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Rigid Body Transformation

o Consider rigid body motion, where the object rotates first by RS, €
SO(3), then translates by p%, € R?, all expressed in {A}.

e Then, for a point ¢ rigidly-attached to the object, we have

qa(t) = RZbQ@(O) + Pap = Jab(a (0))
where g, is the rigid transformation map.
e This rigid transformation g, can serve as:

1. Configuration of the rigid-body motion.
2. Coordinate transform btw {A} and {B}: g4(t) = 9up(¢a(0)) = gan(gn(t)).
3. Rigid-body transformation operator: g, (t) = gap(g.(0)).

Rab a,(t)

Pab
{A}
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Rigid Transformation

¢ Rigid body transformation g,;:

qa(t) = R3494(0) + Py = 9ab(44(0))

1. Configuration of the rigid-body motion.
2. Coordinate transform btw {A} and {B}: ¢4 (t) = 9ab(¢a(0)) = gan(ags(t)).
3. Rigid-body transformation operator: q,(t) = gus(ga(0)).

e Rigid transformation action ggp. on a free-vector v = s — r:
Gab+(0) = gab(s) = Gab(r) = Rabs + Pap — Rapr — pab = Rapv

i.e., gab= simply rotates a free-vector v by Ry, in {A}.

{B}
Rab (V)
Pab
A} Y
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Homogeneous Representation

Homogeneous Rigid Transformation g,

() _ | R Pa | (@) _ . -
Ja = ( 1 ) - |: 0 1 1 = Gabqb
e Homogeneous representation of a point ¢ € R and a free-vector v € i*

defined by
7= lqi;q2:q3; 1], U= [v1;3v9503;0] € R

e This clearly manifests difference between point vector and free vector:
that is, can do §y — go = v, 1 + U = Go, U1 + U2 = U3, but, not §; + go.

® Gup € R4 is homogeneous representation of the rigid body transforma-
tion gap = (Pab, Rap) : B2 — R? from {A} to {B}.

e With homogeneous representation, we have a linear relation §, = gu»qp in
SE(3) similar to g, = Rasqs in SO(3).

e Sometimes, we simply use g, to denote g&,.
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Special Euclidean Group SE(3)

Def. 1 (Special Euclidean Group SE(n))

SE(n) = R" x SO(n)
SE(3)=R*xS0(3)={(p,R) | pe R*, R € SO(3)}

e SE(3) represents rigid body motion, as SO(3) rotation motion.
e SE(3) identified by g = [ ? 31) ] € RAx4,

e SE(3) is a group (i.e., § is a group under matrix multiplication):

L. 1f g1,92 € SE(3), 91 - g2 € SE(3):

_ _ | BRi p1| | Re p2 | _ | RiRy Ripat+m
g1-92 = { 0 1 } [ 0 1 |= 0 1 € SE(3)
2. Identity I1x4 € SE(3).
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Special Euclidean Group SE(3)

o SE(3) identified by g = { Jg 119 } € pix4,

e SE(3) is a group (i.e., § is a group under matrix multiplication):
1. If g1,92 € SE(g), g1-g2 € SE(S)
2. Identify Iyx4 € SE(3).
3. Given g € SE(3), g~! is also in SE(3), as given hy

gt = { %T RT(I_P) } = [ Fioe ‘f’b ] € SE(3)

where RT = Ry, and p® = Ryuply, = pf;b.
4. (91-92) - 93 =91 (92 - 93)-
R
ab {B}

A}
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Properties of SE(3)

¢ Homogeneous representation of g,: for v = s — r with v = [v; 0],
o oo | Rop|,.. o _|R p|. _ (Rv
g**g(s)fg(r)f[o 0](5 T)7|'O O]U*(U)

e We can also show that ||g(p) — g(q)|| = ||R(p — q)|| and g.(v x w) =
G« X gaw, i.e., g € SE(3) defines a rigid body transformation.

