Chapter 2: A shallow truss element with Fortran computer program

Myoung-Gyu Lee
TA: Gyu Jang Sim (gyujang95@snu.ac.kr)

MATERIALS MECHANICS LABORATORY

In this chapter, we learn

- computer program for multi-degrees of freedom problem formulated in the form of finite element structure
- a set of Fortran subroutines
- flowcharts for an 'incremental formulation', the 'Newton-Raphson iterative procedure', and a combined 'incremental /iterative technique'.
- An iso-parametric description of shallow truss element
: Displacement and coordinate share the same shape function.

[Fig 2.1 A shallow truss element]
$\xi:$ parent domain, x, z, u, w :spatial domain

$$
\begin{aligned}
& x=\frac{1}{2}\left[\begin{array}{ll}
1-\xi & 1+\xi
\end{array}\right]\binom{x_{1}}{x_{2}} \\
& z=\frac{1}{2}\left[\begin{array}{ll}
1-\xi & 1+\xi
\end{array}\right]\binom{z_{1}}{z_{2}} \\
& u=\frac{1}{2}\left[\begin{array}{ll}
1-\xi & 1+\xi
\end{array}\right]\binom{u_{1}}{u_{2}} \quad \text { [eq. 2.1., 2.2] } \\
& w=\frac{1}{2}\left[\begin{array}{ll}
1-\xi & 1+\xi
\end{array}\right]\binom{w_{1}}{w_{2}}
\end{aligned}
$$

Shape functions or, interpolation functions

- Strain can be derived in the iso-parametric formulation.
$\varepsilon=-\frac{u}{l}+\left(\frac{z}{l}\right)\left(\frac{w}{l}\right)+\frac{1}{2}\left(\frac{w}{l}\right)^{2} \quad$ [eq. 1.51]

$$
\begin{equation*}
\frac{d u}{d x}=\frac{d u}{d \xi} \frac{d \xi}{d x}=\frac{u_{2}-u_{1}}{l}=\frac{u_{21}}{l} \tag{eq.2.5}
\end{equation*}
$$

$\varepsilon=\frac{d u}{d x}+\left(\frac{d z}{d x}\right)\left(\frac{d w}{d x}\right)+\frac{1}{2}\left(\frac{d w}{d x}\right)^{2} \quad$ [eq. 2.3]

$$
\frac{d w}{d x}=\frac{w_{21}}{l} \quad \frac{d z}{d x}=\frac{z_{21}}{l} \quad \text { [eq. 2.6] }
$$

$\frac{d x}{d \xi}=\frac{x_{2}-x_{1}}{2}=\frac{l}{2} \quad$ [eq. 2.4]

$$
\Rightarrow \varepsilon=\frac{u_{21}}{l}+\left(\frac{z_{21}}{l}\right)\left(\frac{w_{21}}{l}\right)+\frac{1}{2}\left(\frac{w_{21}}{l}\right)^{2}
$$

- Virtual displacement brings change in strain:

$$
\begin{aligned}
& \delta \varepsilon_{v}=\frac{d \delta u_{v}}{d x}+\left(\frac{d z}{d x}+\frac{d w}{d x}\right) \frac{d \delta w_{v}}{d x}+\frac{1}{2}\left(\frac{d \delta w_{v}}{d x}\right)^{2} \text { where } \delta \varepsilon_{v}=\varepsilon\left(u+\delta u_{v}, w+\delta w_{v}\right)-\varepsilon(u, w) \\
& \text { - Using previous relations, }
\end{aligned}
$$

$$
\begin{align*}
& \frac{d u}{d x}=\frac{u_{21}}{l}, \frac{d w}{d x}=\frac{w_{21}}{l}, \frac{d z}{d x}=\frac{z_{21}}{l} \quad \text { [eq. 2.5, 2.6] } \\
& \delta \varepsilon_{v}=\frac{1}{l} \delta u_{v 21}+\frac{1}{l^{2}}\left(z_{21}+w_{21}\right) \delta w_{v 21}+
\end{align*}
$$

- (Virtual) strain is inner product of strain interpolation matrix \mathbf{b} and (virtual) nodal displacement $\delta \mathbf{p}_{v}$

$$
\delta \mathbf{p}_{v}=\left(\begin{array}{l}
\delta u_{11} \\
\delta u_{v} \\
\delta w_{v 1} \\
\delta w_{v 2}
\end{array}\right), \delta \varepsilon_{v}=\frac{1}{l} \delta u_{v 21}+\frac{1}{l^{2}}\left(z_{21}+w_{21}\right) \delta w_{v 21}=\mathbf{b}^{T} \delta \mathbf{p}_{v} \quad \text { eq. 2.11, 2.12] }
$$

$$
\Rightarrow \quad \mathbf{b}=\frac{1}{l}\left(\begin{array}{c}
-1 \\
1 \\
-\beta \\
\beta
\end{array}\right)
$$

$$
\text { where } \beta=\frac{z_{21}+w_{21}}{l}
$$

- Discretization applied to weak form derived from principle of virtual work

$$
\begin{aligned}
& V=\int \sigma \delta \varepsilon_{v} d V-\delta \mathbf{p}_{v}^{T} \mathbf{q}_{e}=0 \\
& =\delta \mathbf{p}_{v}^{T} \mathbf{g}=\delta \mathbf{p}_{v}^{T}\left(\mathbf{q}_{i}-\mathbf{q}_{e}\right)=\delta \mathbf{p}_{v}^{T}\left(\int \sigma \mathbf{b} d V-\mathbf{q}_{e}\right) \quad \mathbf{q}_{i}=\int \sigma \mathbf{b} d V=N l \mathbf{b}
\end{aligned}
$$

