CHAPTER 1. FIRST-ORDER ODE
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Why Mathematics?
Physical/Social Understanding, Insight

Math <j Human-Social phenomena
N .
Medel :> Physical phenomena

Analysis, Prediction

Billions of people
12F T

Increase of iy .
How long population in ol o
does it take to the future of | R
cool down the 8%’ L o 8
hot water : | - — ;
7 T )| :
e e | z
Changing rate of o Temperature difference between Increasing rate of - Present
water temperature water and outside population Population
dT(t : y : population
© _ k(T —T,).k <0 [ :Water temperature dy(t) ) ok
dt 7, Outside temperature (constant) o y(t) t:time
k : proportional constant
<Newton’s law of cooling> <Malthus'’s population dynamics>
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Why do we need to study “Engineering Mathematics”?

Idealization or
Simplification*

0
-Insight "I_
-Constitutive Relations Z

#\ Linearization

Problem-Solving Abilities

Real World

Explain or

Predict -Taylor Series
Solution Mathematical Model
z(t) =e " (Acos wt + Bsin mt) + C cos m,t mz"+cz'+kz = F, COS
-Linearly Dependent / Independent
-Basis
-Orthogonality

-Linear Combination

* Keener, J.P., Principles of Applied Mathematics, Westview Press, 2000, p.xi : ..there is the goal to explain or predict the behavior of some physical situation. One begins by constructing a

mathematical model which captures the essential features of the problem without ,asking its content with overwhelming detail



1.1 Basic Concepts. Modeling

v Modeling

% The typical steps of modeling in detalil

Step 1. The transition from the physical situation to its mathematical

formulation

Step 2. The solution by a mathematical method

Step 3. The physical interpretation of differential equations and their

applications

s

i
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1.1 Basic Concepts. Modeling

< Differential Equation (B] 2378 4!): An equation containing
derivatives of an unknown function

Ordinary Differential Equation (&0]&2 %3 4)
Differential Equation
Partial Differential Equation (HO|2 2dA)

< Ordinary Differential Equation: An equation that contains one or several
derivatives of an unknown function (y) of one independent variable (x)

ex) y'=cosX, y"+9y=e?, y'y'"—E(y)Z:O

* Partial Differential Equation: An equation involving partial derivatives of an

unknown function (u) of two or more variables (X, )

ex) @ o' ~0
X’ 8y2

3 Hona,
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1.1 Basic Concepts. Modeling

< Order (Al): The highest derivative of the unknown function

ex) (1) y'=cosx = First order

(2) y+9y=e?®™ =  Second order

(3) y'y"'_ﬁ(y-)zzo — Third order
2

% First-order ODE: Equations contain only the first derivative y'and may
contain y and any given functions of x
- Explicit (&) Form: Y'=f(xY)

O SEA

= Implicit (§&=F) Form:  F(x,y,y')=0
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1.1 Basic Concepts. Modeling

/

« Solution: Functions that make the equation hold true
= General Solution (4tsl)

. a solution containing an arbitrary constant

= Particular Solution (§=5l)

. a solution that we choose a specific constant

= Singular Solution (Problem 16) (£0|3})

. an additional solution that cannot be obtained from the general

solution

* Ex. (Problem 16) ODE : (y')" —xy'+y=0
General solution : Y =CX— c’
Particular solution : y=2Xx—4
Singular solution :  y=x*/4

Engineering Math, 1. First-Order ODE 3 Lj\ nilvo"a




1.1 Basic Concepts. Modeling

< Initial Value Problems (Z7]4f &4AI): An ordinary differential equation together
with specified value of the unknown function at a given point in the domain of the
solution
y':f(x,y) ) Y(Xo):yo

M Ex.4 Solve the initial value problem

dy
'— :3 , 0 = 57
y ax y, y(0) °

Step 1 Find the general solution.

General solution: Y (X)=ce
Step 2 Apply the initial condition. y(0)=ce’ =¢c=5.7

Particular solution: y(x)=5.7¢*

Engineering Math, 1. First-Order ODE




1.1 Basic Concepts. Modeling

M Ex.5 Given an amount of a radioactive substance, say 0.5 g (gram), find the
amount present at any later time.

