Chapter 2: A shallow truss element with Fortran computer program

Myoung-Gyu Lee TA: Gyu Jang Sim (gyujang95@snu.ac.kr)

ENGINEERING COLLEGE OF ENGINEERING SEOUL NATIONAL UNIVERSITY 서 울 대 학 교 공 과 대 학

• Incremental (Euler) solution is implemented by a load-level factor λ .

2

2.3.1 Program NONLTA

1		PROGRAM NONLTA
2	С	
	С	PERFORMS NON-LINEAR INCREMENTAL SOLUTION FOR TRUSS
4	С	N = NUMBER OF ARIABLES(4 OR 5)
5	С	QFI = FIXED LOAD VECTOR
6	С	<pre>IBC = BOUNDARY CONDITION COUNTER(0=FREE, 1=FIXED)</pre>
7	С	Z = C COORDS OF NODES
8	С	QINC = INCREMENTAL LOAD VECTOR
9	С	PT = TOTAL DISPLACEMENT VECTOR
10	С	AKTS = STRUCT. TANGENT STIFFNESS MATRIX
11	С	AKTE = ELEMENT TANGENT STIFFNESS MATRIX
12	С	FI(NOT USED HERE) = INTERNAL FORCES
13	С	<pre>D = DIAGONAL PIVOTS FROM LDL(TRAN) FACTORISATION</pre>
14	С	ID14S = VAR. NOS. (1-4) AT WHICH LIN EARTHED SPRINGS
15	С	AK14S = EQUIVALENT LINEAR SPRING STIFFNESSES
16	С	AK15 = LINEAR SPRING STIFFNESS BETWEEN VARBLS. 1 AND 5 (IF NV=5)
17	С	
18		DOUBLE PRECISION QFI(5),Z(2),QINC(5),PT(5),AKTE(4,4),FI(5),D(5),
19		1 AK14S(4),AKTS(25),X(2),POISS,E,ARA,AL,ANIT,AK15,
20		2 AN,ALN,ARN
21		<pre>INTEGER IBC(5),ID14S(4),IRE,IWR,I,NV,NDSP,ITYEL,N</pre>
22		
23	С	ARRAY X ABOVE NOT USED FOR SHALLOW TRUSS
24	С	
25		IRE = 5
26		IWR = 6
27		OPEN(UNIT=5, FILE=' ')
28		OPEN(UNIT=6, FILE=' ')

2.3.1 Program NONLTA

```
CALL INPUT(E,ARA,AL,QFI,X,Z,ANIT,IBC,IRE,IWR,AK14S,ID14S,NDSP,
                    NV,AK15,
                    POISS, ITYEL)
         ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
34 C
         BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS
          ALN = AL
          ARN = ARA
          READ(IRE,*) FACI,NINC,IWRIT
          WRITE(IWR, 1000) FACI, NINC, IWRIT
     1000 FORMAT(/,1X, 'INCREMENTAL LOAD FACTOR =',G13.5,/,1X,
                'NO. OF INC. (NINC)=',G13.5,/,1X,
                'WRITE CONTROL (IWRIT)',G13.5,/,3X
                '0=LIMITED ; 1=FULL',/)
          AN = ANIT
          FACT = 0.D0
          DO 5 I=1,NV
            PT(I) = 0.D0
        5 CONTINUE
          DO 100 INC=1,NINC
            FACT = FACT + FACI
            WRITE(IWR, 1001) INC, FACT
     1001 FORMAT(/,1X,'INC = ',G13.5,'LD.FACTOR = ',G13.5,/)
            DO 10 I=1,NV
              QINC(I) = FACI*QFI(I)
           CONTINUE
       10
```

