
운영체제의기초:

Review of Computer Hardware

2023년 3월 14, 16, 21일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수



2

Agenda

I. Computer Systems Architecture

II. Interrupt Mechanism

III. Hardware Protection

Review of Computer Hardware



I. Computer Systems Architecture



4

1. How “Software” Was Born? (1)

❖ Abacus vs. “stored-program computer”

▪ Modern computing started with …

• “Stored-program computer” (AKA “von Neumann machine”)

I. What is Software?



5

How “Software” Was Born? (2)

❖ “Stored program concept” …

▪ Idea that code and data are stored together in memory

• Instructions are then fetched from memory one at a time

and executed (fetch-decode-execute (FDE) cycle)

▪ Laid foundation for most computers used today

▪ Described by Jon von Neumann in 1945

• Hence named “von Neumann Architecture”

– Aka Princeton architecture

I. Computer Systems Architecture

Source: http://www.lanl.gov/history/atomicbomb/images/NeumannL.GIF



6

How “Software” Was Born? (3)

I. Computer Systems Architecture

1946년, 내부 프로그래밍을 구현하지 못해

프로그래밍을 하려면 외부에서 배선을 일일이

변경해 줘야 하는 방식과 기억과 연산을 10진

방식을 채용한 컴퓨터

ENIAC 
(Electronic Numerical Integrator and 

Computer)

Hardware-Defined

1950년, 최초의 이진수를 사용한 프로그램

내장 (Stored-Program) 컴퓨터

EDVAC 
(Electronic Discrete Variable Automatic 

Computer)

Software-Defined



7

Components inside Computer (1)

❖ “von Neumann architecture” must have

1. “Processing unit”

• “Arithmetic logic unit” and various “registers”

• “Control unit”, an “instruction register” and “program counter”

2. “Memory” that stores data and instructions

3. “Input and output” devices

I. Computer Systems Architecture



8

Components inside Computer (2)

I. Computer Systems Architecture

Control/ALU

Data Path

Output

Memory

Input

Processing Unit



9

Components inside Computer (3)

❖ Processing unit (Control/ALU)

▪ Component of the processor that commands the data path, 

memory, and I/O devices according to the instructions of the 

program

❖ Memory

▪ Storage area where the running programs and

their data are kept

I. Computer Systems Architecture



10

Components inside Computer (4)

❖ Input/Output

▪ User-interface devices

• Display, keyboard, mouse

▪ Storage devices

• Hard disk, CD/DVD, flash

▪ Network adapters

• For communicating with other computers

❖ Data path

▪ Pathway used to transfer data and instructions

between the components

▪ Aka “system interconnect” or “system bus”

I. Computer Systems Architecture



11

Components inside Computer (5)

I. Computer Systems Architecture

Source: Silberschatz, Galvin and Gagne, Operating System Concepts, 1998



12

Representation of Data

❖ Bits/Bytes

▪ Bit: short for “binary digit”

▪ 1 byte = 8 bits

❖ Words

▪ 32-bit data called a “word” (in 32-bit machines)

▪ “Word” is a basic data unit

❖ Numbers

▪ Fixed-point numbers (integers)

▪ Floating-point number (real numbers)

I. Computer Systems Architecture



13

System Interconnect (1)

❖ System bus

▪ Connects the major components of a computer system

I. Computer Systems Architecture

MemoryCPU
Input and 

Output

Control Bus

Address Bus

Data Bus

S
y
s
te

m
 b

u
s



14

System Interconnect (2)

❖ System bus

▪ Consists of two types of buses

• Data bus

– Data pathway between bus master and slave

• Address bus

– Specifies the target location of data transfer

• Control bus

– Carries commands from the CPU and returns status signals from 

the controller of the devices

▪ Two types of bus transactions

• Read/Write

I. Computer Systems Architecture



15

System Interconnect (3)

❖ Bus arbiter

▪ Arbitrates conflict among multiple bus requests

• Accepts bus request signal

• Replies with bus grant signal

❖ Bus master

▪ Can initiate bus transaction by sending bus request signal

▪ CPU

• Moves data between main memory and CPU registers

▪ DMA controller

• Moves data between main memory and I/O buffer without the 

help of CPU

I. Computer Systems Architecture



16

System Interconnect (4)

❖ Bus slave

▪ Takes command from bus master and serve it accordingly

▪ Memory controller (memory)

▪ Device controller (I/O device)

• In charge of a particular device type

• Has local registers and/or local buffer

• Inform CPU that it has finished its operation by causing 

interrupt

– Note that I/O devices and CPU can execute concurrently

• I/O is from the device to local buffer of controller

I. Computer Systems Architecture



17

I/O Operations (1)

❖ Performed by “I/O controller” under CPU command

▪ Has registers

• Data registers: input register, output register

• Control register: control register, status register

▪ I/O operations are initiated by CPU

• Output operation

– Check if output register is available by reading in status register

– If so, move data to output register; move output command to control 

register

– Otherwise, either repeat this process or wait until output register is 

available

• Polling I/O vs. interrupt-driven I/O

I. Computer Systems Architecture



18

I/O Operations (2)

❖ Two types of I/O addressing

▪ Memory-mapped I/O

• I/O registers are associated with memory locations

• Uses the same address bus to address both memory and I/O

• Uses Load/Store instructions for input/output

▪ Port-mapped I/O

• I/O registers are associated with special I/O addresses port 

numbers

– Has separate I/O address space

• Uses special I/O bus

• Uses special Input/Output instructions

I. Computer Systems Architecture



19

DMA (Direct Memory Access)

