
Computational Plasticity Spring, 2023

Chapter 2: A shallow truss element
with Fortran computer program

Myoung-Gyu Lee

TA: Gyu Jang Sim (gyujang95@snu.ac.kr)

Ch. 2 2 INTRODUCTION

In this chapter, we learn

• computer program for multi-degrees of freedom problem formulated in the
form of finite element structure

• a set of Fortran subroutines

• flowcharts for an ‘incremental formulation’, the ‘Newton-Raphson iterative
procedure’, and a combined ‘incremental /iterative technique’.

Ch. 2 2.1 A SHALLOW TRUSS ELEMENT

• An iso-parametric description of shallow truss element
: Displacement and coordinate share the same shape function.

[Fig 2.1 A shallow truss element]

[] 1

2

1 1 1
2

x
x

x
x x

æ ö
= - ç

è
+ ÷

ø

[] 1

2

1 1 1
2

z
z

z
x x

æ ö
= - ç

è
+ ÷

ø

[] 1

2

1 1 1
2

u
u

u
x x

æ ö
= - ç

è
+ ÷

ø

[] 1

2

1 1 1
2

w
w

w
x x

æ ö
= - ç

è
+ ÷

ø

Shape functions
or, interpolation functions

, , ,: , :x z u wx parent domain spatial domain

[eq. 2.1,2.2]

Ch. 2 2.1 A SHALLOW TRUSS ELEMENT

• Strain can be derived in the iso-parametric formulation.

21
2

z w w
l

u
l ll

e æ öæ ö æ ö
ç ÷ç ÷ ç ÷
è øè

+
ø è

+
ø

= - [eq. 1.51]

21
2

du dz dw dw
dx dx dx dx

e æ ö æ ö= + +ç ÷ ç ÷
è

æ ö
ç

è
÷

è øøø

2 1

22
x xdx l

dx
-

= =

2 1 21udu du d
dx d dx

u u
l l

x
x

-
= = =

21wdw
dx l

= 21dz
dx l

z
=

2
21 21 21 211

2
u z w w
l l l l

e æ öæ ö æ ö= + +ç ÷ç ÷ ç ÷
è øè ø è ø

[eq. 2.3]

[eq. 2.4]

[eq. 2.5]

[eq. 2.6]

[eq. 2.7]

Ch. 2 2.1 A SHALLOW TRUSS ELEMENT

• Virtual displacement brings change in strain:

21
2

v v v
v

u w wdz dwd d d
dx dx dxdx dx
d d dde æ öæ ö= + + +ç ÷ ç ÷

è ø è ø
(,) (,)v v vu u w w u wde e d d e= + + -

v

v

u u

dd du
dx dx dx

uu
d

d

+

=é ù +ê úë û

()21 21
2

2 2 22 21 11
1
2

11
v v vvw w

l
u z w

l l
d d d de ++ +=

1

2

1

2

v

v
v

v

v

u
u
w
w

d
d

d
d
d

æ ö
ç ÷
ç ÷
ç ÷
ç

ø

=

÷
è

p ()21 21 21 212

11 T
v v v vu z ww
l l

de d d d++ == b p

1
11

l b
b

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
è ø

-

=
-

b 21 21z
l
wb +

=

21

l
du
dx

u
= 21wdw

dx l
= 21dz

dx l
z

= [eq. 2.5, 2.6]

where

• Using previous relations,

[eq. 2.9]

[eq. 2.10]

• (Virtual) strain is inner product of strain interpolation matrix and (virtual)
nodal displacement vdp

b

where [eq. 2.13, 2.14]

[eq. 2.11, 2.12]

and

, ,

,

Ch. 2 2.1 A SHALLOW TRUSS ELEMENT

• Discretization applied to weak form derived from principle of virtual work

() ()
0v e

i e e

T
v

T T T
v v v dV

V dVsde d

d d d s= - = -

= - =

=

ò
ò

p q

p g p q q p b q i dV Nls= =òq b b

2 2

2 2

1 1 0 0 0 0
1 1 0 0 0 0

0 0 1 1
0 0 1 1

i
t

T

l lN

dl lN

dN
d
dN
d d

E lA

EA N
l l

lN

e
e

b b
b b

b b b b
b b b b

¶¶ ¶
= = = +
¶ ¶ ¶

¶
= +

¶
¶

+
¶

- -é ù é ù
ê ú ê ú- -ê ú ê ú+
ê

=

=
ú ê ú- - -

ê ú ê ú- - -ë û ë û

qg bK b
p p p p

bb
p p

bbb
p

[eq. 2.15-2.17]

• Tangent stiffness matrix:

[eq. 2.19-2.23]

1
11

l b
b

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
è ø

-

=
-

b

Internal force vector• For equilibrium, V=0 for any virtual displacements
or g=0

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

• Fortran subroutines are provided to solve general form of bar-spring system.
- There are ‘earthed springs’ and a horizontal linear spring.
- In many cases, the horizontal linear spring Ks5 can be omitted.

• For general solution procedure (assembling, boundary conditions, etc) of finite element method, refer to: Daryl L. Logan, “A First Course in
the Finite Element Method” – Ch 1.

• Quick introduction to Fortran77 :
• http://seismic.yonsei.ac.kr/fortran/index.html (kor)
• https://web.stanford.edu/class/me200c/tutorial_77 (eng)

• There might some typos or errors in the code.