Physical Information.

Experiments show that at each instant a radioactive substance decomposes at a rate
proportional to the amount present. °

Step 1 Setting up a mathematical model (a differential equation) of the physical process.

; . d_y oc —y — ﬂ — _ky
By the physical law : at dt
The initial condition : ¥(0)=0.5
Step 2 Mathematical solution.
General solution: y(t)=ce™
Particular solution: y(0)=ce’=c=05 = y(t)=0.5e"

Always check your result: % =—0.5ke™ =—ky, y(0)=0.5e’=0.5
t

Step 3 Interpretation of result.  The limitofy as t— oo is zero.

“-‘;:'_’E] 5 Seoul
¥ . National 9 3
. Univ.
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1.2 Geometric Meaning of
y'=f(x, y). Direction Fields,
Euler's Method
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1.2 Geometric Meaning of y'=f(x, y). Direction Fields,

Euler's Method

< Afirst-order ODE y' = f(x, y)

: A solution curve (o =) that passes through a
point (X, Yo) must have, at that point, the slope V'
(Xo) equal to the value of f at that point

y' (Xo) =T (Xos Yo)
< Direction Field (2+&FZEh

= The graph includes pairs of grid points and line
segments

= The line segment at grid point coincides with
the tangent line to the solution.

<+ Reason of importance of the direction field
= You need not solve a ODE.
= The method shows the whole family of

solutions and their typical properties.

Grid point, Line segment y
Hﬂﬂﬂ;>§qﬁfffé_

e XN A7
g T T T ek L AR ,/.

-\"«-""‘-‘“'-I—b—h-'-"'—*-”ﬂf"f

rp——

=2\ '=1.5 =105~
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AR e R N\
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LU LY N N NN N NS
AR TRV W W W
(AR VA V¥

(RN
VAVAVAN

(AT TRV U N O T T Y
R R O O O O e

YRRV,

Direction field of with three
approximate solution y’'=y + x,
curves passing through (0, 1),
(0, 0), (0, -1), respectively
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1.2 Geometric Meaning of y'=f(x, y). Direction Fields,
Euler's Method

“* Numeric Method by Euler

. yields approximate solution values at equidistant x-values with

an initial value x,. ,

Solution curve /
/

ye) o .

y(xo): Yo
X=X +h, Yi=Yo + hf (Xo’ yo)

X, =Xy +2h, Yo=Y, + hf (X1’ Y1)
X=X, +30, Y, =Y, +hf(x,,y,)

> Error ol‘"y1

. hf[:co,yo)

C
|
|
|
|
|
|

ID Il X

where the step h : a smaller value

for greater accuracy e.g. 0.1 or 0.2 First Euler step, showing a solution curve, its

in the formula for y;,

tangent at (x,, V,), step h and increment hf (x,, ;)

Hona,
Engineering Math, 1. First-Order ODE *Lj\ Iniv.




1.2 Geometric Meaning of y'=f(x, y). Direction Fields,
Euler's Method

= ODE = Fxact Solution
y' =y+x, x=0, y(0)=0, h=0.2 y =eX+x+1
Eul?(r=r(;1eth:>d0fsvri tg;;=:/t+;; %(=03=;) for y'= f(X, y) = y+x
— — Xl = Xoth, y1= Yot hi(Xe, Yo) = Yoth (YotXo)
n Xy Vi V(x,) Error —0+02 =02
0 0.0 0.000 0.000 0.000 Y1 —0+0.20=0
1 0.2 0.000 0.021 0.021
2 0.4 0.04 0.092 0.052
3 0.6 0.128 0.222 0.094 Xz =X+, Y, =y, + hf(xy, y;) =y, +h (y1+Xy)
4 0.8 0.274 0.426 0.152 =02+0.2 =04
5 1.0 0.488 0.718 0.230 y2 =0+ 0'2_(0_'_0.2) =0.04
y
07l X3 =X,+h, y3=Y, + hf(X,, ¥,) = y,+h(y,+X))
= =04+0.2=0.6
D‘E: . y3 =0.04 + 0.2{0.04+0.4) = 0.128
0.3} K/,,,/ o
o1l " X4 =Xg+h, y,=Y; + hf(X3, Y3) = y3+h(ys+Xs)
@ ! ! ! =0.6+0.2=0.8
0 0.2 0.4 0.6 0.8 1 =

