Rigid Body Transformation and SE(3)

Dongjun Lee (이동준)

Department of Mechanical & Aerospace Engineering Seoul National University

Dongjun Lee

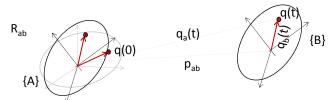
Rigid Body Transformation

- Consider rigid body motion, where the object rotates first by $R^a_{ab} \in SO(3)$, then translates by $p^a_{ab} \in \Re^3$, all expressed in $\{A\}$.
- \bullet Then, for a point q rigidly-attached to the object, we have

$$q_a(t) = R_{ab}^a q_a(0) + p_{ab}^a = g_{ab}(q_a(0))$$

where g_{ab} is the **rigid transformation map**.

- This rigid transformation g_{ab} can serve as:
 - 1. Configuration of the rigid-body motion.
 - 2. Coordinate transform btw $\{A\}$ and $\{B\}$: $q_a(t) = g_{ab}(q_a(0)) = g_{ab}(q_b(t))$.
 - 3. Rigid-body transformation operator: $q_a(t) = g_{ab}(q_a(0))$.



ongjun Lee

Rigid Transformation

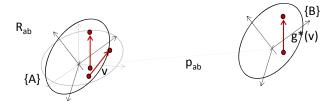
• Rigid body transformation g_{ab} :

$$q_a(t) = R_{ab}^a q_a(0) + p_{ab}^a = g_{ab}(q_a(0))$$

- 1. Configuration of the rigid-body motion.
- 2. Coordinate transform btw $\{A\}$ and $\{B\}$: $q_a(t) = g_{ab}(q_a(0)) = g_{ab}(q_b(t))$.
- 3. Rigid-body transformation operator: $q_a(t) = g_{ab}(q_a(0))$.
- Rigid transformation action g_{ab*} on a free-vector v = s r:

$$g_{ab*}(v) := g_{ab}(s) - g_{ab}(r) = R_{ab}s + p_{ab} - R_{ab}r - p_{ab} = R_{ab}v$$

i.e., g_{ab*} simply rotates a free-vector v by R_{ab} in $\{A\}$.



Dongjun Le

ENGINEERIN

Homogeneous Representation

Homogeneous Rigid Transformation \bar{g}_{ab}

$$\bar{q}_a = \begin{pmatrix} q_a \\ 1 \end{pmatrix} = \begin{bmatrix} R^a_{ab} & p^a_{ab} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} q_b \\ 1 \end{pmatrix} = \bar{g}_{ab}\bar{q}_b$$

• Homogeneous representation of a point $q \in \Re^3$ and a free-vector $v \in \Re^3$ defined by

$$\bar{q} := [q_1; q_2; q_3; 1], \quad \bar{v} = [v_1; v_2; v_3; 0] \in \Re^4$$

- This clearly manifests difference between point vector and free vector: that is, can do $\bar{q}_1 \bar{q}_2 = v$, $\bar{q}_1 + \bar{v} = \bar{q}_2$, $\bar{v}_1 + \bar{v}_2 = \bar{v}_3$, but, not $\bar{q}_1 + \bar{q}_2$.
- $\bar{g}_{ab} \in \Re^{4 \times 4}$ is homogeneous representation of the rigid body transformation $g_{ab} = (p_{ab}, R_{ab}) : \Re^3 \to \Re^3$ from $\{A\}$ to $\{B\}$.
- With homogeneous representation, we have a linear relation $\bar{q}_a = \bar{g}_{ab}\bar{q}_b$ in SE(3) similar to $q_a = R_{ab}q_b$ in SO(3).
- Sometimes, we simply use g_{ab} to denote \bar{g}_{ab}^a .