[Fig 2.2 Bar-spring system]
(a) Bar element with springs (b) variables

http://seismic.yonsei.ac.kr/fortran/index.html
https://web.stanford.edu/class/me200c/tutorial_77

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

Example of algorithm

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

• This subroutine calculates
§ an internal force vector
§ an element tangent stiffness matrix

2.2.1 Subroutine ELEMENT

1
1

i Nl N
b
b

æ ö
ç ÷
ç ÷= =
ç ÷
ç

-

÷
ø

-

è

=q b

[eq. 2.17]
[variable in fortran]

2 2

2 2

1 1 0 0 0 0
1 1 0 0 0 0

0 0 1 1
0 0 1 1

t
EA N
l l

b b
b b

b b b b
b b b b

- -é ù é ù
ê ú ê ú- -ê ú ê ú= + =
ê ú ê ú- - -
ê ú ê ú- - -ë û ë û

K

[eq. 2.23]

21 21z
l
wb +

=where

[variable in fortran]

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.1 Subroutine ELEMENT

code typed by Jaehyun You

EA EA
L



21z

21w
21 21z w
l

b +
=

N 1

2

z
z
æ ö
ç ÷
è ø


1

2

1

2

u
u
w
w

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
è ø


L

E

A

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.1 Subroutine ELEMENT

code typed by Jaehyun You

icompute q

1
1

i Nl N
b
b

-æ ö
ç ÷
ç ÷= =
ç ÷-
ç ÷
è ø

q b

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.1 Subroutine ELEMENT

code typed by Jaehyun You

tcomputeK

2 2

2 2

0 0 0 0
0 0 0 0
0 0 1 1
0

1 1
1 1

0 1 1

t
EA
l

N
l

b b
b b

b b b b
b b b b

- -é ù
ê ú- -ê ú
ê ú- -
ê

é ù
ê ú
ê ú= +
ê ú-
ê ú-ë- - û

ú
ë û

K

2 2

2 2

0 0 0 0
0 0 0 0
0 0 1 1
0 0 1

1 1
1

1

1
t
E N

l
A
l

b b
b b

b b b b
b b b b

- -é ù
ê ú- -ê ú= +
ê ú- -
ê

é ù
ê ú
ê ú
ê ú-
ê ú-ë û

ú- -ë û

K

N
L



Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.2 Subroutine INPUT

• This subroutine reads: 1. geometry 2. properties 3. boundary conditions 4. loading
from input file.

[input file of Fig 1.1(b)]

[Fig 1.1(b) Simple problem with
one degree of freedom.

Bar with spring]

[corresponding variables]

(only if NV = 5)

E L 0)(internal forceN initia in barl. .d o f

()1 2z z

,T T
e combinedq p

boundary conditi inforon mation

number of earthed springs

*

()id s of earthed springs

()stiffness s of earthede springs

5sK

Fig.
2.2(a)

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.2 Subroutine INPUT

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.3 Subroutine FORCE

• This subroutine computes the axial force in the bar.

21 2 2 11 21
21

2
u z wEA
l l l

N EA w
l

e
é ùæ öæ æ ö+ ç ÷

è ø
ö= +ê úç ÷ç ÷

è ø øêë
=

è úû

N

[eq. 2.7, 2.8]

0initial internal force N

21 21 21u z wN EA
l l l

é ùæ öæ ö= + ç ÷ç ÷ê úè øè øë û

typo

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.4 Subroutine ELSTRUC

• This subroutine puts the element stiffness matrix into structure
stiffness matrix (NV=4 or 5)

• Adds in the ‘earthed springs’ (if number of spring > 0)
• Adds in the linear spring between variables 1 and 5 (if NV = 5)

s s
spring

s s

K K
K K

-é ù
= ê ú-ë û

K

2 2

2 2

1 1 0 0 0 0
1 1 0 0 0 0

0 0 1 1
0 0 1 1

t
EA N
l l

b b
b b

b b b b
b b b b

- -é ù é ù
ê ú ê ú- -ê ú ê ú= +
ê ú ê ú- - -
ê ú ê ú- - -ë û ë û

K

element stiffness matrices system of interest

1

2

3

4

0 0 0
0 0 0
0 0 0
0 0 0

s

s
struct t

s

s

K
K

K
K

=

é ù
ê ú
ê ú+
ê ú
ê ú
ë û

K K

structured stiffness matrix
(NV=4)

[Element assembly]

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.4 Subroutine ELSTRUC

• This subroutine scatters internal force vector
- adds in the ‘earthed springs’ (if number of spring > 0)

element internal force vectors

1

1 1

2

3 2

4

,

2

s

s
ii stru

s

s

ct K

K u
K w
u
wK

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

+q q

structured internal force vector
(NV=4)

