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Attaching Coordinate Frames

e Robot = rigid links w/ inertia + joints (relative motion w/ actuation or not)

e Typical joints =
revolute joints  6; € [0,27) = S; or »| e | ==
prismatic joints 6; € [dmin, dmax] =: D € R.» @» —

e To describe robot configuration, attach coordinate frame {¢} on the link 1.
e Link 0 starts from the fixed base.

e The i-th joint @; between link ¢ — 1 and link 1.

e Link ¢ and {¢} move together with 6;.

e 0; actuation axis along 2; ;.
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Coordinate Frames: Examples
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Joint Space Q and Workspace W
1. Joint variable ¢ := (6h, 0, ...,0,)

= §
2. Joint space @ := {¢} (e.g.,, @ =5 x S x R for SCARA). ® '
3. End-effector: gripper, hand, tool, etc. (typically last joint with {E}). ~/
4. Wrist: joint between the end-effector and the preceding link.

(<1}

Workspace W € SE(3): set of all permissible pose of EF.

e Rcachable WS Wg € E(3): sct of EF position rcachable with some
joint angles.

e Dexterous WS Wy € E(3): set of EF position reachable with arbi-
trary EF oricntation.
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Configuration Space C

1. Configuration: a set of certain variables that can completely specify the
location of all the points of the robot (i.e., posture of the robot).

2. A space C is configuration space if:

(a) Every z € C corresponds to a valid configuration of the system (i.e.,
onto/surjective with posture set as domain and C as range); and
(b) Every system configuration can be identified with a unique z € C
(i-e., one-to-one/injective).
3. Joint space @ is a configuration space; Workspace W may or may not be

a configuration space.

4. degree-of-freedom (DOF) = dim(C) = dim(Q).

posture C
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Rigid Body Transformation

In this course, robot consists of rigid links. How to describe rigid body motion?

e Rigid body motion description of O during [0,t)

— Consider a rigid object O in Euclidean space R3.
— Attach a coordinate frame {B(0)} at a point on O at ¢ = 0.
— Keep track the pose of {B(t)}

e This rigid body motion can be thought of as rigid body transformation
map g: R = R3, s.t.,

9(p(0)) = p(2)
where p(t) € %2, ¢ > 0, is a point p of O(t).
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Free Vector
e For the positions p, g € R, define

viI=p—qcE R3
Although v € R3 appears similar to p,q € R3, it is conceptually different.

e The mapped g(p) can change its length, yet, it shouldn’t happen with the
mapping of v under rigid body motion g.

e Action g, of rigid transformation g defined s.t., withv =p—qg=17r — s,
9+(v) == g(p) — g(a) = g(r) — g()

Note v and g.(v) are free to float from where it starts. Due to this reason,
we call this vector v free vector.

{A} s/
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Rigid Transformation: Definition
Definition 1 A mapping g : R3 - R3 is rigid body transformation if

1. |lg(p) — 9(@)ll = llp — qll Vp.q € K® (i.e., distance preserving);
2. g.(vx w) = g.(v) X g.(w) (e.g., no mirroring).
where g.(v) := g(p) — g(q), ||z||? := Tz and X is the cross product.

Properties of g,:

1. ||g«(@)|| = ||v|| (norm preserving)
2. g:(av) = ags(v), g:(v1 +v2) = g«(v1) + g (v2) (linearity)
3. g7 (v1)g+(v2) = v{ v2 (isometry)

Proof (Item 2): 4v{vy = |[v1 + va|[* — [[v1 — va|[® = ||gu(v1) + gu(wa)||* —

llgs (v1) — gu(v2)|* = 497 (v1) g (2)- ﬂjﬂ
2
{A}
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Rotation Matrix R

e Rigid body motion = rotation + translation. Consider first rotation.

e Rotation of a rigid body can be described by the body-frame {B} attached
to the object relative to {A}.

e This rotation of { B} relative to { A} can be be written as rotation matrix
Rap=[ x5 yp 2§ |e®R?

where

{A}

zp = [m{xa;xfya;m;fza] e R3 (similar for y,p, 24p)

where zp, ¥p, 25 € R° and z4, Ya, 2o € R are the orthonormal principle-axis
basis vectors of {B} and {A}; and 45, Yab, 2ap are Tp, Yp, 2» represented in
the inertial frame {A}.