2.3.1 Program NONLTA

60	С	BELOW FORMS ELEMENT TANGENT STIFFNESS MATRIX AKT
61		CALL ELEMENT(FI,AKTE,AN,X,Z,PT,E,ARA,AL,IWRIT,IWR,2,
62		1 ITYEL,ALN,ARN)
63	С	ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
64	С	
65		CALL ELSTRUC(AKTE,AKTS,NV,AK15,ID14S,AK14S,NDSP,FI,PT,
66		1 2,IWRIT,IWR)
67	С	ABOVE PUTS EL.STIFF AKTE IN STRUC STIFF AKTS AND
68	С	ADDS EFFECTS OF VARIOUS LINEAR SPRINGS
69	С	
70		CALL BCON(AKTS,IBC,N,QINC,IWRIT,IWR)
71	С	ABOVE APPLIES B.CONDITIONS
72		CALL CROUT(AKTS,D,NV,IWRIT,IWR)
73	С	ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKT AND D
74		CALL SOLVCR(AKTS,D,QINC,NV,IWRIT,IWR)
75	С	ABOVE SOLVES EQNS. AND GETS INC. DISPS IN QIN
76	С	
77		DO 20 I=1,NV
78		PT(I) = PT(I) + QINC(I)
79	2	Ø CONTINUE
80	С	ABOVE UPDATES TOTAL DISPS.
81	С	
82		WRITE (6,1002) (PT(I), I=1,NV)
83	100	2 FORMAT(/,1X,'TOTAL DISPS. ARE',1X,5G13.5,/)
84	С	
85	С	BELOW FORMS TOTAL FORCE IN BAR
86		CALL FORCE(AN,ANIT,E,ARA,AL,X,Z,PT,IWRIT,IWR,
87		1 ITYEL,ARN,ALN,POISS)
88	С	ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS
89	10	0 CONTINUE
90	С	
91		STOP 'NONLTA'

Iterative method for solving linear systems

Unlike direct method such as Gauss elimination, a solution is assumed in the iterative method and it is iteratively updated until the convergence is achieved.

Gauss-Seidel Method

- The Gauss-Seidel method is the most commonly used iterative method for solving linear algebraic equations [A]{x}={b}.
- The method solves each equation in a system for a particular variable, and then uses that value in later equations to solve later variables. For a 3x3 system with nonzero elements along the diagonal, for example, the *j*th iteration values are found from the *j*-1th iteration using:

$$\begin{aligned} x_{1} &= \frac{b_{1} - a_{12}x_{2} - a_{13}x_{3}}{a_{11}} & x_{1}^{j} = \frac{b_{1} - a_{12}x_{2}^{j-1} - a_{13}x_{3}^{j-1}}{a_{11}} \\ x_{1} &= \frac{b_{1} - a_{12}x_{2} - a_{13}x_{3}}{a_{11}} & x_{1}^{j} = \frac{b_{1} - a_{12}x_{2}^{j-1} - a_{13}x_{3}^{j-1}}{a_{11}} \\ x_{2} &= \frac{b_{2} - a_{21}x_{1} - a_{23}x_{3}}{a_{22}} & x_{2}^{j} = \frac{b_{2} - a_{21}x_{1}^{j} - a_{23}x_{3}^{j-1}}{a_{22}} \\ x_{3} &= \frac{b_{3} - a_{31}x_{1} - a_{32}x_{2}}{a_{33}} & x_{3}^{j} = \frac{b_{3} - a_{31}x_{1}^{j} - a_{32}x_{2}^{j}}{a_{33}} \end{aligned}$$

If $\{x\}^{j}$ and $\{x\}^{j-1}$ are equal, the equations become self-consistent and $\{x\}^{j}$ is the solution set.

Jacobi Iteration

 The Jacobi iteration is similar to the Gauss-Seidel method, except the j-1th information is used to update all variables in the jth iteration:

Convergence

 The convergence of an iterative method can be calculated by determining the relative percent change of each element in {*x*}. For example, for the *i*th element in the *j*th iteration,

$$\varepsilon_{a,i} = \left| \frac{x_i^j - x_i^{j-1}}{x_i^j} \right| \times 100\%$$

• The method is ended when all elements have converged to a set tolerance.

