Rigid Body Rotation and SO(3)

Dongjun Lee (이동준)

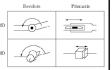
Department of Mechanical & Aerospace Engineering Seoul National University

Dongjun Lee

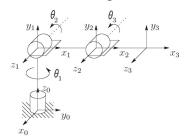
Attaching Coordinate Frames

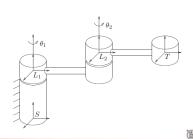
- \bullet Robot = rigid links w/ inertia + joints (relative motion w/ actuation or not)
- ullet Typical joints =

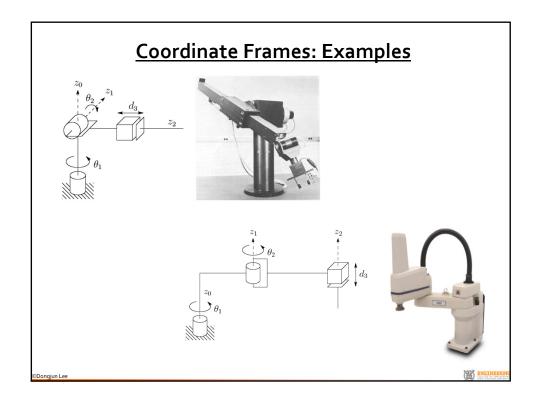
 $egin{cases} ext{revolute joints} & heta_i \in [0,2\pi) pprox S; ext{ or} \ ext{prismatic joints} & heta_i \in [d_{\min},d_{\max}] =: D \in \Re. \end{array}$



- To describe robot configuration, attach coordinate frame $\{i\}$ on the link i.
- Link 0 starts from the fixed base.
- The *i*-th joint θ_i between link i-1 and link i.
- Link i and $\{i\}$ move together with θ_i .
- θ_i actuation axis along z_{i-1} .

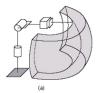


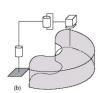




Joint Space Q and Workspace W

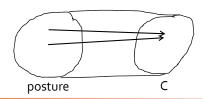
- 1. Joint variable $q := (\theta_1, \theta_2, ..., \theta_n)$
- 2. Joint space $Q := \{q\}$ (e.g., $Q = S \times S \times R$ for SCARA).
- 3. End-effector: gripper, hand, tool, etc. (typically last joint with $\{E\}$).
- 4. Wrist: joint between the end-effector and the preceding link.
- 5. Workspace $W \in SE(3)$: set of all permissible pose of EF.
 - Reachable WS $W_R \in E(3)$: set of EF position reachable with some joint angles.
 - Dexterous WS $W_S \in E(3)$: set of EF position reachable with arbitrary EF orientation.
 - $W_D \subset W_R$, $W_D = W_R$ with spherical wrist.

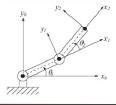




Configuration Space C

- 1. Configuration: a set of certain variables that can <u>completely</u> specify the location of all the points of the robot (i.e., posture of the robot).
- 2. A space C is configuration space if:
 - (a) Every $x \in C$ corresponds to a valid configuration of the system (i.e., onto/surjective with posture set as domain and C as range); and
 - (b) Every system configuration can be identified with a unique $x \in C$ (i.e., one-to-one/injective).
- 3. Joint space Q is a configuration space; Workspace W may or may not be a configuration space.
- 4. degree-of-freedom (DOF) = $\dim(C) = \dim(Q)$.





ENGIN

Dongjun Le

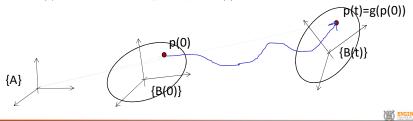
Rigid Body Transformation

In this course, robot consists of rigid links. How to describe rigid body motion?

- Rigid body motion description of O during [0,t)
 - Consider a rigid object O in Euclidean space \Re^3 .
 - Attach a coordinate frame $\{B(0)\}$ at a point on O at t=0.
 - Keep track the pose of $\{B(t)\}$
- This rigid body motion can be thought of as <u>rigid body transformation</u> map $g:\Re^3\to\Re^3$, s.t.,

$$g(p(0)) = p(t)$$

where $p(t) \in \Re^3$, $t \ge 0$, is a point p of O(t).



3

Free Vector

• For the positions $p, q \in \Re^3$, define

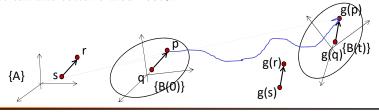
$$v:=p-q\in\Re^3$$

Although $v \in \mathbb{R}^3$ appears similar to $p, q \in \mathbb{R}^3$, it is conceptually different.

