
and a kind of tube. 

A tube must initially be filled, but 
once this has been done, liquid will 
flow through the tube until the 
liquid surface in the container is 
the same level with the tube 
opening at z1. The liquid has 
density  and negligible viscosity. 

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.383-384, 2004

62
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

Bernoulli’s Equation (6/9)
- Example: Siphon* (: Eliminate ‘P’) (2/3)

(a) With what speed does the liquid
emerge from the tube at z1?

21
Constant

2 zv gz P   

Bernoulli’s Equation:

1 2P P

2
1 1 2

1

2
v gz gz   

P term is eliminated.

2
1 1 2

1

2
v gz gz  2

1 2 1

1
( )

2
v g z z 

2
1

1
( )

2
v g h

1 2v gh 

d

2z

1z

2 1 atmP 
2 0v 

1v
1 1 atmP 

h


d

z

Conversion of gravitational potential 
energy to kinetic energy



2017-01-24

32

63
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

Bernoulli’s Equation (6/9)
- Example: Siphon* (: Eliminate ‘P’) (3/3)

(b) Theoretically, what is the greatest 
possible height d that a siphon 
can lift water?

d

2z

1z

2 1 atmP 
2 0v 

1v
1 1 atmP 

h


d

z
51 atm 1.01 10 Pa

         760torr

         10m (Water)

 



d

Barometric Pressure:

Therefore, This siphon would 
only work if     is less than 10m.

* 1 atm = 101,325 Pascal = 101,325 N/m2
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Bernoulli’s Equation (7/9)
- Example: Funnel with a Ping-Pong Ball

v P
v P

Movie Clip

v P

v P

How is the position of a ping-pong ball?



2017-01-24

33

65
Naval Architectural Calculation, Spring 2016, Myung-Il Roh

Bernoulli’s Equation (8/9)
- Example: Ping-Pong Ball in the Jet of Air*

* Ohanian, H. C., Physics, 2nd Ed., W W. Norton & Company, p.354-355, pp.486, 1989

If you place a ping-pong ball in the jet of air from a vacuum cleaner 
hose aimed vertically upward, the ping-pong ball will be held in stable 
equilibrium with this jet. Explain this by means of Bernoulli’s equation. 
(Hint: The speed of air is maximum at the center of the jet.)

v
P

v
P

P

P

TiltTurbulence
(Vortex)
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Bernoulli’s Equation (9/9)
- Example: A Glass Filled with Water* (1/2)

Paper

h

Partially fill a tall drinking glass with water to depth h. Cut a square of 
sturdy paper somewhat wider than the mouth of the glass. Place the paper 
over the mouth. Spread the fingers of your left hand over the paper, 
pressing it against the mouth of the glass.
Grab the glass with your right hand and then as rapidly as you can, invert 
it with your left hand and then as rapidly as you can, invert it with your left 
hand still pressing the paper against the rim. Chances are you can then 
remove your left hand without the water pouring out. If h=11.0cm, what is 
the gauge pressure of the air now trapped in the above the water?

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.385, 2004
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Bernoulli’s Equation (9/9)
- Example: A Glass Filled with Water* (2/2)

 Any object in air is subject to pressure from air molecules colliding with it. 
At sea level, the mean air pressure is one “atmosphere” (=101,325 Pascals
in standard metric units).

 The blue arrows indicate the forces due to air pressure above and below 
the water. The red arrow indicates the force of gravity. Together, the 
three forces balance out to cancel each other.

 The pressure of the outside air acts against the paper, and forces it 
against the glass, because it is stronger than the pressure of the water 
(weight of the water).