Special Euclidean Group SE(3)

Def. 1 (Special Euclidean Group SE(n))

$$\begin{split} SE(n) &= \Re^n \times SO(n) \\ SE(3) &= \Re^3 \times SO(3) = \{(p,R) \mid p \in \Re^3, R \in SO(3)\} \end{split}$$

- SE(3) represents rigid body motion, as SO(3) rotation motion.
- SE(3) identified by $\bar{g} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \in \Re^{4\times 4}$.
- SE(3) is a group (i.e., \bar{g} is a group under matrix multiplication):
 - 1. If $g_1, g_2 \in SE(3), g_1 \cdot g_2 \in SE(3)$:

$$\bar{g}_1 \cdot \bar{g}_2 = \left[\begin{array}{cc} R_1 & p_1 \\ 0 & 1 \end{array} \right] \cdot \left[\begin{array}{cc} R_2 & p_2 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} R_1 R_2 & R_1 p_2 + p_1 \\ 0 & 1 \end{array} \right] \in \operatorname{SE}(3)$$

2. Identity $I_{4\times 4} \in SE(3)$.

Dongjun Lee

Special Euclidean Group SE(3)

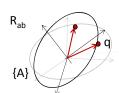
- SE(3) identified by $\bar{g} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \in \Re^{4 \times 4}$.
- SE(3) is a group (i.e., \bar{g} is a group under matrix multiplication):
 - 1. If $g_1, g_2 \in SE(3)$, $g_1 \cdot g_2 \in SE(3)$.
 - 2. Identify $I_{4\times 4} \in SE(3)$.
 - 3. Given $g \in SE(3)$, g^{-1} is also in SE(3), as given by

$$\bar{g}^{-1} = \begin{bmatrix} R^T & R^T(-p) \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{ba} & -p^b \\ 0 & 1 \end{bmatrix} \in SE(3)$$

 $\boldsymbol{p}_{\mathsf{ab}}$

where $R^T = R_{ba}$ and $p^b = R_{ba}p_{ab}^a = p_{ab}^b$.

4. $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$.



{B}

ENGINEERING

Properties of SE(3)

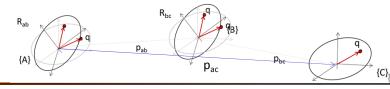
• Homogeneous representation of g_* : for v = s - r with $\bar{v} = [v; 0]$,

$$\bar{g}_* = \bar{g}(\bar{s}) - \bar{g}(\bar{r}) = \begin{bmatrix} R & p \\ 0 & 0 \end{bmatrix} (\bar{s} - \bar{r}) = \begin{bmatrix} R & p \\ 0 & 0 \end{bmatrix} \bar{v} = \begin{pmatrix} Rv \\ 0 \end{pmatrix}$$

- We can also show that $||\bar{g}(\bar{p}) \bar{g}(\bar{q})|| = ||R(p-q)||$ and $g_*(v \times w) = g_*v \times g_*w$, i.e., $g \in SE(3)$ defines a rigid body transformation.
- Consider rigid motion $\{A\} \to \{B\}$ via g_{ab}^a and $\{B\} \to \{C\}$ via g_{bc}^b . Then,

$$\begin{array}{c} q_b = R^b_{bc}q_c + p^b_{bc} \\ q_a = R^a_{ab}q_b + p^a_{ab} \end{array} \Rightarrow \bar{q}_a = \left[\begin{array}{cc} R^a_{ab}R^b_{bc} & R^a_{ab}p^b_{bc} + p^a_{ab} \\ 0 & 1 \end{array} \right] \bar{q}_c = \bar{g}_{ac}\bar{q}_c$$

where $\bar{g}^a_{ac}=(p^a_{ac},R^a_{ac})=\bar{g}^a_{ab}\cdot\bar{g}^b_{bc}$ with $R^a_{ac}=R^a_{ab}R^b_{bc}$ and $p^a_{ac}=R^a_{ab}p^b_{bc}+p^a_{ab}=p^a_{ab}+p^b_{ac}$: composition of successive body-frame SE(3) motion.



Dongjun Lee

Composition of SE(3) Motions

Consider $g_1:\{A\}\to\{B\}$ for $[t_0,t_1)$ and $g_2:\{B\}\to\{C\}$ for $[t_1,t_2)$, with a rigidly-attached point q evoles $q(t_o)\to q(t_1)\to q(t_2)$, each can be expressed in $\{A\}$ or $\{B\}$. Then, the composition of motion $\bar{q}_a(t_2)=\bar{g}_{ac}\bar{q}_a(t_o)$ is given by

- Successive rotations w.r.t. body frames: $\bar{g}_{ac} = \bar{g}_1^a \cdot \bar{g}_2^b$
- Successive rotations w.r.t. inertial frame: $\bar{g}_{ac} = \bar{g}_2^a \cdot \bar{g}_1^a$
- From $\bar{q}_a(t_1) = \bar{g}_1^a \bar{q}_a(t_o)$ and $\bar{q}_b(t_2) = \bar{g}_2^b \bar{q}_b(t_1)$ with $q_b(t_1) = q_a(t_o)$,