Ex)
$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$
$$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$$
$$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$$
$$x_1 = \frac{7.85 + 0.1x_2 + 0.2x_3}{3}$$
$$x_2 = \frac{-19.3 - 0.1x_1 + 0.3x_3}{7}$$
$$x_3 = \frac{71.4 - 0.3x_1 + 0.2x_2}{10}$$

i) Gauss-Seidel (start with $x_2 = x_3 = 0$)

 $x_1 err(\%)$ $\mathbf{x}_2 \operatorname{err}(\%) = \mathbf{x}_3 \operatorname{err}(\%)$ X₁ X₂ Iter. **X**3 1 2.61667 -2.79452 7.00561 -Infinity Infinity –Infinity 2 2.99056 -2.49962 7.00029 -14.28878 10.55275 0.07592 3 3.00003 -2.49999 7.00000 -0.31684 -0.01453 0.00416 4 3.00000 -2.50000 7.00000 0.00105 -0.00048 -0.00001 5 3.00000 7.00000 0.00001 0.00000 0.00000 -2.50000

ii) Jacobi ($x_1 = x_2 = x_3 = 0$)

X 3 $x_1 err(\%)$ $x_2 err(\%) = x_3 err(\%)$ Iter. **X**1 **X**₂ 2.61667 7.14000 -Infinity Infinity -Infinity 1 -2.75714 2 3.00076 -2.48852 7.00636 -14.67880 9.74266 1.87175 3 3.00081 -2.49974 7.00021 -0.00148 -0.45065 0.08778 4 3.00002 -2.50000 6.99998 0.02612 -0.01057 0.00322 5 3.00000 7.00000 0.00079 0.00006 -0.00026-2.50000

```
function x = GaussSeidel(A, b, es, maxit)
% x = GaussSeidel(A, b):
    Gauss Seidel method.
8
% input:
 A = coefficient matrix
8
% b = right hand side vector
% es = (optional) stop criterion (%) (default = 0.00001)
% maxit = (optional) max iterations (default = 50)
% output:
% x = solution vector
if nargin<4, maxit=50; end
if nargin<3, es=0.00001; end
[m,n] = size(A);
if m~=n, error('Matrix A must be square'); end
C = A;
for i = 1:n
    C(i, i) = 0;
    x(i) = 0;
end
x = x';
for i = 1:n
    C(i,1:n) = C(i,1:n) / A(i,i);
end
for i = 1:n
    d(i) = b(i) / A(i,i);
end
iter = 0;
while (1)
  xold = x;
  for i = 1:n
    x(i) = d(i) - C(i, :) * x;
    if x(i) \sim = 0
      ea(i) = abs((x(i) - xold(i))/x(i)) * 100;
    end
  end
  iter = iter+1;
  if max(ea)<=es | iter >= maxit,
     break,
  end
end
```

First i $x_1 = (b_1 - a_{12}x_2 - a_{13}x_3)/a_{11}$ $x_2 = (b_2 - a_{21}x_1 - a_{23}x_3)/a_{22}$ $x_3 = (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33}$ Second $x_1 = (b_1 - a_{12}x_2 - a_{13}x_3)/a_{11}$ $x_2 = (b_2 - a_{21}x_1 - a_{23}x_3)/a_{22}$ $x_3 = (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33}$ (a)

Convergence condition

The Gauss-Seidel method converge if the system is i) *strictly diagonally dominant* or ii) *symmetric positive-definite*.

Strict diagonal dominance:

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

$$a_{ii} \ge \sum_{\substack{j=1\\j\neq i}}^n \left| a_{ij} \right|$$

Ex. Determine diagonal dominance:

$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 1 \\ 1 & -3 & 2 \\ -1 & 2 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} -2 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & -2 & 0 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} -4 & 2 & 1 \\ 1 & 6 & 2 \\ 1 & -2 & 5 \end{bmatrix}$$

Symmetric positive-definite

A symmetric real matrix M is said to be positive definite if z^TMz is positive for all nonzero real column vector z

$$\begin{aligned} \mathbf{Ex.} & I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & z^{T} I z = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a^{2} + b^{2} \\ \\ M = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} z^{T} M z = \begin{pmatrix} a & b & c \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a^{2} + (a - b)^{2} + (b - c)^{2} + c^{2} \\ \\ N = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} & (1 & -1) \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 \end{pmatrix} = -2 \end{aligned}$$

Equivalent condition for positive-definitedness is that all eigenvalues of M are positive.