o Note that Rep[1;0;0] = ¢, Rb[0;1;0] = y¢, Rep[0;0;1] = 2§ with 2 =
[1;0;0], ¥ = [0; 1;0], 22 = [0;0; 1] (i.e., each representing principle axis of
{B} represented in {A}).
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Three Roles of R

1. R serves as configuration for rotation motion: {B} relative to {A}.

2. R serves as coordinate transformation: ¢ € R* can be expressed in
{A} or {B} s.t.

0= ¢2Ta + 0%Ya + 20 = o+ Cyp + 2

with g = [q2; 55 ¢2] (in {4}) and g = [¢%;¢5; ¢%] (in {B}). Then,

b
qz TrTy TyYp Th2p q;
T T T b s
q; = YaTo Yo Yb Ya?b qz , 1€, qa = Rap@®
T T T
qz 2, Ty ZgYp  Zg % q;

3. R serves as rotation operator: if ¢ rigidly-attached on the object and
the object rotates from {A} to {B} during [0,%], g(t) = ¢4(0) Vt > 0.
Then, A

qa(t) = Rabqb (t) = Rabqa (0)
that is, R : q,(0) — qq(t). ( )

><*~ a0y {A}
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Properties of R
e RTR=RRT =1, R1=RT

e detR = +1.
A}

e R=R,, i.e., the action of R for free-vector is also R.

(Proof):
e (Item 1) If we write
TITH TP Ty 2
Rav=| vlzo vl yizw |=[71 12 73]

T T T
ZaTb 22U 25 2b

T1 = },T2 = Y§,T3 = 2§ are the principle axis, therefore,
T . _ s . T, _ e s s
ryr;=0ii#£g rmri=11ii=j

o (Item 2) detR = r{ (ra X r3) = +1, since (r1,72,73) are right-handed.
e (Item 3) withv=p—g,

R.(vs) = R(py) — R(qs) = Pa — ¢a = va = R(vs)
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Properties of R

e For a = [a1;a2;a3] € N3, define

0 —as ag
(@":=a=| ag 0 —ay | €RP3 st. axb=(a)"b
—ag al 0

This skew-symmetric matrix defines Lie algebra for SO(3), constituting vector
space of rotational velocity.

Lemma 1 R(v x w) = (Rv) x (Rw), R(w)*RT = (Rw)"
(Proof): First shows that x and R commute.

R

v Rv
w R Rw . .
body-frame inertial-frame
X l l X
R

VXW —> R(vx w)=Rv x Rw
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Properties of R
Lemma 1 R(v x w) = (Rv) x (Rw), R(w)*RT = (Rw)"

Second shows (w)” as a map in {B} is given in {4} by (Rw)* = R(w)"RT.
Consider y, = (wp)"zp in {B}. This can then be represented in {A} by

Ya = Ryy = R(wp) "z, = R(wp)"RTz, = R(wp x zp) = (Rwy) "z,

that is, (Rws)” = R{wy) RT.

X, — W'y, body-frame

J |

X inertial-frame
: Rwpr T

Prop. 1 (2.2) A rotation R is a rigid-body transformation, i.e.,
IR@—a)ll=Ilp—gll, R(vxw)=RvxRw

First from (R(p—q))TR(p—q) = (p— ¢)T(p—q) = ||p— ¢||?- Second from Lem.
1.
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Composition of Rotations

Consider R; : {A} — {B} for [to,t1) and Ry : {B} — {C} for [t1,t3). The
rotation Ry can be expressed by R w.r.t. {A} or by R} w.r.t. {B}. Then, the
composition of rotations ¢, (t2) = Racga(to) is given by

e Successive rotations w.r.t. body frames: R,. = R{R}
e Successive rotations w.r.t. inertial frame: R,. = R§R{
o From gq(t1) = Rfga(to) and gs(t2) = Ry (t1) with (1) = ga(to),
Ga(tz2) = Riqy(t2) = RYR3q(t1) = R{R34a(to)
e From g,(t1) = R{qa(t,) and ga(t2) = R3qa(t1): ga(t2) = RSR{qa(ts)-
R :R¢{=R;,,RE=R, Ry : R} =R,,R} =R,

1 0 0
R.= |0 cosf —sinf z

0 sinf  cosf

D
cos —sinf 0 Yy

sinf@ cosf 0 {C}
0 0 1

Y )
\@C {A} {A}
Z,

a e
&)

R, =
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Composition of Rotations

Consider R; : {A} — {B} for [to,t1) and R, : {B} — {C} for [t1,t2). The
rotation Ry can be expressed by R w.r.t. {A} or by R} w.r.t. {B}. Then, the
composition of rotations g, (t2) = Racqa(ts) is given by

e Successive rotations w.r.t. body frames: R,. = R{R}
e Successive rotations w.r.t. inertial frame: R,. = R§R}

e Since these two rotations are the same, we have
RS = RTRR;

which is the mapping R$ in {A} written in {B}. Note that both R and R}
represent the same rotation, yet, expressed in different frames.