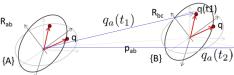
$$\bar{q}_a(t_2) = \bar{g}_1^a \bar{q}_b(t_2) = \bar{g}_1^a \cdot \bar{g}_2^b \bar{q}_b(t_1) = \bar{g}_1^a \bar{g}_2^b \bar{q}_a(t_o) = \bar{g}_{ac} \bar{q}_a(t_o)$$

• From $\bar{q}_a(t_1) = \bar{g}_1^a \bar{q}_a(t_o)$ and $\bar{q}_a(t_2) = \bar{g}_2^a \bar{q}_a(t_1)$,

$$\bar{q}_a(t_2) = \bar{g}_2^a \cdot \bar{g}_1^a \bar{q}_a(t_o) = \bar{g}_{ac} \bar{q}_a(t_o) \qquad \qquad \bar{g}_2^b = \begin{bmatrix} R_{bc}^b & p_{bc}^b \\ 0 & 1 \end{bmatrix}$$

$$\bar{g}_2^a = \begin{bmatrix} R_{bc}^a & -R_{bc}^a p_{ab}^a + p_{ac}^a \\ 0 & 1 \end{bmatrix}$$

$$(t_1) \qquad \qquad \bar{q}_2^a = \begin{bmatrix} R_{bc}^a & -R_{bc}^a p_{ab}^a + p_{ac}^a \\ 0 & 1 \end{bmatrix}$$



ENGINEERING

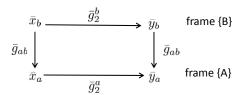
Composition of SE(3) Motions

Consider $g_1: \{A\} \to \{B\}$ for $[t_0, t_1)$ and $g_2: \{B\} \to \{C\}$ for $[t_1, t_2)$, with a rigidly-attached point q evoles $q(t_o) \to q(t_1) \to q(t_2)$, each can be expressed in $\{A\}$ or $\{B\}$. Then, the composition of motion $\bar{q}_a(t_2) = \bar{g}_{ac}\bar{q}_a(t_o)$ is given by

- Successive rotations w.r.t. body frames: $\bar{g}_{ac} = \bar{g}_1^a \cdot \bar{g}_2^b$
- Successive rotations w.r.t. inertial frame: $\bar{g}_{ac} = \bar{g}_2^a \cdot \bar{g}_1^a$
- If these two compositions represent the same motion, we have

$$\bar{g}_2^a = \bar{g}_{ab} \cdot \bar{g}_2^b \cdot \bar{g}_{ab}^{-1}$$

where \bar{g}_2^a and \bar{g}_2^b represent the same SE(3) motion from $\{B\} \to \{C\}$, but expressed respectively in $\{A\}$ and $\{B\}$.



Dongjun Le

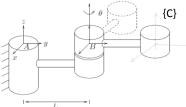
ENGINEERI

Example 2.1

- Describe rigid body motion given by the rotation about the joint axis.
- Attach the coordinate frames $\{A\}$ and $\{B\}$.
- Note that $\{B\}$ is attached to the joint not at the end-effector.
- Then,

$$R_{ab}^{a} = \begin{bmatrix} c \theta & -s \theta & 0 \\ s \theta & c \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \bar{g}_{ab}^{a}(\theta) = \begin{bmatrix} 0 & 0 \\ R_{ab}(\theta) & l_{1} \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- $\bar{g}_{ab}(\theta)[0;0;0;1]=[0;l_1;0;1]$ (i.e., transformed position of origin of $\{B\}$ expressed in $\{A\}$).
- $\bar{g}_{ab}(\theta)[0; l_2; 0; 1] = [-l_2 \operatorname{s} \theta; l_1 + l_2 \operatorname{c} \theta; 0; 1]$ (i.e., transformed position of origin of $\{C\}$ expressed in $\{A\}$).