=0.128 + 0.2{0.128+0.6) = 0.274

Fig. 9. Euler method: Approximate values in Table 1.1 and solution curvey4
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1.3 Separable ODEs. Modeling
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1.3 Separable ODEs. Modeling

< Separable Equation (H+22|d W™ AD:

A differential equation to be separable all the y's in the differential equation
must be multiplied by the derivative and all the x’s in the differential equation
must be on the other side of the equal sign.

g(y)y'=f(x) = gly)dy=f(x)dx ( y'=dyj

dx

< Method of Separating Variables (‘H3&2|™H)

a(yly=f(x) = [aly)dy=[f(x)dx+c (':%dx:dyj

M Ex.1 Solve y'=1+V° .
Y o oo Wi, W ox
1+y 1+y 1+y

= j1+y dy = Idx+c = arctany=x+c = y=tan(x+c)

E?I f 1 joi Eéf eou.
— (arctan x) = arctan’ x = 5 e
Engineering Math, 1. First-Order ODE dr 1+ z° == Univ.




1.3 Separable ODEs. Modeling

M Example

Solve the IVP (Initial Value Problems).

dy X
dx

Q?

, y(4)=-3
y

Engineering Math, 1. First-Order ODE
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1.3 Separable ODEs. Modeling

M Ex. 5: Find the amount of salt in the tank at any time t.
— the amount of salt in the tank = y(t) in 1,000 gal

= The tank contains 1,000 gal of water in which initially 100lb of salt is
dissolved. — Initial condition y(0) = 100 Ib

" Brine (&&=) runs in at a rate of 10 gal/min, and each gallon contains
5lb of dissolved salt. — vy _inflow = 10 gal/min x5 Ib/gal = 50 Ib/min

= The mixture in the tank is kept uniform by stirring (21 X4 2).
= Brine runs out at 10 gal/min

— y_outflow = 10 gal/min x y/21000 (Ib/gal) = (y/100) Ib/min

= Find the amount of salt in the tank at any time t. °

the amount of salt =y b in 1,000 gal

10 gal/min x5 Ib/gal —

= 50 Ib/min
— Q- 10 gal/minxy/1000 Ib/gal
1gal=3.78 ’ =y/100 Ib/min
11b = 0.454 kg Tank

¥ .
Engineering Math, 1. First-Order ODE 3 LJ\ Z-'f""




1.3 Separable ODEs. Modeling

MEX. 5

the amount of salt =y Ib in 1000 gal

10 gal/min x5 Ib/gal —
= 50 Ib/min

— Q- 10 gal/minxy/1000 Ib/gal
’ =y/100 Ib/min

Tank

Step 1 Setting up a model.

» Salt’s time rate of change = Salt inflow rate — Salt outflow rate “Balance law”
Salt inflow rate = 10 gal/min X 5 Ib/gal = 50 Ib/min
Salt outflow rate = 10 gal/min x y/1000 Ib/gal = y/100 Ib/min

(dy/dt=y)
. y 1
— =50- = 5,000 -
y 700~ 100" y) 1gal =3.78 |
» The initial condition : 1 1b=0.454 kg
y(0)=100

Engineering Math, 1. First-Order ODE ) LJ\ nif"a



1.3 Separable ODEs. Modeling

Step 1 Setting up a model.

— =
= y'=50- Y _ L (5,000—y) y(0)=100
100 100 —_ .

P

Tank

Step 2 Solution of the model.