- For equilibrium, $\mathrm{V}=0$ for any virtual displacements or $\mathbf{g}=0$
- Tangent stiffness matrix:

$$
\begin{aligned}
\mathbf{K}_{t}=\frac{\partial \mathbf{g}}{\partial \mathbf{p}}=\frac{\partial \mathbf{q}_{i}}{\partial \mathbf{p}} & =l \mathbf{b} \frac{d N}{d \mathbf{p}}+l N \frac{\partial \mathbf{b}}{\partial \mathbf{p}} \\
& =l \mathbf{b} \frac{d N}{d \varepsilon} \frac{d \varepsilon}{d \mathbf{p}}+l N \frac{\partial \mathbf{b}}{\partial \mathbf{p}} \\
& =E A l \mathbf{b} \mathbf{b}^{T}+l N \frac{\partial \mathbf{b}}{\partial \mathbf{p}} \\
& =\frac{E A}{l}\left[\begin{array}{cccc}
1 & -1 & \beta & -\beta \\
-1 & 1 & -\beta & \beta \\
\beta & -\beta & \beta^{2} & -\beta^{2} \\
-\beta & \beta & -\beta^{2} & \beta^{2}
\end{array}\right]+\frac{N}{l}\left[\begin{array}{cccc}
-1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \quad \mathbf{b}=\frac{1}{l}\left(\begin{array}{c}
1 \\
-\beta \\
\beta
\end{array}\right)
\end{aligned}
$$

- Fortran subroutines are provided to solve general form of bar-spring system.
- There are 'earthed springs' and a horizontal linear spring.
- In many cases, the horizontal linear spring K_{55} can be omitted.
- For general solution procedure (assembling, boundary conditions, etc) of finite element method, refer to: Daryl L. Logan, "A First Course in the Finite Element Method" - Ch 1.
- Quick introduction to Fortran77:
- http://seismic.yonsei.ac.kr/fortran/index.htm (kor)
- https://web.stanford.edu/class/me200c/tutorial 77 (eng)
- There might some typos or errors in the code.

[Fig 2.2 Bar-spring system]
(a) Bar element with springs (b) variables
- Example of algorithm

- 2.2.1 Subroutine ELEMENT

- This subroutine calculates
- an internal force vector
- an element tangent stiffness matrix

$$
\begin{aligned}
& \mathbf{K}_{t}=\frac{E A}{l}\left[\begin{array}{cccc}
1 & -1 & \beta & -\beta \\
-1 & 1 & -\beta & \beta \\
\beta & -\beta & \beta^{2} & -\beta^{2} \\
-\beta & \beta & -\beta^{2} & \beta^{2}
\end{array}\right]+\frac{N}{l}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]=\quad \operatorname{AKT}(4,4) \\
& \text { where } \beta=\frac{z_{21}+w_{21}}{l}
\end{aligned}
$$

- 2.2.1 Subroutine ELEMENT

- 2.2.1 Subroutine ELEMENT

code typed by Jaehyun You

- 2.2.1 Subroutine ELEMENT

```
IF(IMOD.NE.1) THEN ...................compute K
C COMPUTES TAN STIFF.MATRIX(UPPER STRIANGLE) (SEE 2.23)
        AKT(1,1) = 1.D0
        AKT(1,2) = -1.D0
        AKT(1,3) = BET
        AKT (1,4) = -BET
        AKT(2,2) = 1.D0
        AKT(2,3) = -BET
        AKT(2,4) = BET
        AKT(3,3) = BET*BET
        AKT(3,4) = - AKT(3,3)
        AKT(4,4) = BET*BET
        DO 12 I=1,4
            DO 13 J=1,4
            AKT(I,J) = EAL*AKT(I,J)
        CONTINUE
        CONTINUE
C
C
C
    ANL = AN/AL}\cdots\ldots\ldots\ldots\ldots\ldotsc\cdot\mp@code{N
    ANL
        WRITE (IWR,1001)
    1001 FORMAT (/, 1X, 'TAN.STIFF.MATRIX FOR TRUSS EL. IS', /)
    DO 14 I = 1,4
        WRITE (IWR, 67) (AKT(I, J), J=1,4)
        FORMAT (1X, 7G13.5)
        CONTINUE
        ENDIF
```


- 2.2.2 Subroutine INPUT

- This subroutine reads: 1. geometry 2. properties 3. boundary conditions 4. loading from input file.


```
\(\mathrm{QFI}=\left(u_{1}(=0) \quad u_{2}(\neq 0) \quad w_{1}(=0) \quad W_{2}\right)\)
```

1 d.o.f $E \quad L \quad N_{0}$ (initial internal force in bar)
$\left(\begin{array}{ll}z_{1} & z_{2}\end{array}\right)$
$\mathbf{q}_{e}^{T}, \mathbf{p}^{T}$ combined
boundary condition information
number of earthed springs
id (s) of earthed springs
stiffness(es) of earthed springs
$K_{s 5}$