Xp R2"b Yy frame {B}
Rll l R1
f A
X, -y Ya rame {A}
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Special Orthogonal Group SO(3)

Def. 1 (Special orthogonal group)
SO(n):={Re R | RTR=1,det R = +1}

- SO(3) is a Lie group under matrix multiplication.

- Lie group is a group G (i.e., gh € G Vg, h € G), which is also a smooth manifold
(i.e., assumes local smooth coordinate charts) and for which (g,h) — gh and
g+ g~ are smooth.

e (closure) if R1,Rs € SO(3), R1R2 € SO(3), since (R]RQ)(R1R2)T =1
and det(Rle) = det Rl det R2 =1.

(identity) R = I € SO(3) is the identity with RI = IR = R.

(inverse) for each R, there exists an unique inverse R* € SO(3).

special with detR = +1; SO(3) represents rotation in 3D; SO(2) rotation
in 2D.

e SO(3) not vector space: how does the agular velocity look like?

O
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Exponential of w

Consider a rigid body rotating from {B(0)} to {B(t)} with constant angular
velocity w, expressed in inertial frame {A}. What’s relation between w and R?

e Consider a point g attached to the object. We can then express in {A}
s.t.,

o = Wa X o = Wala
where % = (w)" (e.g., w, = [0;0; w3] in {A}). {B(t)}{;
e We can further have
9a(t) = €°°*4a(0) = Ry ab(t) = Riys)95(0)
= Ry [Riy0)]" 2a(0) = Ri0y5(1)4a (0)
with R,y = Rig)p:)Rap(o) 1-€-» composition of rotation w.r.t. {A}.
¢ Exponential of w

N wat)? W t)> a
eBet — [ 4 it + KT""L + ST'tL +...= Rb(o)b(t)

represents rotation from {B(0)} to {B(t)} via w during ¢ expresed in {A}.
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Angular Velocity and so(3)
Def. 1 (Lie Algebra so(n))

so(n) :={S ¢ ®**" | §T = -8}
e Any angular velocity w € R2 can be identified by so(3) via (w)".

e 50(3) is the vector space of angular velocity with at; + bibs € s0(3),
Va,b, € R.

e In contrast, SO(3) is not a vector space (e.g., aR1 + bRy ¢ SO(3)).
e s50(3) is Lie algebra of SO(3) with the bracket structure
[, W] = W1 — W1 = (w1 X we)"
with, V8, @, 2 € so(3),
[0,%] = —[w,0], [[0,®], 2]+ [[2,0], @] + [[&, 2],0] =0

— Lie algebra of Lie group G is the tangent space at identity Te G with the bracket [§, 7] := [, np]1(e),
where {7, is left-invariant vector ficld s.t., §7,(e) € TeG and £{1,(g - k) = Tp Lg€,(h), Va. h € G.

— Lgloy, #2] = [R(w] X wg)] = (Rw) X Rwy)” = [Lp#, Lgidg], ie., [,] is left invariant too.

R
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Rodrigues’ Formula

Exponential of w is a infinite series, thus, not practically useful. Rodrigues’
formular provides a closed-form expression of e®* €S0(3) given (w, 0).

e First, normalize angular velocity by w6 with ||w|| = 1 (direction) and
0 € R (duration):

e =1+ 00+ Ca®+ Lo+ ...
¢ Rodrigues’ formula
e = I + b sin 0 + w?(1 — cos )
e (Proof): From the following facts:
o = aa” —[alP’I, a® =—lall*a
w3 = —b, ! = —?,.... Thus, we have

eﬁ’gzl-l-(9—%+05—?...)w+(02_?_%"')w2

©Dongjun Lee

Exponential Coordinates for SO(3)

In fact, (w,0), ||w|| = 1, can be used as “coordinates” for SO(3).

Prop. 1 (2.4) For every w € s0(3) and § € R, e?® € 50(3).