Examples for Gauss-Seidel

$$A = \begin{pmatrix} -4 & 2 & 1 \\ 1 & 6 & 2 \\ 1 & -2 & 5 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

: diagonally dominant. (not symmetric) Changing b into (300 2 1)' still results in good convergence. The results are checked with A\b.

$$A = \left(\begin{array}{rrrr} 2 & -4 & 1 \\ 1 & 6 & 2 \\ 1 & -2 & 5 \end{array}\right) \ b = \left(\begin{array}{r} 1 \\ 3 \\ 1 \end{array}\right)$$

:diagonally not dominant but converges.

$$A = \begin{pmatrix} 2 & -4 & 1 \\ 6 & 1 & 2 \\ 1 & -2 & 5 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

: diverge

$$A = \left(\begin{array}{rrrr} 5 & 2 & 4 \\ 2 & 4 & 3 \\ 4 & 3 & 5 \end{array}\right) b = \left(\begin{array}{r} 1 \\ 3 \\ 1 \end{array}\right)$$

Not diagonally dominant but positive-definite and converges

Relaxation

 To enhance convergence, an iterative program can introduce *relaxation* where the value at a particular iteration is made up of a combination of the old value and the newly calculated value:

$$x_i^{\text{new}} = \lambda x_i^{\text{new}} + (1 - \lambda) x_i^{\text{old}}$$

where λ is a weighting factor that is assigned a value between 0 and 2.

- $0 < \lambda < 1$: underrelaxation
- $\lambda = 1$: no relaxation
- $1 < \lambda \le 2$: overrelaxation

Example with Jacobi method

Newton-Raphson

- Nonlinear systems may also be solved using the Newton-Raphson method for multiple variables.
- For a two-variable system, the Taylor series approximation and resulting Newton-Raphson equations are:

 $f_1(x_1, x_2) = 0$ $f_2(x_1, x_2) = 0$

Suppose that at the ith step, $x_1 = x_{1,i}$ and $x_2 = x_{2,i}$ with $f_{1,i}(x_{1,i}, x_{2,i})$ and $f_{2,i}(x_{1,i}, x_{2,i})$

$$\begin{aligned} f_1(x_1, x_2) &\simeq f_1(x_{1,i}, x_{2,i}) + (x_1 - x_{1,i}) \frac{\partial f_1}{\partial x_1} \Big|_{(x_{1,i}, x_{2,i})} + (x_2 - x_{2,i}) \frac{\partial f_1}{\partial x_2} \Big|_{(x_{1,i}, x_{2,i})} \\ f_2(x_1, x_2) &\simeq f_2(x_{1,i}, x_{2,i}) + (x_1 - x_{1,i}) \frac{\partial f_2}{\partial x_1} \Big|_{(x_{1,i}, x_{2,i})} + (x_2 - x_{2,i}) \frac{\partial f_2}{\partial x_2} \Big|_{(x_{1,i}, x_{2,i})} \end{aligned}$$

Choose $x_{1,i+1}$ and $x_{2,i+1}$ such that $f_1(x_{1,i+1}, x_{2,i+1}) = f_2(x_{1,i+1}, x_{2,i+1}) = 0$

$$f_{1,i} + (x_{1,i+1} - x_{1,i}) \frac{\partial f_{1,i}}{\partial x_1} + (x_{2,i+1} - x_{2,i}) \frac{\partial f_{1,i}}{\partial x_2} = 0$$

$$f_{2,i} + (x_{1,i+1} - x_{1,i}) \frac{\partial f_{2,i}}{\partial x_1} + (x_{2,i+1} - x_{2,i}) \frac{\partial f_{2,i}}{\partial x_2} = 0$$