Twist

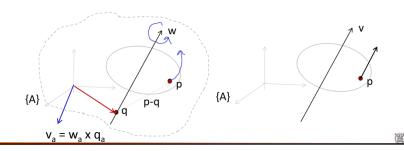
• Consider rigid body rotation about w (||w|| = 1) with q being a point on w (e.g., revolute joint). For point p rigidly attached on the object, we then have

$$\dot{p}_a(t) = w_a \times (p_a(t) - q_a)$$

with p_a-q_a being the offset between w-line and origin of $\{A\}$; or

$$\dot{\bar{p}}_a = \begin{pmatrix} \dot{p}_a \\ 0 \end{pmatrix} = \begin{bmatrix} \hat{w}_a & -w_a \times q_a \\ 0 & 0 \end{bmatrix} \begin{pmatrix} p_a \\ 1 \end{pmatrix} = \hat{\xi}_a \bar{p}_a$$

all expressed in $\{A\}$. Note $\hat{\xi}$ contains <u>both</u> w and q informations.



Twist

• For the revolute joint,

$$\dot{\bar{p}}_a = \begin{pmatrix} \dot{p}_a \\ 0 \end{pmatrix} = \begin{bmatrix} \hat{w}_a & -w_a \times q_a \\ 0 & 0 \end{bmatrix} \begin{pmatrix} p_a \\ 1 \end{pmatrix} = \hat{\xi}_a \bar{p}_a$$

• Consider translation along v (e.g., prismatic joint). Then, $\dot{p}_a = v_a$, or

$$\dot{\bar{p}}_a(t) = \begin{pmatrix} \dot{p}_a(t) \\ 0 \end{pmatrix} = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix} \bar{p}_a = \hat{\xi}_a \bar{p}_a(t)$$

 $\bullet\,$ Thus, for both cases, we have

$$\dot{\bar{p}}_a(t) = \hat{\xi}_a \bar{p}_a(t) \quad \approx \quad \dot{p}_a(t) = \hat{w}_a p_a(t) \text{ in SO(3)}$$

expressed in $\{A\}$, and, if $\hat{\xi}_a$ is constant,

$$\bar{p}_a(t) = e^{\hat{\xi}_a t} \bar{p}_a(0)$$
 \approx $p_a(t) = e^{\hat{w}_a t} p_a(0)$ in SO(3)

Twist and se(3)

Definition 1 (se(3))

$$se(3) := \{ \xi = (v, \hat{w}) \mid v \in \Re^3, \hat{w} \in so(3) \}$$

- We call an element $\xi \in se(3)$ twist or infinitesimal generator of SE(3)
- se(3) is Lie algebra of SE(3).
- $\xi = (v, w) \in se(3)$ is expressed in homogeneous representation by

$$\hat{\xi} = \begin{bmatrix} \hat{w} & v \\ 0 & 0 \end{bmatrix} \in \Re^{4 \times 4} \quad \text{with} \quad \dot{\bar{p}}_a(t) = \hat{\xi}_a \bar{p}_a(t)$$

- Given $\xi = (v, w) \in \Re^6$, \vee , \wedge defined by $\xi^{\wedge} = \hat{\xi} \in \Re^{4 \times 4}$ and $\hat{\xi}^{\vee} = \xi \in \Re^6$.
- Given $\xi = (v, w)$, we can interpret w as angular velocity. Note also that $\begin{bmatrix} \hat{w}_a & v_a \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \vec{0} \\ 1 \end{pmatrix}_a = \begin{pmatrix} v_a \\ 0 \end{pmatrix}$, where $[\vec{0}; 1]_a$ is the origin of $\{A\}$, i.e., v_a is velocity of **extended** object observed at origin of $\{A\}$.
- We didn't specify object's size, e.g., for revolute joint, $v_a = -w_a \times q_a$.

Dongjun Lee

Exponential Coordinates for SE(3)

Proposition 1 (2.8) For every $\hat{\xi} \in se(3)$ and $\theta \in \Re$, $e^{\hat{\xi}\theta} \in SE(3)$.