- The mapped g(p) can change its length, yet, it shouldn't happen with the mapping of v under rigid body motion g.
- Action g_* of rigid transformation g defined s.t., with v = p q = r s,

$$g_*(v) := g(p) - g(q) = g(r) - g(s)$$

Note v and $g_*(v)$ are free to float from where it starts. Due to this reason, we call this vector v free vector.



Rigid Transformation: Definition

Definition 1 A mapping $g: \mathbb{R}^3 \to \mathbb{R}^3$ is rigid body transformation if

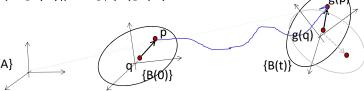
- 1. $||g(p) g(q)|| = ||p q|| \ \forall p, q \in \Re^3$ (i.e., distance preserving);
- 2. $g_*(v \times w) = g_*(v) \times g_*(w)$ (e.g., no mirroring).

where $g_*(v) := g(p) - g(q)$, $||x||^2 := x^T x$ and \times is the cross product.

Properties of q_* :

- 1. $||g_*(v)|| = ||v||$ (norm preserving)
- 2. $g_*(av) = ag_*(v)$, $g_*(v_1 + v_2) = g_*(v_1) + g_*(v_2)$ (linearity) 3. $g_*^T(v_1)g_*(v_2) = v_1^Tv_2$ (isometry)

Proof (Item 2): $4v_1^Tv_2 = ||v_1 + v_2||^2 - ||v_1 - v_2||^2 = ||g_*(v_1) + g_*(v_2)||^2 - ||g_*(v_1) - g_*(v_2)||^2 = 4g_*^T(v_1)g_*(v_2).$

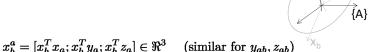


Rotation Matrix R

- Rigid body motion = rotation + translation. Consider first rotation.
- Rotation of a rigid body can be described by the body-frame $\{B\}$ attached to the object relative to $\{A\}$.
- This rotation of $\{B\}$ relative to $\{A\}$ can be be written as **rotation matrix**

$$R_{ab} = \left[egin{array}{ccc} x_b^a & y_b^a & z_b^a \end{array}
ight] \in \Re^{3 imes 3}$$

where



where $x_b, y_b, z_b \in \Re^3$ and $x_a, y_a, z_a \in \Re^3$ are the orthonormal principle-axis basis vectors of $\{B\}$ and $\{A\}$; and x_{ab}, y_{ab}, z_{ab} are x_b, y_b, z_b represented in the inertial frame $\{A\}$.

• Note that $R_{ab}[1;0;0] = x_b^a$, $R_{ab}[0;1;0] = y_b^a$, $R_{ab}[0;0;1] = z_b^a$ with $x_b^b = [1;0;0]$, $y_b^b = [0;1;0]$, $z_b^b = [0;0;1]$ (i.e., each representing principle axis of $\{B\}$ represented in $\{A\}$).

Donaiun Lee

Three Roles of R

- 1. R serves as **configuration** for rotation motion: $\{B\}$ relative to $\{A\}$.
- 2. R serves as **coordinate transformation**: $q \in \Re^3$ can be expressed in $\{A\}$ or $\{B\}$ s.t.

$$q=q_x^ax_a+q_y^ay_a+q_z^az_a=q_x^bx_b+q_y^by_b+q_z^bz_b$$

with $q_a=[q_x^a;q_y^a;q_z^a]$ (in $\{A\})$ and $q_b=[q_x^b;q_y^b;q_z^b]$ (in $\{B\}).$ Then,

$$\begin{pmatrix} q_x^a \\ q_y^a \\ q_z^a \end{pmatrix} = \begin{bmatrix} x_a^T x_b & x_a^T y_b & x_a^T z_b \\ y_a^T x_b & y_a^T y_b & y_a^T z_b \\ z_a^T x_b & z_a^T y_b & z_a^T z_b \end{bmatrix} \begin{pmatrix} q_x^b \\ q_y^b \\ q_z^b \end{pmatrix}, \quad \text{i.e.,} \quad \boxed{q_a = R_{ab}q_b}$$

3. R serves as **rotation operator**: if q rigidly-attached on the object and the object rotates from $\{A\}$ to $\{B\}$ during [0,t], $q_b(t)=q_a(0) \ \forall t\geq 0$. Then,

$$q_a(t) = R_{ab}q_b(t) = R_{ab}q_a(0)$$

that is, $R: q_a(0) \mapsto q_a(t)$.

q(t) q(0) {A}

Properties of R

- $R^T R = R R^T = I, R^{-1} = R^T$
- $\det R = +1$.
- $R = R_*$, i.e., the action of R for free-vector is also R.