= General solution :

L) A
y—5,000 100

t

= |n\y—5,ooo\:—ﬁt+c* = y-5,000=ce @

= Particular solution : 5000 [~~~ == -=—-—Z=====————-

4000
y(0)=5,000+ce” =5,000+c=100 = c=-4,900 3000} /
i 2000

1000 /

y =5,000—4,900 e

100 & | | | | |
0 100 200 300 400 500 ¢

Salt content y{¢)
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1.3 Separable ODEs. Modeling

M Newton’s Law of Cooling
= The rate at which the temperature change of a body (&)
IS proportional to
the difference between
temperature of the body and
the temperature of the surrounding medium.

dT dT
—oc (T =T —=k(T =T
d'[OC( A):>dt ( A)

where, k <0

T :Bodytemperature
T,:Surronding medium temperature

Engineering Math, 1. First-Order ODE



1.3 Separable ODEs. Modeling

M Newton’s Law of Cooling T,

N\
Great Idea !!
. Tl e
Relation between | = ™
dT (t) and T —T,- TA
ad ] e
T, [
dT 4+ | dT >
ot | g ocT —T, ° T
\\ d—T _ k(T _TA), k <0 T: bOdy temperature
dt T, : outside temperature (constant)
) T,,T, : Initial Body temperatures
Of-. T-T,
.'...-. ‘\ Tl > T y T2 < T

Engineering Math, 1. First-Order ODE



1.3 Separable ODEs. Modeling

M Newton’s Law of Cooling

dT
=k -dt
Z—Tzk(T ~T,), k<o| T-T,
t dy
dT —=k-dt
=k -dt Y
T-=T, d—Yzjk-dt
Y=T-T,
InfY|+c, =kt+c;
dy
d—T=1:>dY=dT InlY|=kt+c, —C,




1.3 Separable ODEs. Modeling

M Newton’s Law of Cooling

®
Ch =k =T,
kK <O
InlY|=kt+c
eln\Y\ :ekt+c

‘Y ‘ _ ekt+c

® ®
- K
‘Y‘zcekt Y =Ce"
,(C=sgn(Y =T -T,)-C)
If Y >0,
p T-T, =Ce"
Y =Cce
v -0 T=Ce“"+T,
<V,
~Y =ce“
Y = —Ce"

Engineering Math, 1. First-Order ODE
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dT
1.3 Separable ODEs. Modeling ‘EZK(T —TA)‘

M EXx.6 Suppose that in winter the daytime temperature in a certain office building is
maintained at 70°F — Initial condition

= The heating is shut off at 10 P.M. and turned on again at 6 A.M.
= On a certain day the temperature inside the building = 65°F at 2 A.M.
* The outside temperature: 50°F at 10 P.M. ~ 40°F by 6 A.M.

What was the temperature inside the building (T) when the heat was turned on at 6
A.M.? N

Step 1 Setting up a model daT KT —T.)
. . . — A

Temperature inside the building T(t), Outside temperature T, dt
Step 2 General Solution

T, varied between 50°F to 40°F,

Golden Rule: If you cannot solve your problem, try to solve a simpler one.

T,= 45°F dT
A= 4 —kdt  T(t)=45+Ce"

(T —45)
Step 3 Particular solution Let 10 P.M to t=0. — T(0)=70

T(0)=45+Ce” =70 =C=25 T, (t)=45+25"

¥ ation. 3
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1.3 Separable ODEs. Modeling

M EX.6 Suppose that in winter the daytime temperature in a certain office building is
maintained at 70°F.

= The heating is shut off at 10 P.M. and turned on again at 6 A.M.
= On a certain day the temperature inside the building = 65°F at 2 A.M.
»= The outside temperature: 50°F at 10 P.M. ~ 40°F by 6 A.M.

What was the temperature inside the building (T) when the heat was turned on at 6
A.M.? N

Step 4 Determination of k T(4)=65

T (4)=45+25¢" =65 e*“=08 k= % IN0.8=-0.056 *

T, (t) =45+ 25> 68

Step 5 Answer and interpretation 6 A.M is t=8 6o L |

61 f——————— '
60 l l | |

T,(8) =45+ 25 =61 F] 0 2 4 6 8¢

Particular solution (temperature) in Example 6

o E] " Seoul

([ Natoral 25
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1.3 Separable ODEs. Modeling

< Extended Method (ZH&tH) : Reduction to Separable Form. Certain first
order equations that are not separable can be made separable by a simple

change of variables.