1
1

i Nl N
b
b

æ ö
ç ÷
ç ÷=
ç ÷
ç

-

=

÷
ø

-

è

q b

1
1

,
2

2

1
1

s s
i spring s

s ss

suK K
K u

K K u
- -é ù æ ö æ ö

= =ç ÷ ç ÷ê ú- è øë û è ø
q

1su 2su

system of interest

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.4 Subroutine ELSTRUC

1 1

2 1
,

3 2

4 2

s

s
i struct i

s

s

K u
K w
K u
K w

æ ö
ç ÷
ç ÷= +
ç ÷
ç ÷
è ø

q q

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.4 Subroutine ELSTRUC

1

2

3

4

0 0 0
0 0 0
0 0 0
0 0 0

(d.o.f 4)

s

s
struct t

s

s

K
K

K
K

é ù
ê ú
ê ú= +
ê ú
ê ú
ë û

=

K K



5 5

5 5

0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0
(d.o.f 5)

s s

struct t

s s

K K

K K

-é ù
ê ú
ê ú
ê ú= +
ê ú
ê ú
ê ú-ë û

=

K K



Boundary value problem – from finite-difference method

Example)

d2T
dx2

+ ¢ h T¥ -T()= 0 ()

()

1 1
2

2 2
1 1

2 0

2

i i i
i

i i i

T T T h T T
x

T h x T T h x T

- +
¥

- + ¥

- + ¢+ - =
D

¢ ¢- + + D - = D
2

1 1
2 2

2i i iT T Td T
dx x

- +- +
=

D

Finite-Difference Example (cont)

• Since T0 and Tn are known, they will be on the right-hand-side of the linear

algebra system (in this case, in the first and last entries, respectively):

2+ ′h Δx2 −1
−1 2+ ′h Δx2 −1

  
−1 2+ ′h Δx2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

T1

T2


Tn−1

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

=

′h Δx2T∞ +T0

′h Δx2T∞



′h Δx2T∞ +Tn

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

Tridiagonal matrix

Ex) ∆x = 2m T0(=300),T1,T2,T3,T4,T5(=400)

T=(283.2660, 283.1853, 299.7415, 336.2462)

ü Two ways to improve the numerical solution.

Derivative Boundary Conditions

• Neumann boundary conditions are resolved by solving the centered

difference equation at the point and rewriting the system equation

accordingly.

• For example, if there is a Neumann condition at the T0 point,

dT
dx 0

=
T1 −T−1

2Δx
⇒ T−1 = T1 − 2Δx

dT
dx 0

⎛

⎝⎜
⎞

⎠⎟

−T−1 + 2+ ′h Δx2()T0 −T1 = ′h Δx2T∞

− T1 − 2Δx
dT
dx 0

⎡

⎣
⎢

⎤

⎦
⎥ + 2+ ′h Δx2()T0 −T1 = ′h Δx2T∞

2+ ′h Δx2()T0 − 2T1 = ′h Δx2T∞ − 2Δx
dT
dx 0

⎛

⎝⎜
⎞

⎠⎟

22

Example of derivative boundary condition

Ta’ = 0 & Tb =400 K, T_inf = 200 K

2.2T0-2T1 = 40, -T0+2.2T1-T2 = 40 , Eqs for other nodes are the same.

23

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.5 Subroutine BCON

• This subroutine converts constrained displacement into external force. (load
control)

f ff fp

p

f

pf pp p

æ ö é ù æ ö
=ç ÷ ç ÷ê ú

è ø ë û è ø
= =
q K K p

q Kp
q K K p

[eq. 2.25]

f ff f pfp= +q K p K p f fp p ff fÞ - =q K p K p

0
0

f fp p fff

p p

é ù
ê

-æ ö æ ö
Þ =ç ÷ ç ÷

è ø
ú

ë û è ø

q K p pK
p pI

[eq. 2.26]

‘f’ free
‘p’ prescribed

Ordering can be changed in the matrix

(Case 1) For the prescribed displacement
pp=0 (IBC(i)=1)

f ff fp

p

f

pf pp p

æ ö é ù æ ö
=ç ÷ ç ÷ê ú

è ø ë û è ø
= =
q K K p

q Kp
q K K p

0

0 I0
Dummy
equation

(Case 2) Constrained displacement pp NE. 0

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.5 Subroutine BCON

0
0

f fp p fff

p p

-æ ö æ öé ù
Þ =ç ÷ ç ÷ê ú

ë ûè ø è ø

q K p pK
p pI

f ff fp f

p pf pp p

æ ö é ù æ ö
=ç ÷ ç ÷ê ú

è ø ë û è ø

q K K p
q K K p

26

Solution principle - inverse matrix

IAAAA == -- 11

[]
ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

==-

nnnn

n

n

T
jk

CCC

CCC
CCC

C









21

22212

12111

1

det
1

det
1

AA
A

Cjk : cofactor of ajk

1[]{ } { } { } [] { }A x b x A b-= « =

Elimination of unknowns

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

a21a11x1 + a21a12x2 = a21b1
a11a21x1 + a11a22x2 = a11b2

(a21a12 − a11a22)x2 = a21b1 − a11b2

→ x2 =
a11b2 − a21b1
a11a22 − a21a12

x1 =
a22b1 − a12b2
a11a22 − a21a12

Of course, this is in agreement with results with Cramer’s rule

28

Gauss elimination

1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 4 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x1

x2

x3

x4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

4
1
−3
4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 1 1 0 3
0 −1 −1 −5
0 −4 −1 −7
0 3 4 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x1

x2

x3

x4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

 4
−7
−15
8

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The elimination of unknowns can be generalized into the Gauss elimination method.