(Proof):

• (Item 1) If we write

$$R_{ab} = \left[egin{array}{cccc} x_a^T x_b & x_a^T y_b & x_a^T z_b \ y_a^T x_b & y_a^T y_b & y_a^T z_b \ z_a^T x_b & z_a^T y_b & z_a^T z_b \end{array}
ight] = \left[egin{array}{cccc} r_1 & r_2 & r_3 \end{array}
ight]$$

 $r_1=x_b^a, r_2=y_b^a, r_3=z_b^a$ are the principle axis, therefore,

$$r_i^T r_j = 0$$
 if $i \neq j$; $r_i^T r_j = 1$ if $i = j$

- (Item 2) $\det R = r_1^T(r_2 \times r_3) = +1$, since (r_1, r_2, r_3) are right-handed.
- (Item 3) with v = p q,

$$R_*(v_b) = R(p_b) - R(q_b) = p_a - q_a = v_a = R(v_b)$$

Dongjun Lee

ENGINEERIN COLLISI OF INSTITUTE

Properties of R

• For $a = [a_1; a_2; a_3] \in \Re^3$, define

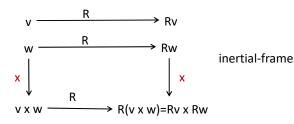
$$(a)^\wedge := \hat{a} = \left[egin{array}{ccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight] \in \Re^{3 imes 3} \quad ext{s.t.} \quad a imes b = (a)^\wedge b$$

This skew-symmetric matrix defines Lie algebra for SO(3), constituting vector space of rotational velocity.

Lemma 1
$$R(v \times w) = (Rv) \times (Rw), R(w)^{\wedge}R^T = (Rw)^{\wedge}$$

(Proof): First shows that \times and R commute.

body-frame



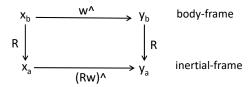
Properties of R

Lemma 1 $R(v \times w) = (Rv) \times (Rw), R(w)^{\wedge}R^{T} = (Rw)^{\wedge}$

Second shows $(w)^{\wedge}$ as a map in $\{B\}$ is given in $\{A\}$ by $(Rw)^{\wedge} = R(w)^{\wedge}R^{T}$. Consider $y_b = (w_b)^{\wedge} x_b$ in $\{B\}$. This can then be represented in $\{A\}$ by

$$y_a = Ry_b = R(w_b)^{\wedge} x_b = R(w_b)^{\wedge} R^T x_a = R(w_b \times x_b) = (Rw_b)^{\wedge} x_a$$

that is, $(Rw_b)^{\wedge} = R(w_b)^{\wedge} R^T$.



Prop. 1 (2.2) A rotation R is a rigid-body transformation, i.e.,

$$||R(p-q)|| = ||p-q||, \quad R(v \times w) = Rv \times Rw$$

First from $(R(p-q))^T R(p-q) = (p-q)^T (p-q) = ||p-q||^2$. Second from Lem.

Composition of Rotations

Consider $R_1: \{A\} \to \{B\}$ for $[t_0, t_1)$ and $R_2: \{B\} \to \{C\}$ for $[t_1, t_2)$. The rotation R_2 can be expressed by R_2^a w.r.t. $\{A\}$ or by R_2^b w.r.t. $\{B\}$. Then, the composition of rotations $q_a(t_2) = R_{ac}q_a(t_o)$ is given by

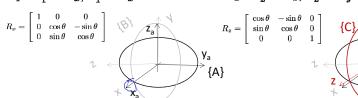
- Successive rotations w.r.t. body frames: $R_{ac} = R_1^a R_2^b$
- Successive rotations w.r.t. inertial frame: $R_{ac} = R_2^a R_1^a$
- From $q_a(t_1) = R_1^a q_a(t_o)$ and $q_b(t_2) = R_2^b q_b(t_1)$ with $q_b(t_1) = q_a(t_o)$,

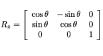
$$q_a(t_2) = R_1^a q_b(t_2) = R_1^a R_2^b q_b(t_1) = R_1^a R_2^b q_a(t_0)$$

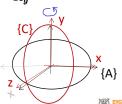
• From $q_a(t_1) = R_1^a q_a(t_o)$ and $q_a(t_2) = R_2^a q_a(t_1)$: $q_a(t_2) = R_2^a R_1^a q_a(t_o)$.