: y
= A homogeneous ODE VY = f(;) can be reduced to separable form by the
substitution of y=ux
du dx

y'=f(%) = u'x+u=f(u) = f(u)—u:? (y:ux = u:% &y':(ux)'zu'x+uj

Q?
¥ Ex.8 Solve  2xyy'=y’ —x’

Engineering Math, 1. First-Order ODE



1.4 Exact ODEs, Integrating
Factors
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1.4 Exact ODEs, Integrating Factors

< Exact Differential Equation (20| & %”8&!):

=8x.

M(X, y) N(x y)

= |f ODE is an exact differential equation, then
M(xy)dx+N(x,y)dy=0 = du=0 = u(xy)=

oM oN (. oM a(auj o'u _dfou)_oN
oy ox | oy oylex) oxoy oxloy ) ox

%+ Solve the exact differential equation.

s+ Condition for exactness:

M(X’y):%l( — u(x,y):jM(x,y)dx+k(y) = %uzN(x,y) = % & k(y)
N(xy)=— :u(x,y):IN(x,y)derl(x) = Z—i:M(x,y) = %&I(X)

Engineering Math, 1. First-Order ODE



1.4 Exact ODEs, Integrating Factors

M Ex.1 Solve cos(x+y)dx+(3y2+2y+cos(x+y))dy:0 .

Step 1 Test for exactness.

M(x y)=cos(x+y) = %:—sin(my) M N

oy  OX

N(x y)=3y*+2y+cos(x+y) = %\I:—sin(my)—
Step 2 Implicit general solution.

u(x, y):jM (x,y)dx+k(y) =_[cos(x+ y)dx+k(y)=sin(x+y)+k(y)

- &—”=cos(x+y)+3_k=N(x,Y) = :_k=3y2+2y = k=y'+y*+c*

u(x,y)=sin(x+y)+y +y*=c

Step 3 Checking an implicit solution. du:g—udx+%udy
X

du = Z—udx+2—udy =cos(x+ y)dx + (cos(x+y)+3y*+2y)dy =0
X y

Engineering Math, 1. First-Order ODE



1.4 Exact ODEs, Integrating Factors

M Example | Q?
Solving an Exact DE
Solve

2xydx+(x* =1)dy =0

Engineering Math, 1. First-Order ODE
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du =L v+ Ly

1.4 Exact ODEs, Integrating Factors "oy

M) NG v)

< Reduction to Exact Form, Integrating Factors (H& 2%}
Some equations can be made exact by multiplication by some function,

F(x,y)=0, which is usually called the Integrating Factor.

M Ex. 3 Breakdown in the Case of Nonexactness

—ydx+xdy =0 0

aﬁ(_y)z_l, aﬂ(x)ﬂ - That equation is not exact.
Y X

If we multiply it by %2 , We get an exact equation

y 1 o vy 1 a(1j
Y gx+Zdy=o|-- - X|-_=-2f=
X X Y ( 8y( xzj x> ox\ X

General solution y/x=c

]
7
S
333
w
-—h
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M (x,y)dx+N(x,y)dy=0

1.4 Exact ODEs, Integrating Factors

“* How to Find Integrating Factors (F) ?
FPdx+ FQdy =0

i 0 0 oF P _OF,, -Q
The exactness condition: —(FP)=—(F - —P+F— :—
8y( ) ax( Q) oy oy Q ax

Golden Rule : If you cannot solve your problem, try to solve a S|mpler one.

Hence we look for an integrating factor depending only on one variable.

Case 1)

F=F(x) = o _ F F _o “F=F(x,y) 7} Y¥FEO|X| Ot Ch3| F(x) & 7}~
OX oy
PP, =FQ+FQ, 1 9F _R(x) where R(x):i[@_@j
C F dx olay ox
FQ=F(P,-Q,) /
F 1oy ~F(x)=exp([ R(x)lx)
Q? F Q
Case 2)

Hona,
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: FPdx + FQdy =0
1.4 Exact ODEs, Integrating Factors

M Ex. Find an integrating factor and solve the initial value problem
(e +ye )dx+(xe’ ~1)dy =0, y(0)=-1 .

