Topics in Ship Structures

03 LCF S-N Curves for Notches

Reference : Fundamentals of Metal Fatigue Analysis Ch. 4 Notches

> 2017. 9 by Jang, Beom Seon

4.3.1 Notch Root Stresses and Strains

• Theoretical stress concentration factor K_{t}

$$K_{\sigma} = \frac{\sigma(\text{ notch stress})}{S(\text{nominal stress})}$$
 $K_{\varepsilon} = \frac{\varepsilon(\text{notch strain})}{e(\text{nominal strain})}$

• For increasing nominal stress, *S*, *K*_t remains the same, until yielding begins.

- After yielding occurs,
 - ✓ K_{σ} decreases with respect to K_{t}
 - ✓ K_{ε} , increases with respect to K_{t}

4.3.1 Notch Root Stresses and Strains

- After yielding occurs, actual local stress < predicted using K_t , actual local strain > predicted using K_t ,
- Neuber's rule $K_t = \sqrt{K_\sigma K_\varepsilon}$ $K_t^2 = \frac{\sigma}{S} \frac{\varepsilon}{\rho}$, $K_t^2 Se = \sigma \varepsilon$
- Nominally Elastic Behavior

$$K_t^2 = \frac{\sigma}{S} \frac{\varepsilon}{e} = \frac{\sigma}{S} \frac{\varepsilon E}{S}, \ (\because S = Ee, \ \frac{1}{e} = \frac{E}{S})$$

$$\sigma\varepsilon \ (notch repsonse) = \frac{(K_t S)^2}{E} \ (applied \ load)$$

Limited Yielding

when yielding occurs in the nominal stresses or strains, Hooke's law cannot no longer be used ($S \neq Ee$). $K_{\epsilon}^{2}Se = \sigma \varepsilon$

• Small notches have less effect than is indicated by K_t , Topper et al. proposed $(K, S)^2$

$$\sigma \varepsilon = \frac{(K_f S)^2}{E}$$

$$K_{\sigma} = \frac{\sigma}{S} \qquad K_{\varepsilon} = \frac{\varepsilon}{e}$$

4.3.1 Notch Root Stresses and Strains

- The local stress-strain response at the notch root may vary from the nominally applied loading.
- Extreme example : Nominally applied stress is from 0 to σ_{max}, while the local stress-strain response is completely reversed.
- Due the residual stresses developed as a result of local yielding at the notch root.

4.3.1 Notch Root Stresses and Strains

- K_{t} an S must be defined using the same cross-sectional area ($K_{t_{net}}$ and S_{net} or $K_{t_{gross}}$ and S_{gross})
- $K_{t_{gross}}$ includes the nominal stress increase effect caused by area reduction and stress concentration effect in the vicinity of hole.
- $K_{t_{net}}$ includes only stress concentration effect in the vicinity of around hole

4.3.2 Example of Notch Analysis Using Neuber's Rule

- For given *S*₁, determine notch stress and strain.
- What to be satisfied?
 - Neuber's rule.
 - Cyclic stress-strain curve of material
- Assumptions
 - 1) Nominally elastic behavior
 - 2) K_f instead of K_t .
 - 3) Net section K_{tret} and S based on A_{net} .

 Fatigue notch factor is dependent on material type.

$$K_f = \frac{S_e^{(unnotched)}}{S_e^{(notched)}}$$

 S_e : fatigue strength

4.3.2 Example of Notch Analysis Using Neuber's Rule

• K_f is used to correct only endurance limit(S_e) of S-N Curve or entire S-N curve to be conservative ?

Modification of S-N Curve

• K'_f is used to adjust S_{1000}

$$K_f = \frac{S_e^{(unnotched)}}{S_e^{(notched)}}$$

- The notch effect at short lives (10³) is greatly reduced for low strength of soft material.
- For high strength material, the notch effect of fatigue life shortening becomes larger.

4.3.2 Example of Notch Analysis Using Neuber's Rule

Step 1 : Initial Loading

Nominally elastic version of Neuber's rule

4.3.2 Example of Notch Analysis Using Neuber's Rule

Example 4.2

Q: A notched steel component of a bar : wide : 1.0 in, 0.25 in thick with two semi-circular edge notches with radii of 0.1 in. Determine the life of the component using a Neuber analysis.

Example 4.2

Given $\Delta \epsilon \implies N_f$: fatigue life $\Rightarrow \Delta S \Rightarrow$ Δσ 🗭 load P W= 1.0 in, t=0.25, Step 3 : calculate ΔS_{net} r=0.1 in, P=10 kips For most engineering applications $(K_{t_{nat}})(S_{net}) \approx (K_{t_{starses}})(S_{gross})$ $\frac{\Delta S_{net}}{2} = \frac{P}{A_{net}} = \frac{10 \text{kips}}{(1 - 0.2)(0.25)} = 50 \, ksi$ $\sigma \varepsilon = \frac{(K_f S)^2}{2}$ $K_t^2 Se = \sigma \varepsilon$ Step 2: calculate $\Delta \sigma$ $E = 30 \times 10^{3} ksi, K' = 154 ksi, n' = 0.123$ the elastic-plastic form of Neuber's rule $K_{\star} = 2.42$ $K_t^2 \frac{\Delta S}{2} \left| \frac{\Delta S}{2E} + \left(\frac{\Delta S}{2K}\right)^{1/n'} \right| = \frac{\Delta \sigma}{2} \left[\frac{\Delta \sigma}{2E} + \left(\frac{\Delta \sigma}{2K'}\right)^{1/n'} \right]$

Example 4.2

• Step 3 : calculate $\Delta \epsilon$

$$\frac{\Delta\varepsilon}{2} = \frac{\Delta\sigma}{2E} + \left(\frac{\Delta\sigma}{2K'}\right)^{1/n'} = 0.0065$$

Fully reversed loading \rightarrow mean stress =0 • Step 4: calculate N_f . $\frac{\Delta \varepsilon}{2} = \frac{\sigma_f'}{E} (2N_f)^b + \varepsilon_f' (2N_f)^c$ $2N_f = 5000 \ reversals$