$$R_1: R_1^a = R_x, R_1^b = R_x$$

$$R_2: R_2^a = R_z, R_2^b = R_y$$







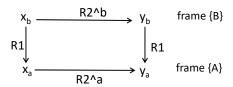
Composition of Rotations

Consider $R_1: \{A\} \to \{B\}$ for $[t_0, t_1)$ and $R_2: \{B\} \to \{C\}$ for $[t_1, t_2)$. The rotation R_2 can be expressed by R_2^a w.r.t. $\{A\}$ or by R_2^b w.r.t. $\{B\}$. Then, the composition of rotations $q_a(t_2) = R_{ac}q_a(t_o)$ is given by

- Successive rotations w.r.t. body frames: $R_{ac} = R_1^a R_2^b$
- Successive rotations w.r.t. inertial frame: $R_{ac} = R_2^a R_1^a$
- Since these two rotations are the same, we have

$$R_2^b = R_1^T R_2^a R_1$$

which is the mapping R_2^a in $\{A\}$ written in $\{B\}$. Note that both R_2^a and R_2^b represent the same rotation, yet, expressed in different frames.



Dongjun Lee

ENGINEERI

Special Orthogonal Group SO(3)

Def. 1 (Special orthogonal group)

$$SO(n) := \{ R \in \Re^{n \times n} \mid R^T R = I, \det R = +1 \}$$

- SO(3) is a Lie group under matrix multiplication.
- Lie group is a group G (i.e., $gh \in G \, \forall g, h \in G$), which is also a smooth manifold (i.e., assumes local smooth coordinate charts) and for which $(g,h) \mapsto gh$ and $g \mapsto g^{-1}$ are smooth.
 - (closure) if $R_1, R_2 \in SO(3)$, $R_1R_2 \in SO(3)$, since $(R_1R_2)(R_1R_2)^T = I$ and $det(R_1R_2) = det(R_1 det(R_2) = 1)$.
 - (identity) $R = I \in SO(3)$ is the identity with RI = IR = R.
 - (inverse) for each R, there exists an unique inverse $R^T \in SO(3)$.
 - special with $\det R = +1$; SO(3) represents rotation in 3D; SO(2) rotation in 2D.
 - SO(3) not vector space: how does the agular velocity look like?

Dongjun Le

ENGINEERING
OLITICI OF INSTALLING

Exponential of w

Consider a rigid body rotating from $\{B(0)\}$ to $\{B(t)\}$ with *constant* angular velocity w_a expressed in inertial frame $\{A\}$. What's relation between w and R?

• Consider a point q attached to the object. We can then express in $\{A\}$ s.t.,

$$\dot{q}_a=w_a imes q_a=\hat{w}_aq_a$$
 $q(t)$ where $\hat{w}=(w)^{\wedge}$ (e.g., $w_a=[0;0;w_3]$ in $\{A\}$).

• We can further have

$$q_a(t) = e^{\hat{w}_a t} q_a(0) = R^a_{ab(t)} q_b(t) = R^a_{ab(t)} q_b(0)$$

= $R^a_{ab(t)} [R^a_{ab(0)}]^T q_a(0) = R^a_{b(0)b(t)} q_a(0)$

with $R_{ab(t)}^a = R_{b(0)b(t)}^a R_{ab(0)}^a$, i.e., composition of rotation w.r.t. $\{A\}$.

• Exponential of w

$$e^{\hat{w}_a t} = I + \hat{w_a} t + \frac{(\hat{w_a} t)^2}{2!} + \frac{(\hat{w_a} t)^3}{3!} + \dots = R^a_{b(0)b(t)}$$

represents rotation from $\{B(0)\}$ to $\{B(t)\}$ via w during t expressed in $\{A\}$.

Dongjun Lee

MPR ENGINEERI

{A}

Angular Velocity and so(3)