Using Cramer's rule

In general, for a set of n equations with n variables,

$$x_{1,i+1} = x_{1,i} - \frac{f_{1,i}\frac{\partial f_{2,i}}{\partial x_2} - f_{2,i}\frac{\partial f_{1,i}}{\partial x_2}}{\frac{\partial f_{1,i}}{\partial x_2} - \frac{\partial f_{2,i}}{\partial x_2} - \frac{\partial f_{1,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_2} - \frac{\partial f_{1,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - f_{1,i}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - \frac{\partial f_{1,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_2}}{\frac{\partial f_{1,i}}{\partial x_1} - \frac{\partial f_{1,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - \frac{\partial f_{1,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - \frac{\partial f_{1,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - \frac{\partial f_{1,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - \frac{\partial f_{1,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - \frac{\partial f_{1,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - \frac{\partial f_{2,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1} - \frac{\partial f_{2,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{2,i}}{\partial x_1}} - \frac{\partial f_{2,i}}{\partial x_1}\frac{\partial f_{2,i}}{\partial x_2}\frac{\partial f_{2,i}}{\partial x_1}\frac{\partial f_$$

cf. N-R method for single variable:

 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

MATLAB Program

```
function [x,f,ea,iter]=newtmult(func,x0,es,maxit,varargin)
% newtmult: Newton-Raphson root zeroes nonlinear systems
   [x,f,ea,iter]=newtmult(func,x0,es,maxit,p1,p2,...):
   uses the Newton-Raphson method to find the roots of
8
8
     a system of nonlinear equations
% input:
   func = name of function that returns f and J
8
  x0 = initial guess
8
   es = desired percent relative error (default = 0.0001%)
8
   maxit = maximum allowable iterations (default = 50)
8
   p1,p2,... = additional parameters used by function
8
% output:
   x = vector of roots
8
  f = vector of functions evaluated at roots
8
   ea = approximate percent relative error (%)
8
   iter = number of iterations
8
if nargin<2, error('at least 2 input arguments required'), end
if nargin<3 | isempty(es), es=0.0001; end
if nargin<4 | isempty (maxit), maxit=50; end
iter = 0;
x=x0;
                                             Ex)
while (1)
                                        function [J,f] = jf(x)
  [J,f]=func(x,varargin{:});
                                        J = [2*x(1)+x(2) x(1); 3*x(2)^{2} 1+6*x(1)*x(2)];
 dx=J f;
                                        f = [x(1)^{2}+x(1)^{*}x(2)-10;x(2)+3^{*}x(1)^{*}x(2)^{2}-57];
 x=x-dx;
 iter = iter + 1;
 ea=100 * max(abs(dx./x));
  if iter>=maxit|ea<=es, break, end
end
```

• This program uses an iterative solution by extending the concepts of ch 1.2.2 and 1.3.

$$g = \frac{EA}{l^3} \left(z^2 w + \frac{3}{2} z w^2 + \frac{1}{2} w^3 \right) - W = \frac{N(z+w)}{l} - W = 0$$

$$\delta w = -\left(\frac{dg}{dw}\right)^{-1} g \qquad \text{[eq.1.23,1.28]}$$

$$w_{n+1} = w_n + \delta w_n$$

[Fig 1.5 The Newton-Raphson method]

[Last part of input file for NONLTB]

- Newton-Raphson method requires convergence criteria, since practically, out-of-balance force will never be zero. $\|\mathbf{g}\| < \beta \|\mathbf{q}_e\| \quad \cdots \quad force \ control$ $\|\mathbf{g}\| < \beta \|\mathbf{r}\| \quad \cdots \quad displacement \ control$ $\mathbf{r} : reaction \ vector$ $\beta = 0.001 \sim 0.01$
- Newton-Raphson method also requires initial guess of ${f p}$.