Step 1 Nonexactness. oP aQJ

1
R“):a(a‘&
PR F — expl[ R(dx)

Q oy 0
= y— _—= y y X
Qlx,y)=xe'-1 = ~ ¢ R*(y):%[@_@

0
Step 2 Integrating factor. General solution. <o
F*(y)=exp([R*(y)dy)

P(x,y)=e"Y +yve' = P oy ey g T —

1(6Q oP 1 )
R*(y)=— —~ = el - el -y )=-1 = F*(y)=¢"’
) P[ax 8yj ex+y+yey( Y ) ()

(ex + y)dx+(x—e‘y)dy =0 s the exact equation.

Q? Why not R?

3 Hona,
Engineering Math, 1. First-Order ODE 3 Lj\ Iniv.



1.4 Exact ODEs, Integrating Factors

M Ex. Find an integrating factor and solve the initial value problem

(e +ye )dx+(xe’ ~1)dy =0, y(0)=-1 o
ou
Step 2 Integrating factor. General solution. F*(y)=¢™ M (xy)= X
¢y)0cs(x-e =0 o=
M(x, y) N(x, y) U
_ X _AX —
u—j(e +y)dx=e*+xy+k(y) 5 =)
ou

= @:x+k’(y):x—e‘y = k'(y)=—", k(y)=¢"

The general solution is u(x, y) —eX 4 Xy + eV =¢

Step 3 Particular solution
y(0)=-1 = u(0,-1)=€’+0+e=3.72

u(x,y)=e*+xy+e” =3.72

Hona,
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1.4 Exact ODEs, Integrating Factors

M Example
Nonexact ODE

Solve

Q? Integration
Factor

xydx + (2x* +3y* —20)dy =0

Engineering Math, 1. First-Order ODE
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1.5 Linear ODEs. Bernoulli
Equation. Population Dynamics

Ty

R

pmn
>
w
(=]



1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

Homogeneous Linear ODEs
Linear ODEs < (M| X M O| 28" A

Nonhomogeneous Linear ODEs
(HIRIX A 0] 2 o)

ODEs

Nonlinear ODEs (H|4& O] 2&7- Al

“* Linear ODEs: ODEs which is linear in both the unknown function (y) and its
derivative (y').

EX. y'+ p(x) y = r(x) . Linear differential equation

y'+p(x)y=r(x)y* :Nonlinear differential equation

= Standard Form : y+p( ) ( ) (r(x) : Input, y(x) : Output)

“* Homogeneous, Nonhomogeneous Linear ODE
y+p(x)y=0 : Homogeneous Linear ODE
y'+p(x)y=r(x)=0 : Nonhomogeneous Linear ODE

g Hona,
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1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

“* Homogeneous Linear ODE (Apply the method of separating variables)
\ -1 p(x)dx
y+p(x)y=0 = y:ce“) (1%)

“* Nonhomogeneous Linear ODE (Find integrating factor and solve)

y+p(x)y=r(x) = (py-r)dx+dy=0 isnotexact

( %(py—r)= p¢0=§(1)j

= Find integrating factor. We multiply F(x).

Fy“pFy=rF = IfpFy=F'y = Fy+Fy=rF

FO)y = ([ reoF (dx+c)

» (FyY)=rF » 1
TEX
- Z pF=F' 0] §l= FE 0L 280l Z0HS — Exact ODE

r(x)F(x)dx + c)

Hona,
Engineering Math, 1. First-Order ODE Lj\ Iniv.



1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

“* Nonhomogeneous Linear ODE (Find integrating factor and solve )

| ; 0
y'+p(x)y=r(x) = (py-r)dx+dy=0 isnotexact |- 5(py—r):p¢0=&(1)

From exactness condition

Fy'+pFy=rF = Fdy+ (pFy—-rF)dx=0
= (pFy —rF)dx + Fdy =0

%, OF
2 (pFy—rF)="
»s(pyr)ax

» pF=F'

R e
Nationa
Engineering Math, 1. First-Order ODE 3 Lj\ Univ.