- 2.2.2 Subroutine INPUT

1	SUBROUTINE INPUT(E, ARA, AL, QFI, X, Z, ANIT, IBC, IRE, IWR, AK14S, ID14S,	
2		1 NDSP, NV, AK15,
3		2 ADUM1, IDUM)
4	C	ARGUMENTS IN LINE ABOVE AND ARRAY X NOT USED FOR SHALLOW TRUSS
5	C	
6	C	READS INPUT FOR TRUSS ELEMENT
7	C	
8	DOUBLE PRECISION E,ARA, AL, QFI (NV), X (2) , Z (2), ANIT, AK14S(4), AK15,	
9	1 ADUM1	
10	INTEGER NV, IDUM, I, NDSP, ID14S (4), IBC(NV)	
11	C	
12	READ (IRE, *) NV, EA, AL, ANIT	
13	$\mathrm{E}=\mathrm{EA}$	
14	ARA $=1 . \mathrm{D} 0$	
15	WRITE(IWR, 1000) NV, EA, AL, ANIT	
16	1000 FORMAT ($/, 1 \mathrm{X}, \mathrm{'NV}=\mathrm{NO}$. OF VARBLS. $=$ ', G13.5, /, 1X,	
17	1 'EA=', G13.5, /, 1X,	
18	2 'AL=EL.LENGTH= ', G13.5,1X,	
19	3 'ANIT=INIT.FORCE=',G13.5,/)	
20	IF (NV.NE.4.AND.NV.NE.5) STOP 'INPUT 1000'	
21		
22	READ(IRE, *) $\mathrm{Z}(1), \mathrm{Z}(2)$	
23	WRITE(IWR, 1001) $\mathrm{Z}(1), \mathrm{Z}(2)$	
24	1001 FORMAT (/,1X, 'Z CO-ORD OF NODE 1=', G13.5,1X,	
25	1 'Z CO-ORD OF NODE 2=',G13.5,/)	
26		
27	$\operatorname{READ}(\mathrm{IRE}, *)(\mathrm{QFI}(\mathrm{I}), \mathrm{I}=1, \mathrm{NV})$	
28	WRITE (IWR, 1002) (QFI (I), $\mathrm{I}=1, \mathrm{NV}$)	
29	1002 FORMAT (/,1X, 'FIXED LOAD OR DISP.VECTOR, QFI=',/,1X,5G13.5,/)	
30	WRITE(IWR, 1008)	
31	1008	FORMAT(/, 1X, 'IF IBC(I)-SEE BELOW-=0, VARIABLE=A LOAD', /, 1X,

- 2.2.3 Subroutine FORCE

- This subroutine computes the axial force N in the bar.

$$
N=E A \varepsilon=E A\left[\frac{u_{21}}{l}+\left(\frac{z_{21}}{l}\right)\left(\frac{w_{21}}{l}\right)+\frac{1}{2}\left(\frac{w_{21}}{l}\right)^{2}\right]_{\text {[eq. 2.7, 2.8] }}
$$

```
SUBROUTINE FORCE(AN,ANIT,E,ARA,AL,X,Z,P,IWRIT,IWR,
1 ITUM, ADUM1, ADUM2, ADUM3)
C ARGUMENTS IN LINE ABOVE AND ARRAY X NOT USED FOR SHALLOW TRUSS
C
C COMPUTES INTERNAL.FORCE IN A SHALLOW TRUSS ELEMENT
C USING (2.7) AND (2.8)
DOUBLE PRECISION Z(2),P(4),X(2),AN,ANIT, E, ARA, AL, ADUM1, ADUM2,
1 ADUM3, EA, EAL,U21,W21, Z21
INTEGER IWRIT,IWR
EA = E*ARA
EAL = EA/AL
U21 = P(2) - P(1)
W21 = P(4) - P(3)
Z21 = Z(2) - Z(1)
AN = U21 + (Z21*W21/AL) + 0.5D0*(W21*W21*AL) typo
AN = EAL*AN + ANIT .....................................itial internal force N}\mp@subsup{N}{0}{
IF (IWRIT.NE.0) WRITE (IWR,1000) AN
1000 FORMAT(/,1X,'AXIAL FORCE AN= ',G13.5/)
    RETURN
END
```


- 2.2.4 Subroutine ELSTRUC

- This subroutine puts the element stiffness matrix

AKTE $(4,4)$
into structure stiffness matrix AKTS(NV,NV) (NV=4 or 5)

- Adds in the 'earthed springs' (if number of spring >0)
- Adds in the linear spring between variables 1 and 5 (if NV = 5)

[Element assembly]

system of interest
$\mathbf{K}_{t}=\frac{E A}{l}\left[\begin{array}{cccc}1 & -1 & \beta & -\beta \\ -1 & 1 & -\beta & \beta \\ \beta & -\beta & \beta^{2} & -\beta^{2} \\ -\beta & \beta & -\beta^{2} & \beta^{2}\end{array}\right]+\frac{N}{l}\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$

$$
\mathbf{K}_{\text {spring }}=\left[\begin{array}{cc}
K_{s} & -K_{s} \\
-K_{s} & K_{s}
\end{array}\right]
$$

element stiffness matrices
$\mathbf{K}_{\text {struct }}=\mathbf{K}_{t}+\left[\begin{array}{cccc}K_{s 1} & 0 & 0 & 0 \\ 0 & K_{s 2} & 0 & 0 \\ 0 & 0 & K_{s 3} & 0 \\ 0 & 0 & 0 & K_{s 4}\end{array}\right]$
structured stiffness matrix ($\mathrm{NV}=4$)

- 2.2.4 Subroutine ELSTRUC

- This subroutine scatters internal force vector
- adds in the 'earthed springs' (if number of spring > 0)

system of interest

$$
\mathbf{q}_{i, s t r u c t}=\mathbf{q}_{i}+\left(\begin{array}{c}
K_{s 1} u_{1} \\
K_{s 2} w_{1} \\
K_{s 3} u_{2} \\
K_{s 4} w_{2}
\end{array}\right)
$$

structured internal force vector ($\mathrm{NV}=4$)