Def. 1 (Lie Algebra so(n))

$$so(n) := \{S \in \Re^{n \times n} \ | \ S^T = -S\}$$

- Any angular velocity $w \in \Re^3$ can be identified by so(3) via $(w)^{\wedge}$.
- so(3) is the vector space of **angular velocity** with $a\hat{w}_1 + b\hat{w}_2 \in so(3)$, $\forall a, b, \in \Re$.
- In contrast, SO(3) is not a vector space (e.g., $aR_1 + bR_2 \notin SO(3)$).
- $\bullet\,$ so (3) is Lie algebra of SO(3) with the bracket structure

$$[\hat{w}_1, \hat{w}_2] = \hat{w}_1 \hat{w}_2 - \hat{w}_2 \hat{w}_1 = (w_1 \times w_2)^{\wedge}$$

with, $\forall \hat{v}, \hat{w}, \hat{z} \in \text{so}(3)$,

$$[\hat{v},\hat{w}] = -[\hat{w},\hat{v}], \quad [[\hat{v},\hat{w}],\hat{z}] + [[\hat{z},\hat{v}],\hat{w}] + [[\hat{w},\hat{z}],\hat{v}] = 0$$

- Lie algebra of Lie group G is the tangent space at identity $T_{\mathbf{c}}G$ with the bracket $[\xi,\eta]:=[\xi_L,\eta_L](\mathbf{c})$, where ξ_L is left-invariant vector field s.t., $\xi_L(\mathbf{c})\in T_{\mathbf{c}}G$ and $\xi_L(g\cdot h)=T_hL_g\xi_L(h)$, $\forall g,h\in G$.
- $-\ L_R[\hat{w}_1,\hat{w}_2] = [R(w_1\times w_2)]^{\bigwedge} = (Rw_1\times Rw_2)^{\bigwedge} = [L_R\hat{w}_1,L_R\hat{w}_2], \text{ i.e., [,] is left invariant too.}$

Dongjun Le

ENGINEERING

Rodrigues' Formula

Exponential of w is a infinite series, thus, not practically useful. Rodrigues' formular provides a closed-form expression of $e^{\hat{w}t} \in SO(3)$ given (w, θ) .

• First, normalize angular velocity by $w\theta$ with ||w|| = 1 (direction) and $\theta \in \Re$ (duration):

$$e^{\hat{w}\theta} = I + \theta \hat{w} + \frac{\theta^2}{2!} \hat{w}^2 + \frac{\theta^3}{3!} \hat{w}^3 + \dots$$

• Rodrigues' formula

$$e^{\hat{w}\theta} = I + \hat{w}\sin\theta + \hat{w}^2(1 - \cos\theta)$$

• (Proof): From the following facts:

$$\hat{a}^2 = aa^T - ||a||^2 I, \quad \hat{a}^3 = -||a||^2 \hat{a}$$

 $\hat{w}^3 = -\hat{w}, \ \hat{w}^4 = -\hat{w}^2, \dots$ Thus, we have

$$e^{\hat{w}\theta} = I + \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!}...\right)\hat{w} + \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!}...\right)\hat{w}^2$$

Donaiun Lee

Exponential Coordinates for SO(3)

In fact, (w, θ) , ||w|| = 1, can be used as "coordinates" for SO(3).

Prop. 1 (2.4) For every $\hat{w} \in so(3)$ and $\theta \in \Re$, $e^{\hat{w}\theta} \in SO(3)$.

(Proof): From matrix exponential property and skew-symmetricity of \hat{w} ,

$$[e^{\hat{\boldsymbol{w}}\boldsymbol{\theta}}]^{-1} = e^{-\hat{\boldsymbol{w}}\boldsymbol{\theta}} = e^{\hat{\boldsymbol{w}}^T\boldsymbol{\theta}} = [e^{\hat{\boldsymbol{w}}\boldsymbol{\theta}}]^T$$

verifying that $R^TR = I$. Also, $\det(e^{\hat{w}\theta}) = 1$, since $\det(e^{\hat{w}0}) = +1$ and $e^{\hat{w}\theta}$ is a continuous map w.r.t. θ .

• This shows that, given (w, θ) , we can always compute $R = e^{\hat{w}\theta}$, which defines a valid rotation in SO(3). How to find (w, θ) given R then?

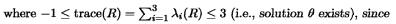
Logarithm Map for SO(3)

Prop. 1 (2.5) For every $R \in SO(3)$, there exist $w \in \Re^3$ (||w|| = 1) and $\theta \in \Re$ s.t.

$$R=e^{\hat{w}\theta}$$

(Proof): Equating R and Rodrigues' formula $e^{i\hat{v}\theta}$ componentwise, we have

$$\begin{split} & \operatorname{trace}(R) = r_{11} + r_{22} + r_{33} = 1 + 2\cos\theta \\ & r_{32} - r_{23} = 2w_1\operatorname{s}\theta, \ r_{13} - r_{31} = 2w_2\operatorname{s}\theta, \ r_{21} - r_{12} = 2w_3\operatorname{s}\theta \end{split}$$



$$\det(R) = \lambda_1 \lambda_2 \lambda_3 = \lambda_1 |\lambda_2|^2 = +1$$

where $\lambda_1 = 1$ since $Rw_1 = \lambda_1 w_1$ should preserve the length. In fact, w is eigenvector of $R = e^{\hat{w}\theta}$ with $\lambda_1 = +1$.