29

x4 =

x3 =

x2 =

x1 =

1
(13−13x4) / 3= 0

−(−7 + x3 +5x4) = 2

4− x2 − 3x4 = −1

 1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 1 −13

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x1

x2

x3

x4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

 4
−7
13
−13

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 52

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x1

x2

x3

x4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

 4
−7
13
52

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Forward eliminations

Backward substitutions

Gauss Elimination (cont)

• Forward elimination
• Starting with the first row, add or subtract

multiples of that row to eliminate the first
coefficient from the second row and
beyond.

• Continue this process with the second row
to remove the second coefficient from the
third row and beyond.

• Stop when an upper triangular matrix
remains.

• Back substitution
• Starting with the last row, solve for the

unknown, then substitute that value into
the next highest row.

• Because of the upper-triangular nature of
the matrix, each row will contain only one
more unknown.

•Pivot equation/ Pivot element/ Normalization

function x = GaussNaive(A,b)
% GaussNaive(A,b) :
% Gauss elimination without pivoting.
% input:
% A = coefficient matrix
% b = right hand side vector
% output:
% x = solution vector

[m,n] = size(A);
if m ~= n, error('Matrix A must be square'); end
nb = n+1;
Aug = [A b];
% forward elimination
for k = 1:n-1 % index for pivot equation

for i = k+1:n % i
factor = Aug(i,k)/Aug(k,k);
Aug(i,k:nb) = Aug(i,k:nb)-factor*Aug(k,k:nb);

end
end
% back substitution
x = zeros(n,1);
x(n) = Aug(n,nb)/Aug(n,n);
for i = n-1:-1:1

x(i) = (Aug(i,nb)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i);
end

Naïve Gauss Elimination Program – Matlab example

nested loop

(row vector) x (column vector)

should be a column vector

function x = gausspivot(A,b)
% GAUSSPIVOT: x = gausspivot(A,b):
% Gauss elimination with pivoting.
% input:
% A = coefficient matrix
% b = right hand side vector
% output:
% x = solution vector
[m,n]=size(A);
if m~=n, error('Matrix A must be square'); end
nb=n+1;
Aug=[A b];
% Forward elimination
for k = 1:n-1

% partial pivoting
[big,i] = max(abs(Aug(k:n,k)));
ipr=i+k-1;
if ipr~=k

Aug([k,ipr],:)=Aug([ipr,k],:);
end

for i = k+1:n
factor=Aug(i,k)/Aug(k,k);
Aug(i,k:nb)=Aug(i,k:nb)-factor*Aug(k,k:nb);

end
end
% Back substitution
x=zeros(n,1);
x(n)=Aug(n,nb)/Aug(n,n);
for i = n-1:-1:1

x(i)=(Aug(i,nb)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i);
end

Partial Pivoting Program - example

LU decomposition
Suppose that we have to change {b} in [A]{x} = {b} frequently for the same [A]. If
we apply the Gauss elimination method for every {b}, the forward elimination step
is repeated unnecessarily. Therefore, it would be efficient if the forward elimination
and back substitution can be separated. This can be achieved through LU
(lower\upper) decomposition (or factorization). Let’s take the example of a 3x3
matrix. Suppose that we can find L and U matrices such that [L][U] = A and in the
form of

Recall that Gauss elimination involves two steps: forward elimination and back sub-
stitution (Fig. 9.3). As we learned in Section 9.2.2, the forward-elimination step comprises
the bulk of the computational effort. This is particularly true for large systems of equations.

LU factorization methods separate the time-consuming elimination of the matrix [A]
from the manipulations of the right-hand side {b}. Thus, once [A] has been “factored” or
“decomposed,” multiple right-hand-side vectors can be evaluated in an efficient manner.

Interestingly, Gauss elimination itself can be expressed as an LU factorization.
Before showing how this can be done, let us first provide a mathematical overview of the
factorization strategy.

10.1 OVERVIEW OF LU FACTORIZATION
Just as was the case with Gauss elimination, LU factorization requires pivoting to avoid
division by zero. However, to simplify the following description, we will omit pivoting. In
addition, the following explanation is limited to a set of three simultaneous equations. The
results can be directly extended to n-dimensional systems.

Equation (10.1) can be rearranged to give

[A]{x} − {b} = 0 (10.2)

Suppose that Eq. (10.2) could be expressed as an upper triangular system. For example, for
a 3 × 3 system:

[u11 u12 u13

0 u22 u23

0 0 u33

]{ x1

x2

x3

}
=

{ d1

d2

d3

}

(10.3)

Recognize that this is similar to the manipulation that occurs in the first step of Gauss
elimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (10.3) can also be expressed in matrix notation and rearranged to give

[U]{x} − {d} = 0 (10.4)

Now assume that there is a lower diagonal matrix with 1’s on the diagonal,

[L] =
[1 0 0

l21 1 0
l31 l32 1

]

(10.5)

that has the property that when Eq. (10.4) is premultiplied by it, Eq. (10.2) is the result.
That is,

[L]{[U]{x} − {d}} = [A]{x} − {b} (10.6)

If this equation holds, it follows from the rules for matrix multiplication that

[L][U] = [A] (10.7)

and

[L]{d} = {b} (10.8)

10.1 OVERVIEW OF LU FACTORIZATION 255

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 255

[U] =

Recall that Gauss elimination involves two steps: forward elimination and back sub-
stitution (Fig. 9.3). As we learned in Section 9.2.2, the forward-elimination step comprises
the bulk of the computational effort. This is particularly true for large systems of equations.