(Proof): From matrix exponential property and skew-symmetricity of @,

wo1—1 _ _—w0 __ T8 _ [ 0T
7] =e =€ " =[e""]

verifying that RTR = I. Also, det(e®”?) = 1, since det(¢?°) = +1 and e® is a
continuous map w.r.t. 6.

e This shows that, given (w, §), we can always compute R = e?, which defines
a valid rotation in SO(3). How to find (w, ) given R then?

oDongjun Lee
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Logarithm Map for SO(3)

Prop. 1 (2.5) For every R € SO(3), there exist w € R3 (|lw||=1) and § € R
8.t

R=¢"

(Proof): Equating R and Rodrigues’ formula e® componentwise, we haveT

trace(R) =711 + 122 +7r33 =1+ 2cosf °

r3p —To3 = 2w 80, r13 — 731 = 2w2 80, To1 — ri2 = 2w3sh
[
where —1 < trace(R) = E?zl Ai(R) < 3 (i-e., solution & exists), since |
det(R) = MA2As = M| = +1

where A\ = 1 since Rw; = A;w; should preserve the length. In fact, w is eigen-
vector of R = €®? with A\ = +1.

e Logarithm on SO(3): R =% <= log R = wf

2cosf + 1 = trace(R) and %= (R— RT)/(2sinf), R#IT

©Dongjun Lee

Equivalent Axis Representation

e Rodrigues’ formula
N o BOY
e’ =TI+ wsin® +w*(1 —cosf) =R .
; S/ A
o (w,) can be used as a configuration for SO(3) via e®® =~ .../ Al
e Thus, follows the name “exponential coordinates” for SO(3).
e Given R, we can find rotation axis w and rotation angle 6.

e This exponential coordinate is many-to-one (i.e., if (w, ) is a solution, so
are (—6, —w) and (6 £ 2nw, w));

o Singular when R = I = e®?, for which § = 0 and w € %3 not defined.

Theorem 1 (2.6: Euler) Any orientation R € SO(3) is equivalent to a rota-
tion about o fized azis w € N2 (||w|| = 1) by an angle & € [0,27).

e As above, this representation is singular at R = I.

R
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Exponential Coordinates in Different Frames
e Consider object rotating from {B(0)} to {B(¢)} with constant w during [0, t].

e Then, for a point g rigidly-attached to the object, we have q(t)/
{B(t)}i\

qa(t) = Wq X Qrz(t) — qa(t) = ewatQa(o)

where (w,,t) is exponential coordinates of rotation written in {A}. N

e Now, let us see how this same rotation is expressed by exponential coordinates

in {B(0)}.

x ,lj‘)b, e’lf)bt
o For this, we have °
" R
a(t) = Rab(0)2(0) (t) = €”** Rap(0)@b(0) (0) ”4
X —
that is, - - P, eWet
%(0) () = Rip0y€”* Ran(0)v(0) (0) = €**®*gy(0)(0)
since, with @, = Rgbu?aRab,
Rg‘b(o) [T +bgst+@2(1 — ct)|Ruy(o) = eProt
[epongunLee [123]

Geometric Meaning of exp(w,t) and exp(w,t)

Exponential Coordinates in {B}: Given (w,,t) in {4}, g5(t) = e?q,(0)
with e?? = RL et Ry, ie., (w,t) = (wq,t) in {A} and ~ (wp,t) in {B}.

e P! in fact represents Ry , i.e., rotation from {B} to {Bj} represented
in {A}, since, with ¢;,(0) = g, (¢) ({B} rigidly attached),

@a(t) = Rab, @b, (t) = Rap, 66(0) = €' q4(0) = €”** Rap(0)

for all g,(0), therefore, {B1}.

Rap, = €"'Rop = Ry Rapy — €% = Rfy
from the composition of successive rotations w.r.t. {A4}.
e On the other hand, we have
Rap, = €' Ryp = Rape™ RE Ry = Rape™'  — ™' = Rp,
i.e., rotation of {B;} relative to {B} written in {B}.
e Note that e?s? and e?** represent the same rotation given by (w,t), yet,

expressed in {A} and {B}

O
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Rotational Velocity

Consider rotation of rigid-body via angular velocity we relative to {A} with a
point ¢ and frame {B(t)} rigidly attached on it. Then, q,(¢) = Rapgs(t) with
g»(t) constant.

e Spatial angular velocity: angular velocity wgp expressed in {A}:

do = Wop X qa(t) = ab(Ib(t) abRab‘.Ia(t) = Wy = Rabeb

e Body angular velocity: angular velocity w,s expressed in {B}:
why = Ryywly, — Wy, = Ry Ray = Ry Rap
from R(w")RT = (Rw)". Further, we have
Vg, = Rapda(t) = Ryp(whs X 4a(t)) = wihy X gs(2) w
from R(v X w) = Rv X Rw (note that v, = RL 4, # ¢» = 0).