- 2.2.4 Subroutine ELSTRUC

1		SUBROUTINE ELSTRUC(AKTE, AKTS, NV, AK15, ID14S, AK14S, NDSP, FI, PT,
2		1 IMOD, IWRIT, IWR)
3	C	
4	C	FOR IMOD=2 OR 3
5	C	PUTS EL-STIFF MATRIX $\operatorname{AKTE}(4,4)$ INTO STRUCT. STIFF AKTS (NV,NV)
6	C	IF NV = 5, ALSO ADDS IN LINEAR SPRING AK15 BETWEEN VARBLS.1\&5
7	C	ALSO ADDS IN NDSP EARTHED LINEAR SPRINGS FOR VARBLS.1-4
8	C	USING PROPERTIES IN AK14S(4) AND DEGS.OF F.IN IDSPS(4)
9	C	THROUGHOUT ONLY WORKS WITH UPPER TRIANGLE
10	C	FOR IMOD=1 OR 3
11	C	MODIFIES INTERNAL FORCE VECT., FI TO INCLUDE EFFECTS FROM
12	C	ARIOUS LINEAR SPRINGS USING TOTAL DISPS., PT.
13	C	
14		DOUBLE PRECISION AKTE(4,4), AKTS(NV,NV),FI(NV), PT(NV),AK14S(4),
15		1 AK15
16		INTEGER ID14S(4),NV,NDSP, IMOD, IWRIT, IWR, I, J
17	C	
18		IF (IMOD.NE.2) THEN
19	C	MODIFY FORCES $\quad\left(K_{\text {s1 }} u_{1}\right)$
20 21		IF (INDSP.NE.0) THEN FOR EARTHED SPRINGS $K_{s 2} w_{1}$
21 22	C	
23		DO IDS $=$ ID14S(I)
24		$\mathrm{FI}(\mathrm{IDS})=\mathrm{FI}(\mathrm{IDS})+\mathrm{AK} 14 \mathrm{~S}(\mathrm{I}) * \mathrm{PT}(\mathrm{IDS}) \quad\left(K_{s 4} W_{2}\right)$
25	40	CONTINUE
26		ENDIF
27	C	
28		IF (IWRIT.NE.0) WRITE (IWR,1002) FI
29	1002	FORMAT(/,1X, 'STR.INT.FORCE VECT IS',1X,5G13.5,/)
30	C	
31		ENDIF

- 2.2.4 Subroutine ELSTRUC

```
C
WORK ON STIFFNESS MATRIX; CLEAR STRUCT.STIFFNESS MATRIX
        DO 10 I=1,NV
            DO }11\textrm{J}=1,N
                AKTS}(I,J)=0.D
    11 CONTINUE
    10 CONTINUE
C
C INSERT EL.STIFFNESS MATRIX
        DO 20 I=1,4
            DO 21 J=1,4
            AKTS}(I,J)=\operatorname{AKTE}(I,J
    2 1 ~ C O N T I N U E ~
    SPRING BETWEEN VARBLS.1&5
        IF (NV.EQ.5) THEN
            AKTS}(1,1)=\operatorname{AKTS}(1,1)+\operatorname{AK15
            AKTS}(1,5)=\operatorname{AKTS}(1,5)-\operatorname{AK15
            AKTS}(5,5)=\operatorname{AKTS}(5,5)+\operatorname{AK15
        ENDIF
C
        EARTHED SPRINGS FOR VARBLS.1-4
        EARTHED SPRINGS FOR VARBLS.1-4
```



```
    30
        EARTHED SPRINGS FOR VARBLS.1-4
        ENDIF
    20 CONTINUE
C
C
        _ K
                                    (d.o.f = 5)
```

62 C
IF (IMOD.NE.1) THEN

Boundary value problem - from finite-difference method

$$
\begin{array}{rc}
\frac{d^{2} T}{d x^{2}}+h^{\prime}\left(T_{\infty}-T\right)=0 & \frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta x^{2}}+h^{\prime}\left(T_{\infty}-T_{i}\right)=0 \\
\frac{d^{2} T}{d x^{2}}=\frac{T_{i-1}-2 T_{i}+T_{i+1}}{\Delta x^{2}} & -T_{i-1}+\left(2+h^{\prime} \Delta x^{2}\right) T_{i}-T_{i+1}=h^{\prime} \Delta x^{2} T_{\infty}
\end{array}
$$

Finite-Difference Example (cont)

- Since T_{0} and T_{n} are known, they will be on the right-hand-side of the linear algebra system (in this case, in the first and last entries, respectively):

\[

\]

$$
\text { Ex) } \Delta x=2 m T_{0}(=300), T_{1}, T_{2}, T_{3}, T_{4}, T_{5}(=400)
$$

$$
\left(\begin{array}{cccc}
2.2 & -1 & 0 & 0 \\
-1 & 2.2 & -1 & 0 \\
0 & -1 & 2.2 & -1 \\
0 & 0 & -1 & 2.2
\end{array}\right)\left(\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4}
\end{array}\right)=\left(\begin{array}{c}
340 \\
40 \\
40 \\
440
\end{array}\right)
$$

$\mathrm{T}=(283.2660,283.1853,299.7415,336.2462)$

\checkmark Two ways to improve the numerical solution.

Derivative Boundary Conditions

- Neumann boundary conditions are resolved by solving the centered difference equation at the point and rewriting the system equation accordingly.
- For example, if there is a Neumann condition at the T_{0} point,

$$
\begin{gathered}
\left.\frac{d T}{d x}\right|_{0}=\frac{T_{1}-T_{-1}}{2 \Delta x} \Rightarrow T_{-1}=T_{1}-2 \Delta x\left(\left.\frac{d T}{d x}\right|_{0}\right)^{-} \\
-\left[T_{1}-\left.2 \Delta x \frac{d T}{d x}\right|_{0}\right]+\left(2+h^{\prime} \Delta x^{2}\right) T_{0}-T_{1}=h^{\prime} \Delta x^{2} T_{\infty} \\
\left.\left(2+h^{\prime}\right) T_{0}-T_{1}=h^{\prime} \Delta x^{2}\right) T_{0}-2 T_{1}=h^{\prime} \Delta x^{2} T_{\infty}-2 \Delta x\left(\left.\frac{d T}{d x}\right|_{0}\right)
\end{gathered}
$$