LU factorization methods separate the time-consuming elimination of the matrix [A]
from the manipulations of the right-hand side {b}. Thus, once [A] has been “factored” or
“decomposed,” multiple right-hand-side vectors can be evaluated in an efficient manner.

Interestingly, Gauss elimination itself can be expressed as an LU factorization.
Before showing how this can be done, let us first provide a mathematical overview of the
factorization strategy.

10.1 OVERVIEW OF LU FACTORIZATION
Just as was the case with Gauss elimination, LU factorization requires pivoting to avoid
division by zero. However, to simplify the following description, we will omit pivoting. In
addition, the following explanation is limited to a set of three simultaneous equations. The
results can be directly extended to n-dimensional systems.

Equation (10.1) can be rearranged to give

[A]{x} − {b} = 0 (10.2)

Suppose that Eq. (10.2) could be expressed as an upper triangular system. For example, for
a 3 × 3 system:

[u11 u12 u13

0 u22 u23

0 0 u33

]{ x1

x2

x3

}
=

{ d1

d2

d3

}

(10.3)

Recognize that this is similar to the manipulation that occurs in the first step of Gauss
elimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (10.3) can also be expressed in matrix notation and rearranged to give

[U]{x} − {d} = 0 (10.4)

Now assume that there is a lower diagonal matrix with 1’s on the diagonal,

[L] =
[1 0 0

l21 1 0
l31 l32 1

]

(10.5)

that has the property that when Eq. (10.4) is premultiplied by it, Eq. (10.2) is the result.
That is,

[L]{[U]{x} − {d}} = [A]{x} − {b} (10.6)

If this equation holds, it follows from the rules for matrix multiplication that

[L][U] = [A] (10.7)

and

[L]{d} = {b} (10.8)

10.1 OVERVIEW OF LU FACTORIZATION 255

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 255

Recall that Gauss elimination involves two steps: forward elimination and back sub-
stitution (Fig. 9.3). As we learned in Section 9.2.2, the forward-elimination step comprises
the bulk of the computational effort. This is particularly true for large systems of equations.

LU factorization methods separate the time-consuming elimination of the matrix [A]
from the manipulations of the right-hand side {b}. Thus, once [A] has been “factored” or
“decomposed,” multiple right-hand-side vectors can be evaluated in an efficient manner.

Interestingly, Gauss elimination itself can be expressed as an LU factorization.
Before showing how this can be done, let us first provide a mathematical overview of the
factorization strategy.

10.1 OVERVIEW OF LU FACTORIZATION
Just as was the case with Gauss elimination, LU factorization requires pivoting to avoid
division by zero. However, to simplify the following description, we will omit pivoting. In
addition, the following explanation is limited to a set of three simultaneous equations. The
results can be directly extended to n-dimensional systems.

Equation (10.1) can be rearranged to give

[A]{x} − {b} = 0 (10.2)

Suppose that Eq. (10.2) could be expressed as an upper triangular system. For example, for
a 3 × 3 system:

[u11 u12 u13

0 u22 u23

0 0 u33

]{ x1

x2

x3

}
=

{ d1

d2

d3

}

(10.3)

Recognize that this is similar to the manipulation that occurs in the first step of Gauss
elimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (10.3) can also be expressed in matrix notation and rearranged to give

[U]{x} − {d} = 0 (10.4)

Now assume that there is a lower diagonal matrix with 1’s on the diagonal,

[L] =
[1 0 0

l21 1 0
l31 l32 1

]

(10.5)

that has the property that when Eq. (10.4) is premultiplied by it, Eq. (10.2) is the result.
That is,

[L]{[U]{x} − {d}} = [A]{x} − {b} (10.6)

If this equation holds, it follows from the rules for matrix multiplication that

[L][U] = [A] (10.7)

and

[L]{d} = {b} (10.8)

10.1 OVERVIEW OF LU FACTORIZATION 255

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 255

Recall that Gauss elimination involves two steps: forward elimination and back sub-
stitution (Fig. 9.3). As we learned in Section 9.2.2, the forward-elimination step comprises
the bulk of the computational effort. This is particularly true for large systems of equations.

LU factorization methods separate the time-consuming elimination of the matrix [A]
from the manipulations of the right-hand side {b}. Thus, once [A] has been “factored” or
“decomposed,” multiple right-hand-side vectors can be evaluated in an efficient manner.

Interestingly, Gauss elimination itself can be expressed as an LU factorization.
Before showing how this can be done, let us first provide a mathematical overview of the
factorization strategy.

10.1 OVERVIEW OF LU FACTORIZATION
Just as was the case with Gauss elimination, LU factorization requires pivoting to avoid
division by zero. However, to simplify the following description, we will omit pivoting. In
addition, the following explanation is limited to a set of three simultaneous equations. The
results can be directly extended to n-dimensional systems.

