Ship Stability

Ch. 2 Review of Fluid Mechanics

Spring 2018

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

sydub

Contents

V Ch. 1 Introduction to Ship Stability
V Ch. 2 Review of Fluid Mechanics
V Ch. 3 Transverse Stability Due to Cargo Movement
Ch. 4 Initial Transverse Stability
\square Ch. 5 Initial Longitudinal Stability

- Ch. 6 Free Surface Effect

Ch. 7 Inclining Test
Ch. 8 Curves of Stability and Stability Criteria
\square Ch. 9 Numerical Integration Method in Naval Architecture
Ch. 10 Hydrostatic Values and Curves
Ch. 11 Static Equilibrium State after Flooding Due to Damage
Ch. 12 Deterministic Damage Stability
V Ch. 13 Probabilistic Damage Stability

Ch. 2 Review of Fluid Mechanics

1. Hydromechanics and Hydrostatics
2. Pascal's Principle
3. Hydrostatic Pressure
4. Archimedes' Principle and Buoyant Force
5. The Equation of Continuity and Bernoulli Equation
[^0]
1. Hydromechanics and Hydrostatics

Introduction to Hydromechanics

- Today, the branch of physics, which encompasses the theories and laws of the behavior of water and other liquids, is known as
- Hydromechanics itself is subdivided into three fields:
(1)

> which deals with
(2) which studies
(3) Hydraulics, dealing with the practical and engineering applications of hydrostatics and hydrodynamics.

Meaning of Hydrostatics

- What is Hydrostatics?

Hydrostatics (from Greek hydro, meaning , and statics meaning , or calm) describes the behavior of water in a state of rest.

This science also studies the forces that apply to immersed and floating bodies, and the forces exerted by a fluid.

Definition of Pressure

Pressure*

Let a small pressure-sensing device be suspended inside a fluid-filled vessel.
We define the pressure on the piston from the
fluid as the force divided by area, and it has units Newton per square meter called 'Pascal'.
$P=\frac{\Delta F}{\Delta A}$
One newton per square meter is one Pascal.
We can find by experiment that at a given point in a fluid at rest, the pressure have the same value no matter how the pressure sensor is oriented.
Pressure is a , having no directional properties, and force is a vector quantity.
But is only the magnitude of the force.

Definition of Fluid

- What is a Fluid?*

A fluid, in contrast to a solid, is a substance that , because it
cannot withstand a shearing stress.

It can, however, exert a force in the direction perpendicular to its surface.
ΔF : Magnitude of perpendicular force between the two cubes
: Area of one face of one of the cubes

Pascal's Principle

- We will now consider a fluid element in static equilibrium in a closed container filled with a fluid which is either a gas or a liquid. The velocity of flow is everywhere zero.
- At first, we will neglect gravity. If a force F is applied on the cap of the container with an area A in this direction, then a pressure of F / A is applied.

^pplication of the Pascal's Principle

, The idea of a Hydraulic jack

sydiab ${ }^{13}$

Example of Design of Hydraulic Jack (2/5)

sydab 15

Example of Design of Hydraulic Jack (4/5)

$$
\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

\qquad

Displaced Volume:
inconpesisict
wisd
\qquad
sydab 17

3. Hydrostatic Pressure

3. Hydrostatic Pressure	

Hydrostatic Pressure (1/9)

- Hydrostatic Pressure

As every diver knows, below the water.

As every mountaineer knows, as one ascends into the atmosphere.

The pressure encountered by the diver and the mountaineer are usually called
because they are due to fluids that are static (at rest).
Here we want to find an expression for hydrostatic pressure as a function of depth or altitude.

Hydrostatic Pressure (2/9)

Now, gravity, of course, has an effect on the pressure in the fluid.
Hydrostatic pressure is due to fluids that are static (at rest).
Thus, there has to be

Consider a fluid element in the fluid itself and assume the upward vertical direction as the positive z coordinate.
The mass of the fluid element is the volume times the density, and the volume is face area times delta z , and then times the density, which may be a function of z.