e Consider rigid motion {A} — {B} via g%, and {B} — {C} via gl.. Then,

= Rpcte+0he _ o _ { RERe. Royphe + Py ] G = Gucdl
da = Ryaqv + Py “ 0 1 ¢ aete

where gl = (p,, R%,) = g%, - _E]ﬁc with R, = RgbRgc and pt. = RS pgc +

ab
p%, = p%, + pi.: composition of successive body-frame SE(3) motion.
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Composition of SE(3) Motions

Consider gy : {4} — {B} for [to,t1) and g5 : {B} — {C} for [t;,t2), with a
rigidly-attached point ¢ evoles q(t,) — g(t1) — ¢(t2), each can be expressed in
{A} or {B}. Then, the composition of motion g, (t2) = Jacda(to) is given by

e Successive rotations w.r.t. body frames: go. = ¢ - g5
e Successive rotations w.r.t. inertial frame: g,. = g5 - §¢
o From g, (t1) = §74a(to) and g(t2) = g3 (t1) with gu(t1) = ga(to),
Ga(t2) = 310 (t2) = 31 - 35 (t1) = 3795da(to) = Facla(to)

e From qa(tl) = gf(ja(to) and (L(t?) = §5Ga (tl)a

_ —a —a-— - = —b Rgr pgr ]
Ga(t2) = 5 - 31 Ga(to) = GacGa(to) 2= o

gﬂ — Rg'(. _Rgtpgb +p3(» ]

) ’ 0 1 ]

s da(t2) Pre
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Composition of SE(3) Motions

Consider g1 : {A} — {B} for [to,t1) and g2 : {B} — {C} for [t1,t2), with a
rigidly-attached point ¢ evoles q(t,) — q(t;) — q(¢2), each can be expressed in
{A} or {B}. Then, the composition of motion §,(t2) = Gacda(ts) is given by

e Successive rotations w.r.t. body frames: §o. = g - g5
e Successive rotations w.r.t. inertial frame: g,. = g5 - §¢
e If these two compositions represent the same motion, we have
95 = Jab - 95 - Gy
where g§ and g4 represent the same SE(3) motion from {B} — {C}, but ex-

pressed respectively in {A} and {B}.

—b
Ty 92 Us frame {B}

Jab l l Gab

- - Ua frame {A}

93
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Example 2.1

e Describe rigid body motion given by the rotation about the joint axis.
e Attach the coordinate frames {A} and {B}.

e Note that {B} is attached to the joint not at the end-effector.

e Then,

0

cld —sb 0
Ry =[50 co 0|, gu@)=| @ b
0 0 1 .

e Gap(0)[0;0;0;1] = [0;11;0;1] (i-e., transformed position of origin of {B} ex-
pressed in {A}).

o 3.5(0)[0;12;0;1] = [—l2s60;1; +12¢6;0;1] (i.e., transformed position of origin
of {C} expressed in {A}). -
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Twist

e Consider rigid body rotation about w (|Jw|| = 1) with ¢ being a point on
w (e.g., revolute joint). For point p rigidly attached on the object, we
then have

pla(t) = W, X (pa(t) - QG)

with p, — ¢, being the offset between w-line and origin of {A}; or

s (Pa) | Wa —Wa X G w\ _ F -
pa_(())_[ 0 0 (1)_6013&

all expressed in {A}. Note £ contains both w and ¢ informations.

VA4
@ / /v )

V, =W, X, 8 mvomeERy

S

v
p
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Twist

e For the revolute joint,

O Iba _ wa —Wq X Ga a ) _ ¢ =
e )= [ ) (5) -

¢ Consider translation along v (e.g., prismatic joint). Then, p, = v, or

v
wu) = (") =[5 b |7 =dona /
e Thus, for both cases, we have {A}
Pa(t) = EaPalt) =~  Palt) = wepa(t) in SO(3)
expressed in {4}, and, if £, is constant,

Palt) = 515,(0) &  pa(t) = e™'p,(0) in SO(3)

R
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Twist and se(3)