19

2.4.1 Program NONLTB

1		PROGRAM NONLTB
2	С	
3	С	PREFORMS NEWTON-RAPHSON ITERATION FROM STARTING PREDICTOR, PT
4	С	NV=NO. OF VARIABLES (4 OR 5)
5	С	IBC = B. COND. COUNTER (0=FREE, 1=FIXED)
6	С	Z=Z COORDS OF NODES
7	С	PT=TOTAL DISP. VECTOR
8	С	ID14S=VAR. NOS. (1-4) AT WHICH LINEAR EARTHED SPRINGS
9	С	AK12S=EQUIV. LINEAR SPRING STIFFNESSES
10	С	QFI=TOTAL LOAD VECTOR
11	С	AKTS=STRUC. STIFF. MATRIX
12	С	AK15=LIN SPRING STIFF. BETWEEN VARBLS. 1 AND 5 (IF NV=5)
13	С	FI=INTERNAL FORCE VECTOR
14	С	GM=OUT-OF-BALANCE FORCE VECTOR
15	С	REAC=REACTIONS
16	С	X=X COORDS
17	С	ARGUMENTS IN COMMON/DAT2/ AND ARRAY X NOT USED FOR SHALLOW TRUSS
18	С	
19		IMPLICIT DOUBLE PRECISION (A-H,O-Z)
20		COMMON /DAT/ X(2),Z(2),E,ARA,AL,ID14S(4),AK14S(4),NDSP,ANIT,AK15
21		COMMON /DAT2/ ARN,POISS,ALN,ITYEL
22		<pre>DIMENSION QFI(5),IBC(5),PT(5),AKTS(25),D(5),GM(5),FI(5)</pre>
23		DIMENSION REAC(5)
24	С	
25		IRE=5
26		IWR=6
27		OPEN (UNIT=5,FILE=' ')
28		OPEN (UNIT=6,FILE=' ')

2.4.1 Program NONLTB

30	CALL INPUT(E,ARA,AL,QFI,X,Z,ANIT,IBC,IRE,IWR,AK14S,ID14S,NDSP,
31	1 NV,AK15
32	2 POISS,ITYEL)
33	C ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
34	C BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS
35	ALN=AL
36	ARN=ARA
37	C
38	READ (IRE*) (PT(I),I=1,NV)
39	WRITE (IWR,2000) (PT(I),I=1,NV)
40	2000 FORMAT(/1X,'STRATING PREDICTOR DISPS ARE',/,1X,6G12.5/)
41	READ (IRE*) BETOK,IWRIT
42	2001 FORMAT(/,1X,'CONV. TOL FACTOR, BETOK= ',G12.5,/,1X,
43	<pre>2 'DIAGNOSTIC WRITE CONTROL(IWRIT)= ',15,/,3X,</pre>
44	3 '0=NO, 1=YES'/)
45	C SET TO NEWTON-RAPHSON ITERATIONS
46	ITERY=1
47	C
48	CALL ITER(PT,AN,BETOK,QFI,IBC,IWRIT,IWR,AKTS,D,ITERTY,NV,
49	1 GM,FI,REAC)
50	C
51	WRITE (IWR,1004) (PT(I),I=1,NV)
52	1004 FORMAT(/,1X,'FINAL TOTAL DISPLACEMENTS ARE',/,1X,5G12.5/)
53	WRITE (IWR,1006) (REAC(I),I=1,NV)
54	1006 FORMAT(/,1X,'FINAL REACTIONS ARE',/,5G12.5/)
55	WRITE (IWR,1005) AN
56	1005 FORMAT(/,1X,'AXIAL FORCE IN BAR IS ',G12.5/)
57	STOP 'NONLTB'
58	END

1		SUBROUTINE ITER(PT,AN,BETOK,QEX,IBC,IWRIT,IWR,AKTS,D,ITERY,NV,
2		1 GM,FI,REAC)
	С	INPUTS PREDICTOR DISPS. PT(NV) AND EX. FORCE VECTOR QEX(NV)
4	С	ALSO BETOK=CONV. TOL, IBC=B. CON COUNTER
5	С	ITERATES TO EQUILIBRIUM: OUTPUTS NEW PT AND FORCE IN BAR, AN
6	С	IF ITERTY (INPUT)=1 USES FULL N-R, =2 USES MOD N-R
7	С	IN LATTER CASE, AKTS AND D INPUT AS CROUT FACTORS (D=PIVOTS)
8	С	LOCAL ARRAY IS AKTE=EL. STIF. MATRIX
9	С	ARGUMENTS IN COMMON/DAT2/ AND ARRAY X NOT USED FOR SHALLOW TRUSS
10	с	
11		IMPLICIT DOUBLE PRECISON (A-H,O-Z)
12		COMMON /DAT/ X(2),Z(2),E,ARA,AL,ID14S(4),NDSP,ANIT,AK15
13		COMMON /DAT2/ ARN,POISS,ALN,ITYEL
14		DIMENSION PT(NV),QEX(NV),IBC(NV),REAC(NV)
15		<pre>DIMENSION FI(NV),GM(NV),AKTS(NV,NV),D(NV),AKTE(4,4)</pre>
16	С	
17		SMALL=0.1D-2
18		NITMAX=16
19		IMOD=1
20		IF (ITERY.EQ.1) IMOD=3
21	C	