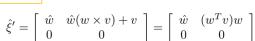
(Proof) First, suppose w=0. Then, $\hat{\xi}^2=\hat{\xi}^3=...=0,$ thus,

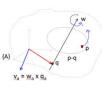
$$e^{\hat{\xi}\theta} = I + \hat{\xi}\theta = \left[\begin{array}{cc} I & v\theta \\ 0 & 1 \end{array} \right] \quad \text{with} \quad \bar{p}(t) = [p(t);1] = [p(0) + v\theta;1].$$

Second, suppose $w \neq 0$ with ||w|| = 1 (if not, we can scale θ). Define

$$\bar{g} = \left[\begin{array}{cc} I & w \times v \\ 0 & 1 \end{array} \right], \quad \bar{g}^{-1} = \left[\begin{array}{cc} I & -w \times v \\ 0 & 1 \end{array} \right]$$

and define $\hat{\xi}' = \bar{g}^{-1}\hat{\xi}\bar{g}$. Then, we have





where we use $a \times (b \times c) = (a^T c)b - (a^T b)c$.

• This surmounts to find screw expression of $\xi = (w, v)$ (i.e., rotation w + translation along w) and express ξ in new frame $\{A'\}$ with origin on screw axis.

Exponential Coordinates for SE(3)

Proposition 1 (2.8) For every $\hat{\xi} \in se(3)$ and $\theta \in \Re$, $e^{\xi \theta} \in SE(3)$.

(Proof) Using
$$\bar{g} = \left[\begin{array}{cc} I & w \times v \\ 0 & 1 \end{array} \right]$$
, define

$$\hat{\xi}' = \bar{g}^{-1}\hat{\xi}\bar{g} = \left[\begin{array}{cc} \hat{w} & \hat{w}(w \times v) + v \\ 0 & 0 \end{array} \right] = \left[\begin{array}{cc} \hat{w} & (w^Tv)w \\ 0 & 0 \end{array} \right]$$

we then have

$$(\hat{\xi}')^2 = \left[\begin{array}{cc} \hat{w}^2 & 0 \\ 0 & 0 \end{array} \right], \quad (\hat{\xi}')^2 = \left[\begin{array}{cc} \hat{w}^3 & 0 \\ 0 & 0 \end{array} \right] \dots \quad \Rightarrow \quad e^{\hat{\xi}'\theta} = \left[\begin{array}{cc} e^{\hat{w}\theta} & (w^Tv)w\theta \\ 0 & 1 \end{array} \right]$$

Then, using $e^{\hat{\xi}'\theta} = \bar{g}^{-1}e^{\hat{\xi}\theta}\bar{g}$, we can obtain

$$e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{w}\theta} & (I - e^{\hat{w}\theta})(w \times v) + (w^T v)w\theta \\ 0 & 1 \end{bmatrix}$$
 (1)

showing that $e^{\hat{\xi}\theta} \in SE(3)$ with $e^{\hat{w}\theta} \in SO(3)$ and $(I - e^{\hat{w}\theta})(w \times v) + (w^Tv)w\theta \in \Re^3$.

• This $e^{\hat{\xi}\theta}$ provides closed-form expression similar to Rodrigues' formula.

Dongjun Lee

PENGINEERI

Exponential Coordinates for SE(3)

Proposition 1 (2.9) $\forall g = (p, R) \in SE(3), \exists \hat{\xi} \in se(3), \theta \in \Re \ s.t. \ \bar{q} = e^{\hat{\xi}\theta}.$

- 1. If $g = (I, 0), \theta = 0$ and $\xi = (\hat{w}, v)$ can be arbitrary.
- 2. If R = I, no rotation w/ pure translation p during θ . Thus,

$$\hat{\xi} = \left[\begin{array}{cc} 0 & p/||p|| \\ 0 & 0 \end{array} \right], \quad \theta = ||p|| \ \Rightarrow \ e^{\hat{\xi}\theta} = \left[\begin{array}{cc} I & v\theta \\ 0 & 1 \end{array} \right] = \bar{g}$$

3. If $R \neq I$, we can first solve (w, θ) via $R = e^{\hat{w}\theta}$. Given this \hat{w} and $0 < \theta < 2\pi$, we can obtain v by using

$$p = (I - e^{\hat{w}\theta})(w \times v) + \theta w w^T v = [(I - e^{\hat{w}\theta})\hat{w} + \theta w w^T]v = Av$$

which assumes unique solution v, since $\text{null}(A) = \emptyset$, because:

- First term of A has nullspace $\{x \in \Re^3 \mid x = \alpha w\}$.
- Second term of A has nullspace $\{x \in \Re^3 \mid w^T x = 0\}.$
- These two nullspaces are orthogonal with each other.
- We call (ξ, θ) exponential coordinates of $g \in SE(3)$ with $\bar{g} = e^{\hat{\xi}\theta}$, which is many-to-one map, as so is $e^{\hat{u}\theta} = R$.