Definition 1 (se(3))
se(3) = {& = (v,0) | v € R%, % € s0(3)}
e We call an element & € se(3) twist or infinitesimal generator of SE(3)
e s¢(3) is Lie algebra of SE(3).
o £ = (v,w) € se(3) is expressed in homogeneous representation by
£ = [ 1(‘)’ 8 } e R with  fa(t) = upalt)
e Given € = (v,w) € RS, V, A defined by €" = £ € R4 and £V = £ € RS,

e Given { = (v, w), we can interpret w as angular velocity. Note also that

Wy Vg 0y (v, = . .. . .
{ 0 0 } (;)a = (0>, where [0; 1], is the origin of {A}, i.e., v, is

velocity of extended object observed at origin of {A}.

e We didn’t specify object’s size, e.g., for revolute joint, v, = —wg X ¢q.

W ENGIN
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Exponential Coordinates for SE(3)
Proposition 1 (2.8) For every ¢ € se(3) and 6 € R, el ¢ SE(3).

(Proof) First, suppose w = 0. Then, £2 = £3 = .. = 0, thus,
@
éb‘ o I o . _
l=I+g0=|, with B(t) = [p(t); 1] = [p(0) + v; 1].
Second, suppose w # 0 with |Jw|| =1 (if not, we can scale §). Define
| T wxw | I —wxw
I=lo 1 |29 Tlo 1
and define £ = g~1£g. Then, we have "
&= w o wwxv)+v | [@ (wTvw R
1o 0 10 0

where we use a x (b x ¢) = (a”e)b — (a”b)e.
e This surmounts to find screw expression of £ = (w,v) (i.e., rotation w +
translation along w) and express £ in new frame {A’} with origin on screw axis.

o G—
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Exponential Coordinates for SE(3)
Proposition 1 (2.8) For every £ € se(3) and 6 € R, et € SE(3).

I wxwv

(Proof) Using g = { 0 1

} , define @

& =15 = [16: u")(wxov)+v J :[13 (w?)w}

we then have

@r=[ 0] @r=[n 0] s o[ @]

1

Then, using e = g~ eé‘gg, we can obtain

e (1)

o [ e (I —e®)(w x v) + (whv)wh ]
Lo 1

showing that ¢ € SE(3) with e € SO(3) and (I—e™?)(wxv)+(wv)wh € R3.
o This £ provides closed-form expression similar to Rodrigues’ formula.

W ENGIN
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Exponential Coordinates for SE(3)
Proposition 1 (2.9) V g = (p,R) € SE(3), 3£ € se(3), 0 € R s.t. g= e?.

1. If g = (1,0), § =0 and & = (@, v) can be arbitrary.
2. If R = I, no rotation w/ pure translation p during 6. Thus,

3 ¢ I 8

3. If R # I, we can first solve (w, #) via R = e®?. Given this w and 0 < # <
27, we can obtain v by using

p=(I—e)(wxv)+ wwTv=[(I - )i+ dwwT v = Av

which assumes unique solution v, since null(A) = ), because:
- First term of A has nullspace {x € R3 | z = aw}.
- Second term of A has nullspace {z € ®* | w’z = 0}.

- These two nullspaces are orthogonal with each other.

e We call (£,0) exponential coordinates of g € SE(3) with g = cé‘g,, which is

many-to-one map, as so is ¢ = R. e
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Geometric Meaning of exp(x,t)

e Consider rigid motion given by constant twist &, which sends {B(0)} to
{B(0)}. Denote rigid transformation from {A} to {B(0)} by g.(0) =
gab(g)a with gab(o) = Gab(0)-

e Then, efa? = 0yb(e)> 1-€-, represents rigid motion from {B(0)} to {B(#)}
via € expressed in {A}, similar to e®® = R, ) in SO(3).

e First, from §, = .4, we have 7.(0) = 65“9%(0) similar to g,(0) =
e?%g,(0) in SO(3).

e We also have g,(0) = §gb(e)§b(3)(0) = 3030 @u(0)(0).
o Then, using Ga(0) = g2y 0)@(0)(0); Za(6) = 5% (0) G0 (0) = %2752, (0)q(0) (0),

ie.,
gop(0) = e=%52,(0) ~ Rg, =e™’RY

implying that e%¢ = g, p)- BOF >
e Twist coordinate transformation .fa = gabébg;bl ‘