Example of derivative boundary condition

$$
\mathrm{T}_{\mathrm{a}}^{\prime}=0 \& \mathrm{~T}_{\mathrm{b}}=400 \mathrm{~K}, \mathrm{~T}_{\mathrm{i}} \mathrm{inf}=200 \mathrm{~K}
$$

$2.2 \mathrm{~T}_{0}-2 \mathrm{~T}_{1}=40,-\mathrm{T}_{0}+2.2 \mathrm{~T}_{1}-\mathrm{T}_{2}=40$, Eqs for other nodes are the same.

$$
\left[\begin{array}{ccccc}
2.2 & -2 & & & \\
-1 & 2.2 & -1 & & \\
& -1 & 2.2 & -1 & \\
& & -1 & 2.2 & -1 \\
& & & -1 & 2.2
\end{array}\right]\left\{\begin{array}{c}
T_{0} \\
T_{1} \\
T_{2} \\
T_{3} \\
T_{4}
\end{array}\right\}=\left\{\begin{array}{c}
40 \\
40 \\
40 \\
40 \\
440
\end{array}\right\} \quad \longrightarrow \begin{aligned}
& T_{0}=243.0278 \\
& T_{1}=247.3306 \\
& T_{2}=261.0994 \\
& T_{3}=287.0882 \\
& T_{4}=330.4946
\end{aligned}
$$

- 2.2.5 Subroutine BCON

- This subroutine converts constrained displacement into external force. (load control)

$$
\mathbf{q}=\binom{\mathbf{q}_{f}}{\mathbf{q}_{p}}=\mathbf{K} \mathbf{p}=\left[\begin{array}{ll}
\mathbf{K}_{f f} & \mathbf{K}_{f p} \\
\mathbf{K}_{p f} & \mathbf{K}_{p p}
\end{array}\right]\binom{\mathbf{p}_{f}}{\mathbf{p}_{p}} \quad \begin{aligned}
& \text { 'f' free } \\
& \text { 'p' prescribed } \\
& \text { Ordering can be changed in the matrix }
\end{aligned}
$$

(Case 1) For the prescribed displacement $\mathbf{p}_{\mathrm{p}}=0(\mathrm{IBC}(\mathrm{i})=1)$

(Case 2) Constrained displacement \mathbf{p}_{p} NE. 0

$$
\begin{aligned}
& \mathbf{q}_{f}=\mathbf{K}_{f f} \mathbf{p}_{f}+\mathbf{K}_{f p} \mathbf{p}_{p} \Rightarrow \mathbf{q}_{f}-\mathbf{K}_{f p} \mathbf{p}_{p}=\mathbf{K}_{f f} \mathbf{p}_{f} \\
& \Rightarrow\binom{\mathbf{q}_{f}-\mathbf{K}_{f p} \mathbf{p}_{p}}{\mathbf{p}_{p}}=\left[\begin{array}{cc}
\mathbf{K}_{f f} & 0 \\
0 & \mathbf{I}
\end{array}\right]\binom{\mathbf{p}_{f}}{\mathbf{p}_{p}} \\
& \text { [eq. 2.26] }
\end{aligned}
$$

- 2.2.5 Subroutine BCON

```
C
IPRS = 0
DO 10 I=1,N
II = IBC(I)
IF (II.LT.0) IPRS = 1
(\begin{array}{l}{\mp@subsup{\mathbf{q}}{f}{}}\\{\mp@subsup{\mathbf{q}}{p}{}}\end{array})=[\begin{array}{ll}{\mp@subsup{\mathbf{K}}{ff}{}}&{\mp@subsup{\mathbf{K}}{fp}{}}\\{\mp@subsup{\mathbf{K}}{pf}{}}&{\mp@subsup{\mathbf{K}}{pp}{}}\end{array}](\begin{array}{l}{\mp@subsup{\mathbf{p}}{f}{}}\\{\mp@subsup{\mathbf{p}}{p}{}}\end{array})
IF (II.NE.0) AK(I,I) = 1.D0
IF (I.EQ.N) GO TO 10
JJ = IBC(J)
IF (II.EQ.0.AND.JJ.EQ.0) GO TO 20
C ABOVE BOTH FREE, BELOW BOTH REST
    IF (II.NE.0.AND.JJ.EQ.0) GO TO 25
C BELOW I REST OR PRESC
    IF (II.NE.0) THEN
                    F(J) = F(J) - AK(I,J)*F(I)
BELOW J REST OR PRESC
    ELSE
                    F(I) = F(I) - AK(I,J)*F(J)
        ENDIF
25 AK(I, J) = 0.d0
20 CONTINUE
1 0 \text { CONTINUE}
```

UBROUTINE BCON(AK,IBC,N,F,IWRIT,IWR

Solution principle - inverse matrix

$$
\begin{gathered}
{[A]\{x\}=\{b\} \leftrightarrow\{x\}=[A]^{-1}\{b\}} \\
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}
\end{gathered}
$$

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}\left[C_{j k}\right]^{T}=\frac{1}{\operatorname{det} \mathbf{A}}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \cdots & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
$$

$\mathrm{C}_{j k}$: cofactor of $\mathrm{a}_{j k}$

Elimination of unknowns

$$
\begin{gathered}
\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{array} \xrightarrow{\longrightarrow} a_{21} a_{11} x_{1}+a_{21} a_{12} x_{2}=a_{21} b_{1} \\
a_{11} a_{21} x_{1}+a_{11} a_{22} x_{2}=a_{11} b_{2} \\
\longrightarrow x_{2}=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{21} a_{12}} \\
\left.\longrightarrow \quad a_{21} a_{12}-a_{11} a_{22}\right) x_{2}=a_{21} b_{1}-a_{11} b_{2} \\
\longrightarrow \frac{a_{22} b_{1}-a_{12} b_{2}}{a_{11} a_{22}-a_{21} a_{12}}
\end{gathered}
$$