1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

“* Nonhomogeneous Linear ODE (Find integrating factor and solve )

y+p(x)y=r(x) = (py-r)dx+dy=0

= Find integrating factor (F) from pF=F’

= By integration, writing h =J p dx,
In|F|:h:_[pdx, — F=¢

= With F =e" and 4'=p, Eq. Fy+pFy=rF becomes

e"y'+h'e"y =e"y'+(e") yH(e"y)=re"| = e"y= je“rdx+c

= By integration,

y(X) = e‘hqe“rdx+c)= e‘hje“rdx+ce‘“, h =_[ p(x)dx

e
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1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

M Ex. 1 Solve the linear ODE y'—y:ezx

%—(Hezx):O = (y+e*”*)dx—dy =0
X

(y+e”)Fdx—Fdy=0, F =F(x)

Exactness : i(yF +e?*F) =
oy

ar
F

OF
OX

=—dX =InNF=-X =DF =e"

(e”"y)dy = e”dx

(y+e e “dx—e*dy =0 (Fy"+pFy=rF)

where, 9 (ye*+e*)=e"", 9 (—e*)=e"
oy OX

[, e—xyr _e—xy — e2xe—x — (e—x y)r — ex

= e ‘y=e"+c¢C

-—— = F=-F'
(pF=F'®p=-1)

y =e** +ce”

Engineering Math, 1. First-Order ODE
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1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

M Ex.1 Solve the linear ODE y'—y:ezx o
y'+ p(X)y =r(x)

y(X) = e‘“(je“rdx+ c), h :j p(x)dx

— e‘hjehrdx+ ce "

p=-1 r=e* h:jpdx:—x = y:e‘h“e"rdx+c}:eXUe‘Xezxdxm}:ex[ex+c]:ezx+ceX

e
(e
b Sy
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N
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1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

< Bernoulli Equation: Y+ P(X)y=0(x)y* (a#0 & 1): Nonlinear ODE
We set U(X):[y(x)]l_a

=(1-a)y*(ay* - py)

1y, !

= u'=(1-a)y’y

N

§’= g(x)y® — p(x)y

= u'+(l-a)pu=(1-a)g

: Now transformed to Linear ODE

y'+ p(x)y =r(x)

y(x) = e‘h(jehrdx + c) h = _[ p(x)dx

(1-a)(g-py"*)=(1-a)(g - pu)

Engineer

ing Math, 1. First-Order ODE
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1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

< Bernoulli Equation:

We set u(

)=[y(x)]"

M Ex. 4 Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst
equation) y'= Ay — By2

y+p(x)y=g(x)y* (a=0 & 1)

y'=Ay-By* = y'-Ay=-By’ &a:2(u:y‘1)

= u':—y‘zy'z—y‘z(Ay—Byz):—Ay‘1+B:—Au+B = U+Au=B

p=Ar=B = hszdx:Ax & u:e“Uehrdx+c]=eAX{%eAXH;}:CgAXJF_

B
A

y(x) = e‘“thrdx + c)

h:ijMX

1 1
The general solution of the equation is u (%+Ce_AX)

Engineering Math, 1. First-Order ODE
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1.6 Orthogonal Trajectories (2l EM) - Skip

% Orthogonal Trajectory

: A family of curves in the plane that intersect a given family of curves at given angles.
% Find the orthogonal trajectories by using ODEs.
Step 1 Find an ODE Y= f(%Y) for which the give family is a general solution.

f(x,y)

Step 2 Write down the ODE  y'=-— of the orthogonal trajectories.

Step 3 Solve it.

M Ex. A one-parameter family of quadratic parabolas is given by y=cx® o

1 2_
Stepl L=c = M:o N y-:ﬂ
X X X

X

Step 2 y':—z_
y

Step 3 2yy+x=0 = y2+%x2=c*

28
Nation.
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1.7 Existence and Uniqueness
of Solutions for Initial Value
Problems
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1.7 Existence and Uniqueness of Solutions for Initial Value
Problems

“ An initial value problem may have no solution, precisely one solution, or more
than one solution.