(A} O
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Example 2.2

e Given joint rotation «, compute twist coordinate (&,, @) expressed in {A}.

ca —sa 0 —lbhsa
sa ca 0 lL+bca
e Attach {B} to end-effector. Then, g.p() = 0 0 1 0
0 0 0 1

® Recall i )
gap(a) = 590 (0), e, e’ = glom

e We can then compute ef+¢ by using e+¢ = g2, (a)[g%,(0)] 1.
¢ Or, can use observation of £, = (i, v,) S.t. {m —sa 0 Lsa l

sa ca 0 L(l-ca)
0 0 1 0

we = [0;0:1],  we = [I1;0;0]

where v, is velocity of extended rigid body at origin of {A}.
e Assume {A(#)} moves with a. Then,

Gaa(0) = e‘saegaa(ﬂ) = efaﬁ’

ebat represents a-motion for any point expressed in {A}.

b2
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Screw Motion

Consider rigid-body motion, where the object first rotates about w by @ with ¢
on w (||w|| = 1) and translates by d along w.

Definition 1 screw motion:= {azis [, pitch h, magnitude 6}
e If @ # 0, define pitch h := d/f. Then, for a rigidly-attached point p,
Pa(0) = % (9a(0) — ga) + ¢o + hbw
where g is on the axis | := {¢+ \w | A € R}, or,

B wWa b I— Wa B a+h9 B _ B
Pa(0) = [ 60 d=e %q v }pa(O) = GserewPa(0)

r

A
p—af \ol

. p+ v
q+.-u4"“rfl]] + hfw /
2

— N P

q+e ‘-’O(IJ —q)
/ - (b) pure translation
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Screw Motion

Consider rigid-body motion, where the object first rotates about w by 6 with ¢
on w (|Jw|| = 1) and translates by d along w.

Definition 1 screw motion:= {axzis I, pitch h, magnitude 0}
e For pure translation, we set h = oo, w = 0, and axis [ := {Av} with

pa(e) = pa(o) +vf, or p_a(ﬁ) = [ é Ule ] ﬁa(o) = gscrewﬁa(o)

where v6 is the translation velocity with ||v|| = 1.

4;0(‘“ _ ’”

q+e
/ (b) pure translation

S
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Screw and Twist

Proposition 1 (2.10) Given a serew (I, h,0) 3 an unit twist £ (i.e., ||w|]| =1

ifw=0; or ||| =1ifw=0) s.t. et = Gserews and vice versa. -
e Given screw (I, h,0), we can infer twist £ s.t., “
(A e
(—w x g+ hw,w) if h# o0 S
f = (U,’LU) = . % r Y
(v,0) if h=o00 )

e (I —e®)(wxv)+wwlvd | [ e® (I—e®)g+ hbw
0 1 o 0 1
e, q=wxuv, | ={g+ e R}, h=wlv, 0 =0 (orl={\w}if

w = 0.

e The last derivation can also be obtained by finding ¢ for £ = (w,v) s.t.
vy = w X g+ v = hw (i.e., { expressed with ¢ as origin becomes screw
motion).

WR ENCIN
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e Given twist £, we can find screw (I, h, #) by equating e nab‘

Chasles Theorem

Theorem 1 (2.11:Chasles) Ewvery rigid body motion can be realized by a ro-
tation aboul an azxis with a translation parallel to that azis.

¢ Screw motion is independent on how to choose ¢" on [ := {q+ Aw}.
e For a point rigidly-attached p, we have
Pa(6) = %7 pa(0)

Also, if the screw motion drives {B(0)} to {B(0)}, ST N

I’f/h\\\\ ’ “

A\

[ A\B)
<

7ab(0) = €*°at(0) = Fi0)n(e)Fan(0)  ~

ie., ebat represents rigid-body motion created by the screw sending { B(0)}
to {B(f)} expressed in {A}.

o If we choose p,(0) = g + Aw, pa(0) = pa(0) + hOw,.
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