Of course, this is in agreement with results with Cramer's rule

Gauss elimination

The elimination of unknowns can be generalized into the Gauss elimination method.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & 0 & 3 \\
2 & 1 & -1 & 1 \\
3 & -1 & -1 & 2 \\
-1 & 2 & 4 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
4 \\
1 \\
-3 \\
4
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & -4 & -1 & -7 \\
0 & 3 & 4 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
4 \\
-7 \\
-15 \\
8
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\longrightarrow\left(\begin{array}{cccc}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 1 & -13
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
4 \\
-7 \\
13 \\
-13
\end{array}\right) \\
\longrightarrow\left(\begin{array}{cccc}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 0 & 52
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
4 \\
-7 \\
13 \\
52
\end{array}\right) \text { Forward eliminations } \\
x_{4}=1 \\
x_{3}=\left(13-13 x_{4}\right) / 3=0 \\
x_{2}=-\left(-7+x_{3}+5 x_{4}\right)=2 \\
x_{1}=4-x_{2}-3 x_{4}=-1
\end{gathered}
$$

Gauss Elimination (cont)

- Forward elimination
- Starting with the first row, add or subtract multiples of that row to eliminate the first coefficient from the second row and beyond.
- Continue this process with the second row to remove the second coefficient from the third row and beyond.
- Stop when an upper triangular matrix remains.
- Back substitution
- Starting with the last row, solve for the unknown, then substitute that value into the next highest row.
- Because of the upper-triangular nature of the matrix, each row will contain only one more unknown.

-Pivot equation/ Pivot element/ Normalization

Naïve Gauss Elimination Program - Matlab example

```
function x = GaussNaive(A,b)
% GaussNaive(A,b) :
% Gauss elimination without pivoting.
% input:
% A = coefficient matrix
% b = right hand side vector }\longleftarrow\mathrm{ should be a column vector
% output:
% x = solution vector
[m,n] = size(A);
if m ~= n, error('Matrix A must be square'); end
nb = n+1;
Aug = [A b];
% forward elimination
for k = 1:n-1 % index for pivot equation
    for i = k+1:n % i
        factor = Aug(i,k)/Aug(k,k);
        Aug(i,k:nb) = Aug(i,k:nb)-factor*Aug(k,k:nb);
    nested loop
    end
end
% back substitution
x = zeros(n,1);
x(n) = Aug(n,nb)/Aug(n,n);
for i = n-1:-1:1
    x(i) = (Aug(i,nb)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i);
end

\section*{Partial Pivoting Program - example}
```