Equation (10.1) can be rearranged to give

[A]{x} − {b} = 0 (10.2)

Suppose that Eq. (10.2) could be expressed as an upper triangular system. For example, for
a 3 × 3 system:

[u11 u12 u13

0 u22 u23

0 0 u33

]{ x1

x2

x3

}
=

{ d1

d2

d3

}

(10.3)

Recognize that this is similar to the manipulation that occurs in the first step of Gauss
elimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (10.3) can also be expressed in matrix notation and rearranged to give

[U]{x} − {d} = 0 (10.4)

Now assume that there is a lower diagonal matrix with 1’s on the diagonal,

[L] =
[1 0 0

l21 1 0
l31 l32 1

]

(10.5)

that has the property that when Eq. (10.4) is premultiplied by it, Eq. (10.2) is the result.
That is,

[L]{[U]{x} − {d}} = [A]{x} − {b} (10.6)

If this equation holds, it follows from the rules for matrix multiplication that

[L][U] = [A] (10.7)

and

[L]{d} = {b} (10.8)

10.1 OVERVIEW OF LU FACTORIZATION 255

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 255

Recall that Gauss elimination involves two steps: forward elimination and back sub-
stitution (Fig. 9.3). As we learned in Section 9.2.2, the forward-elimination step comprises
the bulk of the computational effort. This is particularly true for large systems of equations.

LU factorization methods separate the time-consuming elimination of the matrix [A]
from the manipulations of the right-hand side {b}. Thus, once [A] has been “factored” or
“decomposed,” multiple right-hand-side vectors can be evaluated in an efficient manner.

Interestingly, Gauss elimination itself can be expressed as an LU factorization.
Before showing how this can be done, let us first provide a mathematical overview of the
factorization strategy.

10.1 OVERVIEW OF LU FACTORIZATION
Just as was the case with Gauss elimination, LU factorization requires pivoting to avoid
division by zero. However, to simplify the following description, we will omit pivoting. In
addition, the following explanation is limited to a set of three simultaneous equations. The
results can be directly extended to n-dimensional systems.

Equation (10.1) can be rearranged to give

[A]{x} − {b} = 0 (10.2)

Suppose that Eq. (10.2) could be expressed as an upper triangular system. For example, for
a 3 × 3 system:

[u11 u12 u13

0 u22 u23

0 0 u33

]{ x1

x2

x3

}
=

{ d1

d2

d3

}

(10.3)

Recognize that this is similar to the manipulation that occurs in the first step of Gauss
elimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (10.3) can also be expressed in matrix notation and rearranged to give

[U]{x} − {d} = 0 (10.4)

Now assume that there is a lower diagonal matrix with 1’s on the diagonal,

[L] =
[1 0 0

l21 1 0
l31 l32 1

]

(10.5)

that has the property that when Eq. (10.4) is premultiplied by it, Eq. (10.2) is the result.
That is,

[L]{[U]{x} − {d}} = [A]{x} − {b} (10.6)

If this equation holds, it follows from the rules for matrix multiplication that

[L][U] = [A] (10.7)

and

[L]{d} = {b} (10.8)

10.1 OVERVIEW OF LU FACTORIZATION 255

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 255

Since [U] is already upper triangular, [U]{x} = {d} can be obtained by back substitution.

On the other hand, [L]{d} = {b} can be obtained by forward substitution.

In fact, Gauss elimination corresponds to LU factorization.
Though it might not be as apparent, the matrix [L] is also produced during the step.

This can be readily illustrated for a three-equation system,
[a11 a12 a13

a21 a22 a23

a31 a32 a33

]{ x1

x2

x3

}
=

{ b1

b2

b3

}

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

f21 = a21

a11

and subtract the result from the second row to eliminate a21. Similarly, row 1 is multi-
plied by

f31 = a31

a11

and the result subtracted from the third row to eliminate a31. The final step is to multiply
the modified second row by

f32 = a′
32

a′
22

and subtract the result from the third row to eliminate a′
32.

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the f ’s and manipulate {b} later.

Where do we store the factors f21, f31, and f32? Recall that the whole idea behind the
elimination was to create zeros in a21, a31, and a32. Thus, we can store f21 in a21, f31 in a31,
and f32 in a32. After elimination, the [A] matrix can therefore be written as




a11 a12 a13

f21 a′
22 a′

23

f31 f32 a′′
33



 (10.10)

This matrix, in fact, represents an efficient storage of the LU factorization of [A],

[A] → [L][U] (10.11)

where

[U] =




a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33



 (10.12)

and

[L] =
[1 0 0

f21 1 0
f31 f32 1

]

(10.13)

The following example confirms that [A] = [L][U].

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 257

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 257

Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily illustrated for a three-equation system,

[a11 a12 a13

a21 a22 a23

a31 a32 a33

]{ x1

x2

x3

}
=

{ b1

b2

b3

}

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

f21 = a21

a11

and subtract the result from the second row to eliminate a21. Similarly, row 1 is multi-
plied by

f31 = a31

a11

and the result subtracted from the third row to eliminate a31. The final step is to multiply
the modified second row by

f32 = a′
32

a′
22

and subtract the result from the third row to eliminate a′
32.

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the f ’s and manipulate {b} later.

Where do we store the factors f21, f31, and f32? Recall that the whole idea behind the
elimination was to create zeros in a21, a31, and a32. Thus, we can store f21 in a21, f31 in a31,
and f32 in a32. After elimination, the [A] matrix can therefore be written as




a11 a12 a13

f21 a′
22 a′

23

f31 f32 a′′
33



 (10.10)

This matrix, in fact, represents an efficient storage of the LU factorization of [A],

[A] → [L][U] (10.11)

where

[U] =




a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33



 (10.12)

and

[L] =
[1 0 0

f21 1 0
f31 f32 1

]

(10.13)

The following example confirms that [A] = [L][U].