❖ DMA

▪ Allows device controller to directly transfer block of data 

between buffer storage and main memory without CPU 

intervention

▪ Only one interrupt is generated per block, rather than the 

one interrupt per byte

▪ Used for high-speed I/O devices able to transmit information 

at close to memory speeds

I. Computer Systems Architecture



II. Interrupt Mechanism



21

Basics

❖ Interrupt

▪ Hardware mechanism that transfers control to interrupt 

service routine (ISR)

❖ Types of interrupts

▪ Hardware interrupt

• Caused by hardware signal

• Asynchronous

▪ Software interrupt (AKA trap)

• Caused either by an error or instruction

• Synchronous

❖ OS is interrupt driven

II. Interrupt Mechanism



22

Interrupt Operation

❖ Interrupt mechanism

▪ At the time of interrupt,

• Stops the execution of the current program

• Saves the address of the interrupted instruction

• Gets the address of ISR via interrupt request (IRQ) number 

and interrupt vector table

• Jumps to the ISR

▪ While interrupt is being processed,

• Incoming interrupts are disabled to prevent a lost interrupt

▪ After the execution of ISR,

• Returns to the interrupted program via the save address

II. Interrupt Mechanism



23

Interrupt Hardware (1)

❖ Interrupt destination

▪ Microprocessor has input pin called “interrupt request (IRQ)”

that let the microprocessor know that some other chip in the 

system needs attention

▪ Interrupts start with a signal from hardware

❖ Interrupt source

▪ I/O chip has a pin that it asserts when it requires service

II. Interrupt Mechanism



24

Interrupt Hardware (2)

II. Interrupt Mechanism

CPU

Serial

Port

Network

Interface

This signal tells the microprocessor

that the serial port chip needs service

This signal tells the microprocessor

that the network chip needs service

Interrupt request pins (IRQ)



25

Interrupt Hardware (3)

❖ PIC (programmable interrupt controller)

▪ Functions as an overall manager in an interrupt-driven 

system environment

▪ Can support more I/O devices than the number of IRQ pins

II. Interrupt Mechanism

Source: http://courses.engr.illinois.edu/ece390/lecture/lockwood/interrupt-hardware.gif



26

Interrupt Hardware (4)

❖ PIC operation

▪ Monitors IRQ lines, checking for raised signals

▪ If a raised signal occurs on an IRQ line:

• Converts the received raised signal into a corresponding vector

• Stores the vector in an interrupt controller I/O port, thus 

allowing the CPU to read it via the data bus

• Sends a raised signal to the processor, INTR pin – that is, 

issues an interrupt

• Waits until the CPU acknowledges the interrupt signal by 

writing into one of the PIC I/O ports; when this occurs, clears 

the INTR line

▪ Goes back to the first step

II. Interrupt Mechanism



III. Hardware Protection Mechanisms



28

Four Hardware Protection Mechanisms

1. Basic mechanism: Dual mode operation

2. I/O protection

3. Memory protection

4. CPU protection

III. Hardware Protection Mechanisms



29

1. Dual Mode Operation (1)

❖ Motivation

▪ Sharing system resources requires OS to ensure that an 

incorrect program cannot cause other programs to execute 

incorrectly

❖ Key idea

▪ Provides hardware support to differentiate between at least 

two modes of operations

• User mode

– Execution done on behalf of a user

• Kernel mode (AKA system or monitor mode)

– Execution done on behalf of OS

– When executing in kernel mode, OS has unrestricted access to both 

kernel and user’s memory

III. Hardware Protection Mechanisms



30

1. Dual Mode Operation (2)

▪ Mode bit added to computer hardware, particularly in 

processor status register, to indicate the current mode

• 0: kernel mode

• 1: user mode

▪ When an interrupt or trap occurs hardware switches to 

kernel mode

▪ Provides special instructions called privileged instructions

which can be executed only in kernel mode

III. Hardware Protection Mechanisms

Kernel

Mode

User

Mode

Interrupt/Trap

Return from ISR



31

1. Dual Mode Operation (3)

❖ System call

▪ A way of a user program invoking a kernel function

in kernel mode

▪ Always involves mode change from user to kernel mode

▪ Compare it with function call

III. Hardware Protection Mechanisms



32

1. Dual Mode Operation (4)

❖ System call handling

III. Hardware Protection Mechanisms

Source: Silberschatz, Galvin and Gagne, Operating System Concepts, 1998



33

2. I/O Protection

❖ Motivation

▪ Prevent I/O devices from being monopolized

❖ Key idea

▪ All I/O instructions are privileged instructions

• Must ensure that a user program can never gain control of the 

computer in kernel mode

• Example:

– A user program that, as part of its execution, stores a new address 

in the interrupt vector

III. Hardware Protection Mechanisms



34

3. Memory Protection

❖ Motivation

▪ Protect memory outside the defined range

❖ Key idea

▪ Add two registers that determine the range of legal 

addresses a program may access

• Base register

– Holds the smallest legal physical memory address

• Bound register

– Contains the size of the range

▪ The load instructions for the base and bound registers is a 

privileged instruction

III. Hardware Protection Mechanisms



35

4. CPU Protection

❖ Motivation

▪ Prevent CPU from being monopolized

❖ Key idea

▪ Add timer which interrupts computer after specified period to 

ensure OS maintains control

• Timer is decremented every clock tick

• When timer reaches the value 0, an interrupt occurs

• The load instruction for time is a privileged instruction

III. Hardware Protection Mechanisms