• Logarithm on SO(3): $R = e^{\hat{w}\theta} \iff \log R = \hat{w}\theta$

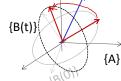
$$2\cos\theta + 1 = \operatorname{trace}(R)$$
 and $\hat{w} = (R - R^T)/(2\sin\theta), R \neq I$

Dongjun Lee

Equivalent Axis Representation

• Rodrigues' formula

$$e^{\hat{w}\theta} = I + \hat{w}\sin\theta + \hat{w}^2(1-\cos\theta) = R$$



- (w, θ) can be used as a configuration for SO(3) via $e^{\hat{w}\theta}$
- Thus, follows the name "exponential coordinates" for SO(3).
- Given R, we can find rotation axis w and rotation angle θ .
- This exponential coordinate is many-to-one (i.e., if (w, θ) is a solution, so are $(-\theta, -w)$ and $(\theta \pm 2n\pi, w)$);
- Singular when $R = I = e^{\hat{w}\theta}$, for which $\theta = 0$ and $w \in \Re^3$ not defined.

Theorem 1 (2.6: Euler) Any orientation $R \in SO(3)$ is equivalent to a rotation about a fixed axis $w \in \Re^3$ (||w|| = 1) by an angle $\theta \in [0, 2\pi)$.

• As above, this representation is singular at R = I.

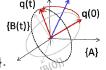
©Dongjun L

Exponential Coordinates in Different Frames

- Consider object rotating from $\{B(0)\}$ to $\{B(t)\}$ with constant w during [0,t].
- \bullet Then, for a point q rigidly-attached to the object, we have

$$\dot{q}_a(t) = w_a \times q_a(t) \longrightarrow q_a(t) = e^{\hat{w}_a t} q_a(0)$$

where (w_a, t) is exponential coordinates of rotation written in $\{A\}$.



- Now, let us see how this same rotation is expressed by exponential coordinates in $\{B(0)\}$.
- For this, we have

$$q_a(t) = R_{ab(0)}q_{b(0)}(t) = e^{\hat{w}_a t} R_{ab(0)}q_{b(0)}(0)$$

that is,

$$q_{b(0)}(t) = R_{ab(0)}^T e^{\hat{w}_a t} R_{ab(0)} q_{b(0)}(0) = e^{\hat{w}_{b(0)} t} q_{b(0)}(0)$$

since, with $\hat{w}_b = R_{ab}^T \hat{w}_a R_{ab}$,

$$R_{ab(0)}^T[I+\hat{w}_a\,\mathrm{s}\,t+\hat{w}_a^2(1-\mathrm{c}\,t)]R_{ab(0)}=e^{\hat{w}_{b(0)}t}$$

Dongjun Le

Geometric Meaning of exp(w_at) and exp(w_bt)

Exponential Coordinates in $\{B\}$: Given (w_a, \overline{t}) in $\{A\}$, $q_b(t) = e^{\hat{w}_b \overline{t}} q_b(0)$ with $e^{\hat{w}_b t} = R_{ab}^T e^{\hat{w}_a t} R_{ab}$, i.e., $(w, t) \approx (w_a, t)$ in $\{A\}$ and $\approx (w_b, t)$ in $\{B\}$.

• $e^{\hat{w}_a t}$ in fact represents $R^a_{bb_1}$, i.e., rotation from $\{B\}$ to $\{B_1\}$ represented in $\{A\}$, since, with $q_b(0) = q_{b_1}(t)$ ($\{B\}$ rigidly attached),

$$q_a(t) = R_{ab_1}q_{b_1}(t) = R_{ab_1}q_{b}(0) = e^{\hat{w}_a t}q_a(0) = e^{\hat{w}_a t}R_{ab}q_{b}(0)$$

for all $q_b(0)$, therefore,

$$R_{ab_1} = e^{\hat{w}_a t} R_{ab} = R^a_{bb_1} R_{ab} \quad \to \quad e^{\hat{w}_a t} = R^a_{bb_1}$$

from the composition of successive rotations w.r.t. $\{A\}$.