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 257

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 257

First elimination,

Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily illustrated for a three-equation system,

[a11 a12 a13

a21 a22 a23

a31 a32 a33

]{ x1

x2

x3

}
=

{ b1

b2

b3

}

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

f21 = a21

a11

and subtract the result from the second row to eliminate a21. Similarly, row 1 is multi-
plied by

f31 = a31

a11

and the result subtracted from the third row to eliminate a31. The final step is to multiply
the modified second row by

f32 = a′
32

a′
22

and subtract the result from the third row to eliminate a′
32.

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the f ’s and manipulate {b} later.

Where do we store the factors f21, f31, and f32? Recall that the whole idea behind the
elimination was to create zeros in a21, a31, and a32. Thus, we can store f21 in a21, f31 in a31,
and f32 in a32. After elimination, the [A] matrix can therefore be written as




a11 a12 a13

f21 a′
22 a′

23

f31 f32 a′′
33



 (10.10)

This matrix, in fact, represents an efficient storage of the LU factorization of [A],

[A] → [L][U] (10.11)

where

[U] =




a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33



 (10.12)

and

[L] =
[1 0 0

f21 1 0
f31 f32 1

]

(10.13)

The following example confirms that [A] = [L][U].

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 257

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 257

Second elimination,

Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily illustrated for a three-equation system,

[a11 a12 a13

a21 a22 a23

a31 a32 a33

]{ x1

x2

x3

}
=

{ b1

b2

b3

}

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

f21 = a21

a11

and subtract the result from the second row to eliminate a21. Similarly, row 1 is multi-
plied by

f31 = a31

a11

and the result subtracted from the third row to eliminate a31. The final step is to multiply
the modified second row by

f32 = a′
32

a′
22

and subtract the result from the third row to eliminate a′
32.

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the f ’s and manipulate {b} later.

Where do we store the factors f21, f31, and f32? Recall that the whole idea behind the
elimination was to create zeros in a21, a31, and a32. Thus, we can store f21 in a21, f31 in a31,
and f32 in a32. After elimination, the [A] matrix can therefore be written as




a11 a12 a13

f21 a′
22 a′

23

f31 f32 a′′
33



 (10.10)

This matrix, in fact, represents an efficient storage of the LU factorization of [A],

[A] → [L][U] (10.11)

where

[U] =




a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33



 (10.12)

and

[L] =
[1 0 0

f21 1 0
f31 f32 1

]

(10.13)

The following example confirms that [A] = [L][U].

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 257

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 257

A two-step strategy (see Fig. 10.1) for obtaining solutions can be based on Eqs. (10.3),
(10.7), and (10.8):

1. LU factorization step. [A] is factored or “decomposed” into lower [L] and upper [U]
triangular matrices.

2. Substitution step. [L] and [U] are used to determine a solution {x} for a right-hand side
{b}. This step itself consists of two steps. First, Eq. (10.8) is used to generate an inter-
mediate vector {d} by forward substitution. Then, the result is substituted into Eq. (10.3)
which can be solved by back substitution for {x}.

Now let us show how Gauss elimination can be implemented in this way.

10.2 GAUSS ELIMINATION AS LU FACTORIZATION
Although it might appear at face value to be unrelated to LU factorization, Gauss elimina-
tion can be used to decompose [A] into [L] and [U]. This can be easily seen for [U], which
is a direct product of the forward elimination. Recall that the forward-elimination step is
intended to reduce the original coefficient matrix [A] to the form

[U] =




a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33



 (10.9)

which is in the desired upper triangular format.

256 LU FACTORIZATION

[A] {x} ! {b}

[L] {d } ! {b}

{d}

[U] [L]

{x}

(a) Factorization

(b) Forward

(c) Back

Substitution

[U] {x} ! {d}

FIGURE 10.1
The steps in LU factorization.

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 256

[U]=

Save memory!

Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily illustrated for a three-equation system,

[a11 a12 a13

a21 a22 a23

a31 a32 a33

]{ x1

x2

x3

}
=

{ b1

b2

b3

}

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

f21 = a21

a11

and subtract the result from the second row to eliminate a21. Similarly, row 1 is multi-
plied by

f31 = a31

a11

and the result subtracted from the third row to eliminate a31. The final step is to multiply
the modified second row by

f32 = a′
32

a′
22

and subtract the result from the third row to eliminate a′
32.

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the f ’s and manipulate {b} later.

Where do we store the factors f21, f31, and f32? Recall that the whole idea behind the
elimination was to create zeros in a21, a31, and a32. Thus, we can store f21 in a21, f31 in a31,
and f32 in a32. After elimination, the [A] matrix can therefore be written as




a11 a12 a13

f21 a′
22 a′

23

f31 f32 a′′
33



 (10.10)

This matrix, in fact, represents an efficient storage of the LU factorization of [A],

[A] → [L][U] (10.11)

where

[U] =




a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33



 (10.12)

and

[L] =
[1 0 0

f21 1 0
f31 f32 1

]

(10.13)

The following example confirms that [A] = [L][U].