= Ex. |y]+|y|]=0, y(0)=1 = No solution

y'=2x, y(0)=

1 = Precisely one solution =  y=x"+1
xy'=y-1 y(0)=1 = Infinitely many solutions = y =1+CX

< Problem of Existence (EM4)

Under what conditions does an initial value problem have at least one solution
(hence one or several solutions)?

< Problem of Uniqueness (& 4)

Under what conditions does that problem have at most one solution (hence
excluding the case that has more than one solution)?

7
(=
i
=2
F'S
N

a ‘
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1.7 Existence and Uniqueness of Solutions for Initial Value

Problems

< Theorem 1 Existence Theorem (EX{| ™a|)

Let the right side f (x,y) of the ODE in the initial value problem.

,
@ Y=ty y06)=Y A
R
be continuous at all points (x, y) in some rectangle O N S =
R+ Jol<a [y-yl<t U

and bounded in R ; that is, there is a number K such that
2 [f(xy)kK forall(x,y) in R.

Then the initial value problem (1) has at least one solution y(x). This solution exists at

least for all x in the subinterval |X-%|<a of the interval |X-X%l<a : here, aisthe

smaller of the two numbers a and b/K.

EX) f (x, y)= x? + y?is bounded (with K= 2) in the squre of |x|<1, |y|<1.
f (X, y)=tan(x+y) is not bounded for [x+y|<m/2

Engineering Math, 1. First-Order ODE




1.7 Existence and Uniqueness of Solutions for Initial Value

Problems

< Theorem 2 Uniqueness Theorem (S8 Hz2))

Let f and its partial derivative f =0of /dy be continuous for all (x, y) in the rectangle R

and bounded, say,

(3) @ |f(xy)<K () |f,(xy)<M  forall (xy)in R.

Then the initial value problem (1) has at most one solution y(x). Thus, by the Existence
Theorem, the problem has precisely one solution. This solution exists at least for all x in

that subinterval |X_X0| <q -

y'= f(x,y),the condltlon (2) impliesthat | y'|< K
v y'=-K

Caseof b>aK Caseof b <aK

S a=a . : —
Solution exists for o lob L

l
—a=b/K<a ol X P

Solution exists for
X,-a < X< X, +a

KobIK <x<x4b/K| | Tl L)

Engineering Math, 1. First-Order ODE




1.7 Existence and Uniqueness of Solutions for Initial Value
Problems

M Ex. 1 Consider initial value problem

y'=1+y*, y(0)=0
R;|x|<5, |y|<3, then, a=5b=3and
f(xy)H1+y* <K =10

ﬁ:2|y|§|\/| _6 :>a:£=0.3<a
oy K

The solution of the problem y =tan x. It is discontinuous at +n/2 and no continuous
solution valid in the entire interval from which we started |x|<5.

y' 4 - dy/dx:1 . dy

= =dx
1+y° 1+y° 1+y°

= I1+1y2dy:fdx+c = arctany=x+c =  y=tan(x+c)

=  y=tan(x+c) (- y(0)=0)

(2ad]
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[Reference] Natural Logarism (In(x)) function

Rule name Rule Example

In(3-7)=1n(3) +

Product rule 1]1(.‘( 1) = lI](.T ) + 111(1‘)
In(7)
In(3/7)=1n(3) -
Quotient rule In(x /y) = In(x) - In(y)
In(7)
Power rule 111(_*-: -1') =y- 111(.":') 111(28) = 8- 111(2)
In derivative f(T) N ll](.‘{') Df ' (T) a
/X
i integral {r lgx)dr =x - (In(x)- 1)
In of negative 111(.T) is undefined when X =
number 0

In(0) is undefined

In of zero

lim In(z) = —oc

r—07t ( J

In of one 1]1(1):0

In of infinity lim In(x) = o ,when x—o0

e
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