= Density of the fluid element
= Mass of the fluid element
$=$ Horizontal base (or face) area
= Force that acts at the bottom surface (due to the water below the rectangular solid)
= Force that acts at the top surface (due to the water above the rectangular solid)
$=$ Pressure at
= Pressure at

Hydrostatic Pressure (4/9)

Reference) Static Equilibrium

If a fluid is at rest in a container, all portions of the fluid must be in static equilibrium (at rest with respect to the observer).
Furthermore,
If this was not the case, a given portion of the fluid would not be in equilibrium.

For example, consider the small block of fluid. If the pressure were greater on the left side of the block than on the right, \mathbf{F}_{L} would be greater than $\mathbf{F}_{R^{\prime}}$ and the block would accelerate and thus would not be in equilibrium.

23

$$
\frac{P_{z+d z}-P_{z}}{d z}=-\rho(z) \cdot g
$$

Hydrostatic Pressure (8/9)

$$
\int_{P_{1}}^{P_{2}} d P=-\int_{z_{1}}^{z_{2}} \rho(z) \cdot \square \cdot d z
$$

\qquad

<Graphic presentation of the concept of hydrostatic pressure>

Archimedes' Principle and Buoyant Force (1/4)

- Static equilibrium of a rigid body in a fluid

5
31

Archimedes' Principle and
 Buoyant Force (3/4)

- Buoyant force: $F_{B}=F_{1}-F_{2}$

[Reference] Buoyant Force of Air

- Static equilibrium of a barge
$F_{B}=(L \cdot B) \cdot\left(P_{1}-P_{2}\right)$

Archimedes' Principle and Buoyant Force
 - Example: Archimedes and Crown Problem (2/2)

$$
W_{1}=V \rho_{\text {crown }} g
$$

[^1] he can find rho of the crown. It's an amazing idea; he was a genius.

Archimedes' Principle and Buoyant Force

- Example: Floating Iceberg

Question)
What percentage of the volume
of ice will be under the level of the water?

$$
\rho_{i c e}=0.92 \mathrm{~g} / \mathrm{cm}^{3}, \rho_{w}=1.0 \mathrm{~g} / \mathrm{cm}^{3}
$$

Answer)

Archimedes' Principle and Buoyant Force

- Example: Waterline will change? (2/6)

Question)
A boat with an anchor on board floats in a swimming pool that is somewhat
$\because \quad . \quad . \quad$ boat. Does the pool water level move up, move down, or remain the same if the anchor is
(a) Dropped into the water

Answer)

The volume under the water level is composed of the water and the volume displaced by the boat and anchor. After the anchor is dropped into the water, the buoyant force exerted on the anchor cannot compensate the weight of the anchor.
Thus the water level

Archimedes' Principle and Buoyant Force

- Example: Waterline will change? (3/6)

Example: Waterline will change? (4/6)
(a) Dropped into the water (1/2)
\square

Archimedes' Principle and Buoyant Force
 - Example: Waterline will change? (5/6)

Question)

A boat with an anchor on board floats in a swimming pool that is somewhat wider than the boat. Does the pool water level move up, move down, or remain the same if the anchor is

(b) Thrown onto the surrounding ground

Answer)
After the anchor is thrown onto the surrounding ground, the ground supports the weight of the anchor. So buoyant force exerted on the anchor is zero.
Thus the water level

Archimedes' Principle and Buoyant Force

- Example: Waterline will change? (6/6)

Question)
A boat with an anchor on board floats in a swimming pool that is somewhat wider than the boat. Does the pool water level move up, move down, or remain the same if the anchor is

(c) If, instead, a cork is dropped from the boat into the water, where it floats, does the water level in the pool move upward, move downward, or remain the same?