function x = gausspivot(A,b)
% GAUSSPIVOT: x = gausspivot(A,b):
% Gauss elimination with pivoting.
% input:
% A = coefficient matrix
% b = right hand side vector
output:
% x = solution vector
[m,n]=size(A);
if m~=n, error('Matrix A must be square'); end
nb=n+1;
Aug=[A b];
% Forward elimination
for k = 1:n-1
% partial pivoting
[big,i] = max(abs(Aug(k:n,k)));
ipr=i+k-1;
if ipr~=k
Aug([k,ipr],:)=Aug([ipr,k],:);
end
for i = k+1:n
factor=Aug(i,k)/Aug(k,k);
Aug(i,k:nb)=Aug(i,k:nb)-factor*Aug(k,k:nb);
end
end
% Back substitution
x=zeros(n,1);
x(n)=Aug(n,nb)/Aug(n,n);
for i = n-1:-1:1
x(i)=(Aug(i,nb)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i);
end

```

\section*{LU decomposition}

Suppose that we have to change \(\{b\}\) in \([A]\{x\}=\{b\}\) frequently for the same \([A]\). If we apply the Gauss elimination method for every \(\{b\}\), the forward elimination step is repeated unnecessarily. Therefore, it would be efficient if the forward elimination and back substitution can be separated. This can be achieved through LU (lowerlupper) decomposition (or factorization). Let's take the example of a \(3 \times 3\) matrix. Suppose that we can find \(L\) and \(U\) matrices such that \([L][U]=A\) and in the form of
\[
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right] \quad[\mathrm{U}]=\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
\]
\[
[L]\{[U]\{x\}-\{d\}\}=[A]\{x\}-\{b\}
\]
\[
[L]\{d\}=\{b\}
\]

Since \([U]\) is already upper triangular, \([U]\{x\}=\{d\}\) can be obtained by back substitutic
\[
\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right\}
\]

On the other hand, \([L]\{d\}=\{b\}\) can be obtained by forward substitution.

In fact, Gauss elimination corresponds to LU factorization.
Save memory!
\(\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]\left\{\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\}=\left\{\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right\}\)
\[
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
f_{21} & a_{22}^{\prime} & a_{23}^{\prime} \\
f_{31} & f_{32} & a_{33}^{\prime \prime}
\end{array}\right]
\]

First elimination, \(\quad f_{21}=\frac{a_{21}}{a_{11}} \quad f_{31}=\frac{a_{31}}{a_{11}}\)
Second elimination, \(\quad f_{32}=\frac{a_{32}^{\prime}}{a_{22}^{\prime}} \quad[\mathrm{U}]=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{\prime} & a_{23}^{\prime} \\ 0 & 0 & a_{33}^{\prime \prime}\end{array}\right] \quad[L]=\left[\begin{array}{ccc}1 & 0 & 0 \\ f_{21} & 1 & 0 \\ f_{31} & f_{32} & 1\end{array}\right]\)
\[
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
f_{21} & 1 & 0 \\
f_{31} & f_{32} & 1
\end{array}\right] \quad[A]=[L][U]
\]


What is the use of LU decomposition? For special form of matrices such as sparse, banded, and symmetric ones, there are special algorithms to carry out LU factorizations that are much more efficient than original Gauss elimination. The determinant and inverse matrix can also be obtained by LU decomposition. Brute-force calculation would cost NxN! in comparison with N3 scaling in LU

\section*{LU Factorization with Gauss Elimination}

Problem Statement. Derive an \(L U\) factorization based on the Gauss elimination performed previously in Example 9.3.

Solution. In Example 9.3, we used Gauss elimination to solve a set of linear algebraic equations that had the following coefficient matrix:
\[
[A]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.1 & 7 & -0.3 \\
0.3 & -0.2 & 10
\end{array}\right]
\]

After forward elimination, the following upper triangular matrix was obtained:
\[
[U]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]
\]

The factors employed to obtain the upper triangular matrix can be assembled into a lower triangular matrix. The elements \(a_{21}\) and \(a_{31}\) were eliminated by using the factors
\[
f_{21}=\frac{0.1}{3}=0.0333333 \quad f_{31}=\frac{0.3}{3}=0.1000000
\]
and the element \(a_{32}\) was eliminated by using the factor
\[
f_{32}=\frac{-0.19}{7.00333}=-0.0271300
\]

Thus, the lower triangular matrix is
\[
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]
\]

Consequently, the \(L U\) factorization is
\[
[A]=[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]
\]

This result can be verified by performing the multiplication of \([L][U]\) to give
\[
[L][U]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.0999999 & 7 & -0.3 \\
0.3 & -0.2 & 9.99996
\end{array}\right]
\]
where the minor discrepancies are due to roundoff.

\section*{The Substitution Steps}

Problem Statement. Complete the problem initiated in Example 10.1 by generating the final solution with forward and back substitution.

Solution. As just stated, the intent of forward substitution is to impose the elimination manipulations that we had formerly applied to \([A]\) on the right-hand-side vector \(\{b\}\). Recall that the system being solved is
\[
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.1 & 7 & -0.3 \\
0.3 & -0.2 & 10
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.3 \\
71.4
\end{array}\right\}
\]
and that the forward-elimination phase of conventional Gauss elimination resulted in
\[
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
\]

The forward-substitution phase is implemented by applying Eq. (10.8):
\[
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.3 \\
71.4
\end{array}\right\}
\]
or multiplying out the left-hand side:
\[
\begin{array}{rlr}
d_{1} & =7.85 \\
0.0333333 d_{1}+\quad d_{2} & =-19.3 \\
0.100000 d_{1}-0.0271300 d_{2}+d_{3} & =71.4
\end{array}
\]

We can solve the first equation for \(d_{1}=7.85\), which can be substituted into the second equation to solve for
\[
d_{2}=-19.3-0.0333333(7.85)=-19.5617
\]

Both \(d_{1}\) and \(d_{2}\) can be substituted into the third equation to give
\[
d_{3}=71.4-0.1(7.85)+0.02713(-19.5617)=70.0843
\]

Thus,
\[
\{d\}=\left\{\begin{array}{c}
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
\]

This result can then be substituted into Eq. (10.3), \([U]\{x\}=\{d\}\) :
\[
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
\]
which can be solved by back substitution (see Example 9.3 for details) for the final solution:
\[
\{x\}=\left\{\begin{array}{c}
3 \\
-2.5 \\
7.00003
\end{array}\right\}
\]

\section*{- 2.2.6 Subroutine CROUT}

William H. Press, Saul a. Teukolsky, William T. Vetterling, Brian P. Flannery, "Numerical Recipes in Fortran 77: the Art of Scientific Computing. Second Edition", vol. 1, 1996.

\section*{- This subroutine applies the Crout factorization to the tangent stiffness matrix, to conduct LDL \({ }^{\top}\) decomposition.}

Suppose we are able to write the matrix \(\mathbf{A}\) as a product of two matrices,
\[
\begin{equation*}
\mathbf{K}=\mathbf{L} \mathbf{U}=\mathbf{L D L}^{T} \quad \mathbf{L} \cdot \mathbf{U}=\mathbf{A} \tag{2.3.1}
\end{equation*}
\]
where \(\mathbf{L}\) is lower triangular (has elements only on the diagonal and below) and \(\mathbf{U}\) is upper triangular (has elements only on the diagonal and above). For the case of

\section*{Performing the LU Decomposition}

How then can we solve for \(\mathbf{L}\) and \(\mathbf{U}\), given \(\mathbf{A}\) ? First, we write out the \(i, j\) th component of equation (2.3.1) or (2.3.2). That component always is a sum beginning with
\[
\alpha_{i 1} \beta_{1 j}+\cdots=a_{i j}
\]

The number of terms in the sum depends, however, on whether \(i\) or \(j\) is the smaller number. We have, in fact, the three cases,
\[
\begin{array}{ll}
i<j: & \alpha_{i 1} \beta_{1 j}+\alpha_{i 2} \beta_{2 j}+\cdots+\alpha_{i i} \beta_{i j}=a_{i j} \\
i=j: & \alpha_{i 1} \beta_{1 j}+\alpha_{i 2} \beta_{2 j}+\cdots+\alpha_{i i} \beta_{j j}=a_{i j} \\
i>j: & \alpha_{i 1} \beta_{1 j}+\alpha_{i 2} \beta_{2 j}+\cdots+\alpha_{i j} \beta_{j j}=a_{i j} \tag{2.3.10}
\end{array}
\]

Equations (2.3.8)-(2.3.10) total \(N^{2}\) equations for the \(N^{2}+N\) unknown \(\alpha\) 's and \(\beta\) 's (the diagonal being represented twice). Since the number of unknowns is greater than the number of equations, we are invited to specify \(N\) of the unknowns arbitrarily and then try to solve for the others. In fact, as we shall see, it is always possible to take
\[
\begin{equation*}
\alpha_{i i} \equiv 1 \quad i=1, \ldots, N \tag{2.3.11}
\end{equation*}
\]

A surprising procedure, now, is Crout's algorithm, which quite trivially solves the set of \(N^{2}+N\) equations (2.3.8)-(2.3.11) for all the \(\alpha\) 's and \(\beta\) 's by just arranging the equations in a certain order! That order is as follows:
a \(4 \times 4\) matrix \(\mathbf{A}\), for example, equation (2.3.1) would look like this:
\[
\left[\begin{array}{cccc}
\alpha_{11} & 0 & 0 & 0  \tag{2.3.2}\\
\alpha_{21} & \alpha_{22} & 0 & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44}
\end{array}\right] \cdot\left[\begin{array}{cccc}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\
0 & \beta_{22} & \beta_{23} & \beta_{24} \\
0 & 0 & \beta_{33} & \beta_{34} \\
0 & 0 & 0 & \beta_{44}
\end{array}\right]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
\]
- Set \(\alpha_{i i}=1, i=1, \ldots, N\) (equation 2.3.11).
- For each \(j=1,2,3, \ldots, N\) do these two procedures: First, for \(i=\) \(1,2, \ldots, j\), use (2.3.8), (2.3.9), and (2.3.11) to solve for \(\beta_{i j}\), namely
\[
\begin{equation*}
\beta_{i j}=a_{i j}-\sum_{k=1}^{i-1} \alpha_{i k} \beta_{k j} \tag{2.3.12}
\end{equation*}
\]
(When \(i=1\) in 2.3.12 the summation term is taken to mean zero.) Second, for \(i=j+1, j+2, \ldots, N\) use (2.3.10) to solve for \(\alpha_{i j}\), namely
\[
\begin{equation*}
\alpha_{i j}=\frac{1}{\beta_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} \alpha_{i k} \beta_{k j}\right) \tag{2.3.13}
\end{equation*}
\]

Be sure to do both procedures before going on to the next \(j\).
If you work through a few iterations of the above procedure, you will see that the \(\alpha\) 's and \(\beta\) 's that occur on the right-hand side of equations (2.3.12) and (2.3.13) are already determined by the time they are needed. You will also see that every \(a_{i j}\) is used only once and never again. This means that the corresponding \(\alpha_{i j}\) or \(\beta_{i j}\) can be stored in the location that the \(a\) used to occupy: the decomposition is "in place." [The diagonal unity elements \(\alpha_{i i}\) (equation 2.3.11) are not stored at all.] In brief, Crout's method fills in the combined matrix of \(\alpha\) 's and \(\beta\) 's,
\[
\left[\begin{array}{llll}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14}  \tag{2.3.14}\\
\alpha_{21} & \beta_{22} & \beta_{23} & \beta_{24} \\
\alpha_{31} & \alpha_{32} & \beta_{33} & \beta_{34} \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \beta_{44}
\end{array}\right]
\]
by columns from left to right, and within each column from top to bottom (see

\section*{- 2.2.6 Subroutine CROUT}
\(\mathbf{K}=\mathbf{L U}=\mathbf{L D L}^{T}\)
```