: . . 8(t)
o Ry = 02 Rap = Raptib,. A}

©Dongjun Lee

Parameterization of SO(3): Euler Angle

¢ Euler angles

— ZYZ Euler angles: R = R,(a)R,(8)R.(7)
— Roll/pitch/yaw: Rrp, = R,(y)Ry(p)R.(r)

e R, R,, R, are basic rotation matrices: with = := [1;0;0],y = [0;1; 0],

; 1.0 0 X ch 0 sf
R.(0) = =10 cO —s6 , R,(0) = e — 0 1 0
0 s@ «c¢8 —s6 0 c@

¢ Roll = R.(r), pitch = Ry(p), yaw = R.(y) (ZYX Euler angles):

— y — p — r w.r.t. body frame; or

— r — p — y w.r.t. inertial frame. :

oDongjun Lee
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Parameterization of SO(3): Euler Angle

e Euler angles

— ZYZ Euler angles: R = R,(a)R,(8)R.(7)
— Roll/pitch/yaw: Rypy = R,(y)Ry(p)Ra(r)

e Given R, we can find 7,p,y or a, 3,7 (for closed-form, see book). )

e Rzyz and R,p, both have singularity (only local coordinates of SO(3)):

— Rzyz(@,0,—a) = I (singular at R = I);

— Rypy(r,—7/2,y) = Repy(r + o, —/2,y + @) for any « (i.e., singular
at p =+ /2) (gimbal lock with roll = yaw axis).

e Differential relation (Jacobian): from @® = RTR and w® = Ru?®,

1 0 —Ssp T cpcy —sy O T
w’=|0 e¢er cpsr pl, w*=|cpsy cy O P

0 —sr cper Y —sp 4] 1 Y
where note that w? # g.
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Parameterization of SO(3): Quaternions

Unit quaternions: SO(3) rotation can be represented by

@ab = o + @17 + @27 + a3k = (g0, @) = (cos §, Dsin §)

where 17, 6 are the equivalent rotation (unit) axis and angle with Rg;, = e??.
2]

e ||17l|? = ¢2 + ¢*@ =1 (unit quaternion).

AT

Y ——

¢ Quaternion product ® defined by: with Hamilton convention, -~
P \\.\_A v

o L L U 0 —¢7
a®P = (QoPo— T B, QoP+PoG+T% D) = [a]LD [Q]L=Qol4+[ 7 [QEIA ]

with ¥ ® @ = ¥ x W — #T@ for pure quaternions.

=1= (1,6) is identity of ®; inverse of f=q, + Fis T ' =¢o — ¢

e
e Singularity of exponential coordinate (w,f) at 8 = 0 is now avoided: at
R =1, g =1 uniquely defined.

e ¢ = (6,w) and —q = (2w — 6, —) represent the same rotation though:
provides a singularity-free SO(3) parameterization up to the two-to-one
mapping (e.g., restrict g, > 0).

R
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Parameterization of SO(3): Quaternions

Unit quaternions

Gy =go+G=cos§ +asing, gl =1, [la]l =1

e Given Rg, we can compute §up using R = €%?: with ¢, > 0,

1 P 1 T
Go=35V1+rn+ro+tr, J= E[Tsz — 723,713 — 731,721 — T'12]

e Given qup, we can compute Rgp(g) using R,p = @9

Rop(@) = (@2 — @ DI + 244" + 2g,[qx]

Rotation of vector ¥ by gup: using gup = cg + 4 sg and matching with
' = Ray7,

s.t.,

T=0+7=qup®107,; =~ v =Ruv

Rotate T by pR 7= 7 =pRFIQ1Q@(PRF ' =pR(@R07 ) ®p !
= P Q § is body-frame composition of § and g, = R(P ® §) = R(P)R(q).

o Differential relation with w € so(3):

L1 . .1 :
f7=§u‘la®(i ~ R=S(w,)R, q=§6®u_’b ~ R=RS(ws)

©Dongjun Lee
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