Answer)
After the cork is dropped from the boat into the water, the cork floats in the water. So the buoyant force exerted on the cork has the same magnitude as that of the weight of the cork. Thus the volume displaced by the cork remains the same.
And the water level also

Archimedes' Principle and Buoyant Force
 - Example: Floating Down the River (1/2)

Question)*
A raft is constructed of wood having a density of $600 \mathrm{~kg} / \mathrm{m}^{3}$. Its water plane area is $5.7 \mathrm{~m}^{2}$, and its volume is $0.60 \mathrm{~m}^{3}$. When the raft is placed in fresh water of density $1,000 \mathrm{~kg} / \mathrm{m}^{3}$, as in the figure, to what depth does the raft sink in the water?

Hint)

The magnitude of the upward buoyant force acting on the raft must equal the weight of the raft if the raft is to float. In addition, from Archimedes' Principle the magnitude of the buoyant force is equal to the weight of the displaced water.
\square

Archimedes' Principle and Buoyant Force
 - Example: 302,000DWT VLCC

Question)
A 302,000DWT VLCC has a mass of 41,000 metric tons when empty and it can carry up to 302,000 metric tons of oil when fully loaded. Assume that the shape of its hull is approximately that of a rectangular parallelepiped of 300 m long, 60 m wide, and 30 m high.

The Equation of Continuity* (1/3)

- The Equation of Continuity
$-\quad$ - 1
The equation of continuity of flow is a mathematical expression of

Here we wish to derive an expression that relates v and A for the steady flow of an ideal fluid through a tube with varying cross section.

The Equation of Continuity* (3/3)

- The Equation of Continuity

$$
A_{1} v_{1}=A_{2} v_{2}
$$

This relation between speed and cross-sectional area is called the equation of continuity for the flow of an ideal fluid.

The flow speed increases when we decrease the crosssectional area through which the fluid flows.

Bernoulli's Equation (2/9)

- Bernoulli's Equation

We can apply the principle of conservation of energy to the fluid.
Assumption: incompressible fluid
(1) If this fluid is completely static,
it seems that it is not moving.

$$
P_{1}-P_{2}=\rho g\left(z_{2}-z_{1}\right)=\rho g h
$$

Bernoulli's Equation (4/9)

- Example: Eliminate 'z'

If we take z to be a constant,
, that the fluid does not change evation as it flows,
we assume that

$$
A_{1} v_{1}=A_{2} v_{2}
$$

\square

Bernoulli's Equation (6/9)

- Example: Siphon* (: Eliminate 'P') (1/3)

sydab

Bernoulli's Equation (8/9)

- Example: Ping-Pong Ball in the Jet of Air*

Bernoulli's Equation (9/9)

- Example: A Glass Filled with Water* (2/2)

Any object in air is subject to pressure from air molecules colliding with it. At sea level, the mean air pressure is one "atmosphere" (=101,325 Pascals in standard metric units).
∇ The blue arrows indicate the forces due to air pressure above and below the water. The red arrow indicates the force of gravity. Together, the three forces balance out to cancel each other.

∇ The pressure of the outside air acts against the paper, and forces it against the glass, because it is stronger than the pressure of the water (weight of the water).

[^0]: Naval Architectural Calculation, Spring 2018, Myung-11 Roh
 sydab

[^1]: Archimedes lived in the third century B.C. Archimedes had been given
 the task to determine whether a crown was pure gold. He had the grea
 the tosion to do the following: He takes the crown and he weighs it in a
 normal way. So the weight of the crown - we call it W_{1} - is the volume of the crown times the density of which it is made. If it is gold, it should be 19.3 gram per centimeter cube ($19.3 \mathrm{ton} / \mathrm{m}^{3}$), and so x reight of the crown. Cf. Silver: 10.49 ton $/ \mathrm{m}^{3}$
 Now he takes the crown and he immerses it in the water. And he has a spring balance, and he weighs it again. And he finds that the weight is less and so now he has the weight immersed in the water.
 So what he gets is the weight of the crown minus the buoyant force
 which is the weight of the displaced water. And the weight of the
 displaced water is the volume of the crown times the density of water times g . And so V x rho wx g is 'weight loss'.
 And he takes W_{1} and divides by the weight loss and it gives him rho of the crown divided by rho of the water. And he knows rho of the water, so