SUBROUTINE CROUT(AK,D,N,IWRIT,IWR)
INPUTS AK(N,N); OUTPUTS UPPER TRIANGLE IN AK AND DIAG
PIVOTS IN D(N)
DOUBLE PRECISION AK(N,N),D(N),A
INTEGER N,I,J,IWR,IWRIT
D(1) = AK (1,1)
DO 1 J=2,N
DO 2 I=1,J-1
A = AK(I, J)
IF (I.EQ.1) GO TO 2
DO 3 L=1,I-1
A=A-AK(L,J)*AK(L,I)
3 CONTINUE
AK}(\textrm{I},\textrm{J})=
2 CONTINUE
DO 4 I=1,J-1
AK(I,J) = AK(I, J)/AK(I,I)
4 CONTINUE
DO 5 L=1,J-1
AK(J,J) = AK(J,J) - AK(L,J)*AK(L,J)*AK(L,J)
5 CONTINUE
D(J) = AK (J, J)
1 CONTINUE

```

\section*{- 2.2.6 Subroutine SOLVCR}
- This subroutine solves the problem by Crout forward-backward method.
\[
\binom{\mathbf{q}_{f}-\mathbf{K}_{f j} \mathbf{p}_{p}}{\mathbf{p}_{p}}=\left[\begin{array}{cc}
\mathbf{K}_{f f} & 0 \\
0 & \mathbf{I}
\end{array}\right]\binom{\mathbf{p}_{f}}{\mathbf{p}_{p}}=\left(\mathbf{L D L}^{T}\right) \mathbf{p}
\]
```

SUBROUTINE SOLVCR(AK,D,Q,N,IWRIT,IWR)
APPLIES FORWARD AND BACK CROUT SUBS ON Q
DOUBLE PRECISION AK(N,N),D(N),Q(N)
INTEGER N,I, J, L,IWRIT,IWR
FORWARD SUBS
DO 1 J=2,N
DO 2 L=1,J-1
Q(J) = Q(J) - AK(L,J)*Q(L)
2 CONTINUE
1 CONTINUE
IF (IWRIT.NE.0) THEN
WRITE (IWR, 1000) (Q(I), I=1,N)
1000 FORMAT(/,1X,'DISP.INCS AFTER FORWARD SUBS.ARE',1X,7G12.5,/)
ENDIF
BACK SUBS.
DO 3 I=1,N
Q(I) = Q(I)/D(I)
3 CONTINUE
DO 4 JJ=2,N
J = N + 2 - JJ
DO 5 L=1,J-1
Q(L) = Q(L) - AK(L,J)*Q(J)
CONTINUE

```

\section*{Thank you!}```