ENGINEERING

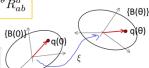
Geometric Meaning of exp(xat)

- Consider rigid motion given by constant twist ξ , which sends $\{B(0)\}$ to $\{B(\theta)\}$. Denote rigid transformation from $\{A\}$ to $\{B(\theta)\}$ by $g_{ab}(\theta) = g_{ab}(\theta)$, with $g_{ab}(0) = g_{ab(0)}$.
- Then, $e^{\hat{\xi}_a\theta} = \bar{g}^a_{b(0)b(\theta)}$, i.e., represents rigid motion from $\{B(0)\}$ to $\{B(\theta)\}$ via ξ expressed in $\{A\}$, similar to $e^{\hat{w}_a\theta} = R^a_{b(0)b(\theta)}$ in SO(3).
- First, from $\dot{q}_a = \hat{\xi}_a \bar{q}_a$, we have $\bar{q}_a(\theta) = e^{\hat{\xi}_a \theta} \bar{q}_a(0)$ similar to $q_a(\theta) = e^{\hat{w}_a \theta} q_a(0)$ in SO(3).
- We also have $\bar{q}_a(\theta) = \bar{g}^a_{ab(\theta)}\bar{q}_{b(\theta)}(\theta) = \bar{g}^a_{ab}(\theta)\bar{q}_{b(0)}(0)$.
- Then, using $\bar{q}_a(0) = g^a_{ab(0)}\bar{q}_{b(0)}(0), \ \bar{q}_a(\theta) = \bar{g}^a_{ab}(\theta)\bar{q}_{b(0)}(0) = e^{\hat{\xi}_a\theta}\bar{g}^a_{ab}(0)q_{b(0)}(0),$ i.e.,

$$\bar{g}^a_{ab}(\theta) = e^{\hat{\xi}_a \theta} \bar{g}^a_{ab}(0) \quad \approx \quad R^a_{ab_1} = e^{\hat{w}_a \theta} R^a_{ab}$$

implying that $e^{\hat{\xi}_a \theta} = \bar{g}^a_{b(0)b(\theta)}$.

• Twist coordinate transformation $\hat{\xi}_a = \bar{g}_{ab}\hat{\xi}_b\bar{g}_{ab}^{-1}$



©Donaiun Lee

Example 2.2

- Given joint rotation α , compute twist coordinate (ξ_a, θ) expressed in $\{A\}$.
- Attach $\{B\}$ to end-effector. Then, $g_{ab}(\alpha) = \begin{bmatrix} c\alpha & -s\alpha & 0 & -l_2 s\alpha \\ s\alpha & c\alpha & 0 & l_1 + l_2 c\alpha \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- \bullet Recall

$$g^a_{ab}(\alpha) = e^{\hat{\xi}_a\theta}g^a_{ab}(0), \quad \text{i.e.,} \quad e^{\hat{\xi}_a\theta} = g^a_{b(0)b(\alpha)}$$

- We can then compute $e^{\hat{\xi}_a\theta}$ by using $e^{\hat{\xi}_a\theta} = g^a_{ab}(\alpha)[g^a_{ab}(0)]^{-1}$.
- Or, can use observation of $\xi_a = (\hat{w}_a, v_a)$ s.t.

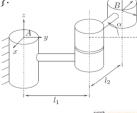
$$w_a = [0;0;1], \quad v_a = [l_1;0;0] \qquad e^{\xi_a \alpha} = \begin{bmatrix} c\alpha & -s\alpha & 0 & l_1 s\alpha \\ s\alpha & c\alpha & 0 & l_1 (1-c\alpha) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where v_a is velocity of extended rigid body at origin of $\{A\}$.

• Assume $\{A(\theta)\}$ moves with α . Then,

$$g_{aa(\theta)} = e^{\hat{\xi}_a \theta} g_{aa(0)} = e^{\hat{\xi}_a \theta}$$

 $e^{\hat{\xi}_a\theta}$ represents α -motion for any point expressed in $\{A\}$.



Screw Motion

Consider rigid-body motion, where the object first rotates about w by θ with q on w (||w|| = 1) and translates by d along w.