• On the other hand, we have

$$R_{ab_1} = e^{\hat{w}_a t} R_{ab} = R_{ab} e^{\hat{w}_b t} R_{ab}^T R_{ab} = R_{ab} e^{\hat{w}_b t} \quad \to \quad e^{\hat{w}_b t} = R_{bb_1}^b$$

i.e., rotation of $\{B_1\}$ relative to $\{B\}$ written in $\{B\}$.

• Note that $e^{\hat{w}_a t}$ and $e^{\hat{w}_b t}$ represent the *same* rotation given by (w, t), yet, expressed in $\{A\}$ and $\{B\}$!

Rotational Velocity

Consider rotation of rigid-body via angular velocity w_{ab} relative to $\{A\}$ with a point q and frame $\{B(t)\}$ rigidly attached on it. Then, $q_a(t) = R_{ab}q_b(t)$ with $q_b(t)$ constant.

• Spatial angular velocity: angular velocity w_{ab} expressed in $\{A\}$:

$$\dot{q}_a = w_{ab}^s \times q_a(t) = \dot{R}_{ab}q_b(t) = \dot{R}_{ab}R_{ab}^Tq_a(t) \rightarrow \hat{w}_{ab}^s := \dot{R}_{ab}R_{ab}^T$$

• Body angular velocity: angular velocity w_{ab} expressed in $\{B\}$:

$$w_{ab}^b = R_{ab}^T w_{ab}^s \rightarrow \hat{w}_{ab}^b = R_{ab}^T \hat{w}_{ab}^s R_{ab} = R_{ab}^T \dot{R}_{ab}$$

from $R(w^{\wedge})R^{T} = (Rw)^{\wedge}$. Further, we have

$$v_{q_b} = R_{ab}^T \dot{q}_a(t) = R_{ab}^T (w_{ab}^s \times q_a(t)) = w_{ab}^b \times q_b(t)$$

from $R(v \times w) = Rv \times Rw$ (note that $v_b = R_{ab}^T \dot{q}_a \neq \dot{q}_b = 0$).



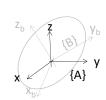
Dongjun Le

Parameterization of SO(3): Euler Angle

- Euler angles
 - ZYZ Euler angles: $R = R_z(\alpha)R_y(\beta)R_z(\gamma)$
 - Roll/pitch/yaw: $R_{rpy} = R_z(y)R_y(p)R_x(r)$
- R_x, R_y, R_z are basic rotation matrices: with x := [1; 0; 0], y = [0; 1; 0],

$$R_x(\theta) = e^{\hat{x}\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\theta & -s\theta \\ 0 & s\theta & c\theta \end{bmatrix}, \quad R_y(\theta) = e^{\hat{y}\theta} = \begin{bmatrix} c\theta & 0 & s\theta \\ 0 & 1 & 0 \\ -s\theta & 0 & c\theta \end{bmatrix}$$

- Roll = $R_x(r)$, pitch = $R_y(p)$, yaw = $R_z(y)$ (ZYX Euler angles):
 - $y \rightarrow p \rightarrow r$ w.r.t. body frame; or
 - $r \rightarrow p \rightarrow y$ w.r.t. inertial frame.



Parameterization of SO(3): Euler Angle

- Euler angles
 - ZYZ Euler angles: $R = R_z(\alpha)R_y(\beta)R_z(\gamma)$
 - Roll/pitch/yaw: $R_{rpy} = R_z(y)R_y(p)R_x(r)$

- Given R, we can find r, p, y or α, β, γ (for closed-form, see book).
- R_{ZYZ} and R_{rpy} both have singularity (only local coordinates of SO(3)):
 - $R_{ZYZ}(\alpha, 0, -\alpha) = I$ (singular at R = I);
 - $R_{rpy}(r, -\pi/2, y) = R_{rpy}(r + \alpha, -\pi/2, y + \alpha)$ for any α (i.e., singular at $p = \pm \pi/2$) (gimbal lock with roll = yaw axis).
- Differential relation (Jacobian): from $\hat{w}^b = R^T \dot{R}$ and $w^a = R w^b$,

$$w^b = \left[egin{array}{ccc} 1 & 0 & -\mathrm{s}\,p \ 0 & \mathrm{c}\,r & \mathrm{c}\,p\,\mathrm{s}\,r \ 0 & -\mathrm{s}\,r & \mathrm{c}\,p\,\mathrm{c}\,r \end{array}
ight] \left(egin{array}{ccc} \dot{r} \ \dot{p} \ \dot{y} \end{array}
ight), \;\; w^a = \left[egin{array}{ccc} \mathrm{c}\,p\,\mathrm{c}\,y & -\mathrm{s}\,y & 0 \ \mathrm{c}\,p\,\mathrm{s}\,y & \mathrm{c}\,y & 0 \ -\mathrm{s}\,p & 0 & 1 \end{array}
ight] \left(egin{array}{ccc} \dot{r} \ \dot{p} \ \dot{y} \end{array}
ight)$$

where note that $w_z^b \neq \dot{y}$.