22	DC	0 100 ITE=1,NITMAX				
23	С					
24	4 IF (IWRIT.EQ.1) WRITE (IWR,1005) ITERY					
25	25 1005 FORMAT(/,IX, 'ITERATIVE LOOP WITH ITERY=			,15/)		
26	C	BELOW CALCS FORCE IN BAR (AN)				
27		CALL FORCE(AN,ANIT,E,ARA,AL,X,	Z,PT,IWRIT	,IWR,		
28	1	ITYEL, ARN, ALN, POISS)				
29	с	ABOVE ARGUMENTS NOT USED FOR S	HALLOW-TRU	SS		
30	с					4
31	с	ABOVE CALCS FORCE IN BAR, AN:	BELOW TAN	STIFF	AKT	Call FORCE which computes $N = \text{fn.}(EA, l, z, p)$.
32	С	(IF NR) AND INT. FORCE VECT. F	I			Call ELEMENT and compute the internal force vector, \mathbf{q}_i for the truss.
33		CALL ELEMENT(FI,AKTE,AN,X,Z,PI	,E,ARA,AL,	IWRIT	,IWR,IMOD,	Call ELSTRUC which modifies q for the effects of the linear springs and
34	1	ITYEL,ALN,ARN)				if full N-R, puts the element stiffness matrix into the struct. still. matrix and
35	С	ABOVE ARGUMENTS NOT USED FOR S	HALLOW TRU	SS		compute the out-of-balance force vector, $-\mathbf{g} = \mathbf{q}_e - \mathbf{q}_i$,
36	С					and creates reaction vector, $\mathbf{r} = \mathbf{q}_i$,
37	С	BELOW PUTS EL. STIFF. MAT., AM	TE, IN STR	. STI	FF., AKTS AND	except at earthed springs where it = maspi
38	С	ADDS IN EFFECTS OF VARIOUS LIM	EAR SPRING	S (IF	NR)	
39	C	ALSO MODIFIES INT. FORCE VECT.	FI FOR SP	RING I	EFFECTS	
40		CALL ELSTRUC(AKTE,AKTS,NV,AK15	,DI14S,AK1	4S,NDS	SP,FI,PT,	
41	1	IMOD,IWRIT,IWR)				
42	C					
43	С	BELOW FORMS GM=OUT-OF-BALANCE	FORCE VECT	OR		
44	С	AND REACTION VECTOR				
45		DO 10 I=1,NV				
46		GM(I)=0.D0				
47		REAC(I)=FI(I)	54	С		
48		IF (IBC(I).EQ.0) THEN	55	C	OVERWRITE S	PRING REACTIONS TERMS
49		GM(I)=QEX(I)-FI(I)	56		IF (NDSP.NE	.0) THEN
50		ENDIF	57		DO 50 I=1	, NDSP
51	10	CONTINUE	58		REAC(ID	14S(I))=-AK14S(I)*PT(ID14S(I))
52	67	FORMAT(6G13.5)	59	5	O CONTINUE	
53	47	FORMAT(515)	60		ENDIF	24

87		IF (ITERTY.EQ.1) THEN
88		CALL BCON(AKTS,IBC,NV,GM,IWRIT,IWR)
89	С	ABOVE APPLIES B. CONDITIONS
90		CALL CROUT(AKTS,D,NV,IWRIT,IWR)
91	C	ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKTS AND D
92		ENDIF

Thank you!