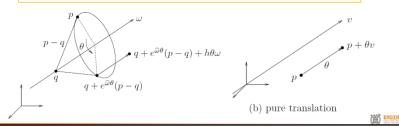
Definition 1 screw motion:= $\{axis \ l, \ pitch \ h, \ magnitude \ \theta\}$

• If $\theta \neq 0$, define pitch $h := d/\theta$. Then, for a rigidly-attached point p,

$$p_a(\theta) = e^{\hat{w}_a \theta} (p_a(0) - q_a) + q_a + h\theta w$$

where q is on the axis $l := \{q + \lambda w \mid \lambda \in \Re\}$, or,

$$\bar{p}_a(\theta) = \begin{bmatrix} e^{\hat{w}_a \theta} & (I - e^{\hat{w}_a \theta})q_a + h\theta w \\ 0 & 1 \end{bmatrix} \bar{p}_a(0) = \bar{g}_{\text{screw}}\bar{p}_a(0)$$



Screw Motion

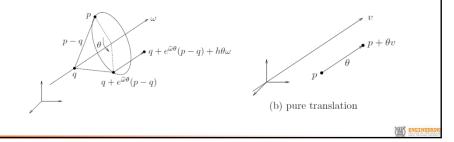
Consider rigid-body motion, where the object first rotates about w by θ with q on w (||w|| = 1) and translates by d along w.

Definition 1 screw motion:= {axis l, pitch h, magnitude θ }

• For pure translation, we set $h=\infty,\,w=0,$ and axis $l:=\{\lambda v\}$ with

$$p_a(\theta) = p_a(0) + v\theta$$
, or $\bar{p}_a(\theta) = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix} \bar{p}_a(0) = \bar{g}_{\text{screw}}\bar{p}_a(0)$

where $v\theta$ is the translation velocity with ||v|| = 1.

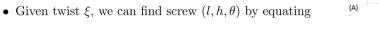


Screw and Twist

Proposition 1 (2.10) Given a screw $(l, h, \theta) \exists$ an unit twist ξ (i.e., ||w|| = 1 if $w \neq 0$; or ||v|| = 1 if w = 0) s.t. $e^{\hat{\xi}\theta} = \bar{g}_{screw}$, and vice versa.

• Given screw (l, h, θ) , we can infer twist ξ s.t.,

$$\xi = (v, w) = \begin{cases} (-w \times q + hw, w) & \text{if } h \neq \infty \\ (v, 0) & \text{if } h = \infty \end{cases}$$



$$\begin{bmatrix} e^{\hat{w}\theta} & (I - e^{\hat{w}\theta})(w \times v) + ww^T v\theta \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{\hat{w}\theta} & (I - e^{\hat{w}\theta})q + h\theta w \\ 0 & 1 \end{bmatrix}$$

i.e., $q = w \times v$, $l = \{q + \lambda w | \lambda \in \Re\}$, $h = w^T v$, $\theta = \theta$ (or $l = \{\lambda v\}$ if w = 0.

• The last derivation can also be obtained by finding q for $\xi=(w,v)$ s.t. $v_q=w\times q+v=hw$ (i.e., ξ expressed with q as origin becomes screw motion).

Dongiun Lee

Chasles Theorem

Theorem 1 (2.11:Chasles) Every rigid body motion can be realized by a rotation about an axis with a translation parallel to that axis.

- Screw motion is independent on how to choose q' on $l := \{q + \lambda w\}$.
- For a point rigidly-attached p, we have

$$\bar{p}_a(\theta) = e^{\bar{\xi}_a \theta} \bar{p}_a(0)$$

Also, if the screw motion drives $\{B(0)\}\$ to $\{B(\theta)\}$,

$$\bar{g}_{ab}(\theta) = e^{\hat{\xi}_a \theta} \bar{g}_{ab}(0) = \bar{g}^a_{b(0)b(\theta)} \bar{g}_{ab}(0)$$

i.e., $e^{\hat{\xi}_a \theta}$ represents rigid-body motion created by the screw sending $\{B(0)\}$ to $\{B(\theta)\}$ expressed in $\{A\}$.

• If we choose $p_a(0) = q + \lambda w$, $p_a(\theta) = p_a(0) + h\theta w_a$.