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 257

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 257

Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily illustrated for a three-equation system,

[a11 a12 a13

a21 a22 a23

a31 a32 a33

]{ x1

x2

x3

}
=

{ b1

b2

b3

}

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

f21 = a21

a11

and subtract the result from the second row to eliminate a21. Similarly, row 1 is multi-
plied by

f31 = a31

a11

and the result subtracted from the third row to eliminate a31. The final step is to multiply
the modified second row by

f32 = a′
32

a′
22

and subtract the result from the third row to eliminate a′
32.

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the f ’s and manipulate {b} later.

Where do we store the factors f21, f31, and f32? Recall that the whole idea behind the
elimination was to create zeros in a21, a31, and a32. Thus, we can store f21 in a21, f31 in a31,
and f32 in a32. After elimination, the [A] matrix can therefore be written as




a11 a12 a13

f21 a′
22 a′

23

f31 f32 a′′
33



 (10.10)

This matrix, in fact, represents an efficient storage of the LU factorization of [A],

[A] → [L][U] (10.11)

where

[U] =




a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33



 (10.12)

and

[L] =
[1 0 0

f21 1 0
f31 f32 1

]

(10.13)

The following example confirms that [A] = [L][U].

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 257

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 257

A two-step strategy (see Fig. 10.1) for obtaining solutions can be based on Eqs. (10.3),
(10.7), and (10.8):

1. LU factorization step. [A] is factored or “decomposed” into lower [L] and upper [U]
triangular matrices.

2. Substitution step. [L] and [U] are used to determine a solution {x} for a right-hand side
{b}. This step itself consists of two steps. First, Eq. (10.8) is used to generate an inter-
mediate vector {d} by forward substitution. Then, the result is substituted into Eq. (10.3)
which can be solved by back substitution for {x}.

Now let us show how Gauss elimination can be implemented in this way.

10.2 GAUSS ELIMINATION AS LU FACTORIZATION
Although it might appear at face value to be unrelated to LU factorization, Gauss elimina-
tion can be used to decompose [A] into [L] and [U]. This can be easily seen for [U], which
is a direct product of the forward elimination. Recall that the forward-elimination step is
intended to reduce the original coefficient matrix [A] to the form

[U] =




a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33



 (10.9)

which is in the desired upper triangular format.

256 LU FACTORIZATION

[A] {x} ! {b}

[L] {d } ! {b}

{d}

[U] [L]

{x}

(a) Factorization

(b) Forward

(c) Back

Substitution

[U] {x} ! {d}

FIGURE 10.1
The steps in LU factorization.

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 256

The LU factorization algorithm requires the same total flops as for Gauss elimination.
The only difference is that a little less effort is expended in the factorization phase since the
operations are not applied to the right-hand side. Conversely, the substitution phase takes a
little more effort.

10.2.2 MATLAB Function: lu

MATLAB has a built-in function lu that generates the LU factorization. It has the general
syntax:

[L,U] = lu(X)

where L and U are the lower triangular and upper triangular matrices, respectively, derived
from the LU factorization of the matrix X. Note that this function uses partial pivoting to
avoid division by zero. The following example shows how it can be employed to generate
both the factorization and a solution for the same problem that was solved in Exam-
ples 10.1 and 10.2.

EXAMPLE 10.4 LU Factorization with MATLAB

Problem Statement. Use MATLAB to compute the LU factorization and find the
solution for the same linear system analyzed in Examples 10.1 and 10.2:

[3 −0.1 −0.2
0.1 7 −0.3
0.3 −0.2 10

]{ x1

x2

x3

}
=

{ 7.85
−19.3
71.4

}

Solution. The coefficient matrix and the right-hand-side vector can be entered in stan-
dard fashion as

>> A = [3 -.1 -.2;.1 7 -.3;.3 -.2 10];
>> b = [7.85; -19.3; 71.4];

Next, the LU factorization can be computed with

>> [L,U] = lu(A)

L =
1.0000 0 0
0.0333 1.0000 0
0.1000 -0.0271 1.0000

U =
3.0000 -0.1000 -0.2000

0 7.0033 -0.2933
0 0 10.0120

This is the same result that we obtained by hand in Example 10.1. We can test that it is cor-
rect by computing the original matrix as

>> L*U

262 LU FACTORIZATION

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 262

What is the use of LU decomposition? For special form of matrices such as
sparse, banded, and symmetric ones, there are special algorithms to carry out
LU factorizations that are much more efficient than original Gauss elimination.
The determinant and inverse matrix can also be obtained by LU decomposition.
Brute-force calculation would cost NxN! in comparison with N3 scaling in LU
decomposition.

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.6 Subroutine CROUT

• This subroutine applies the Crout factorization to the tangent stiffness matrix, to
conduct LDLT decomposition.

William H. Press, Saul a. Teukolsky, William T. Vetterling, Brian P. Flannery, "Numerical Recipes in
Fortran 77: the Art of Scientific Computing. Second Edition", vol. 1, 1996.

T= =K LU LDL

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.6 Subroutine CROUT

T= =K LU LDL

Ch. 2 2.2 A SET OF FORTRAN SUBROUTINES

2.2.6 Subroutine SOLVCR

• This subroutine solves the problem by Crout forward-backward method.

()0
0

Tf fp p fff

p p

-æ ö æ öé ù
= =ç ÷ ç ÷ê ú
ë ûè ø è ø

q K p pK
p pI

LDL p

Thank you!