Dongjun Le

Parameterization of SO(3): Quaternions

Unit quaternions: SO(3) rotation can be represented by

$$ar{q}_{ab} = q_o + q_1 \vec{i} + q_2 \vec{j} + q_3 \vec{k} = (q_o, \vec{q}) = (\cos \frac{\theta}{2}, \vec{w} \sin \frac{\theta}{2})$$

where \vec{w}, θ are the equivalent rotation (unit) axis and angle with $R_{ab} = e^{\hat{w}\theta}$.

- $||\bar{q}||^2 = q_o^2 + \bar{q}^T \vec{q} = 1$ (unit quaternion).
- Quaternion product ⊗ defined by: with Hamilton convention,

$$ar{q}\otimesar{p}=(q_op_o-ec{q}^Tec{p},q_oec{p}+p_oec{q}+ec{q} imesec{p})=[ar{q}]_Lar{p} \hspace{1cm} ar{q}]_L=q_oI_4+\left[egin{array}{cc} 0 & -ec{q}^T\ ec{q} & [ec{q}]^{\wedge} \end{array}
ight]$$

with $\vec{v} \otimes \vec{w} = \vec{v} \times \vec{w} - \vec{v}^T \vec{w}$ for pure quaternions.

- $\bar{e} = 1 = (1, \vec{0})$ is identity of \otimes ; inverse of $\bar{q} = q_o + \vec{q}$ is $\bar{q}^{-1} = q_o \vec{q}$.
- Singularity of exponential coordinate (w,θ) at $\theta=0$ is now avoided: at $R=I,\,\bar{q}=1$ uniquely defined.
- $\bar{q} = (\theta, \vec{w})$ and $-\bar{q} = (2\pi \theta, -\vec{w})$ represent the same rotation though: provides a singularity-free SO(3) parameterization up to the two-to-one mapping (e.g., restrict $q_o \geq 0$).

Dongjun Le

ENGINEERING

Parameterization of SO(3): Quaternions Unit quaternions

$$ar{q}_{ab} = q_o + ar{q} = \cos rac{ heta}{2} + ar{w} \sin rac{ heta}{2}, \quad ||ar{q}|| = 1, \ ||ar{w}|| = 1$$

$$q_o = \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}}, \quad \vec{q} = \frac{1}{4q_o}[r_{32} - r_{23}, r_{13} - r_{31}, r_{21} - r_{12}]^T$$

• Given \bar{q}_{ab} , we can compute $R_{ab}(\bar{q})$ using $R_{ab}=e^{\hat{w}\theta}$ s.t.,

$$R_{ab}(\bar{q}) = (q_o^2 - \bar{q}^T \vec{q})I + 2\vec{q}\vec{q}^T + 2q_o[\vec{q}\times]$$

• Rotation of vector \vec{v} by \bar{q}_{ab} : using $\bar{q}_{ab} = c \frac{\theta}{2} + \vec{w} s \frac{\theta}{2}$ and matching with $\vec{v}' = R_{ab}\vec{v},$

 $\bar{v}' = 0 + \bar{v}' = \bar{q}_{ab} \otimes \bar{v} \otimes \bar{q}_{ab}^{-1} \approx v' = R_{ab}v$

- Rotate \vec{v} by $\bar{p} \otimes \bar{q} \Rightarrow \vec{v}' = \bar{p} \otimes \bar{q} \otimes \bar{v} \otimes (\bar{p} \otimes \bar{q})^{-1} = \bar{p} \otimes (\bar{q} \otimes \bar{v} \otimes \bar{q}^{-1}) \otimes \bar{p}^{-1}$ $\Rightarrow \bar{p} \otimes \bar{q}$ is body-frame composition of \bar{p} and $\bar{q}, \Rightarrow R(\bar{p} \otimes \bar{q}) = R(\bar{p})R(\bar{q})$.
- Differential relation with $w \in so(3)$:

$$\dot{ar{q}} = rac{1}{2}ar{w}_a\otimesar{q} \;pprox\; \dot{R} = S(w_a)R, \qquad \dot{ar{q}} = rac{1}{2}ar{q}\otimesar{w}_b \;pprox\; \dot{R} = RS(w_b)$$