
Computational Plasticity Spring, 2023

Chapter 2: A shallow truss element
with Fortran computer program

Myoung-Gyu Lee

TA: Gyu Jang Sim (gyujang95@snu.ac.kr)

Ch. 2 2.3 A FLOWCHART AND COMPUTER PROGRAM FOR
AN INCREMENTAL (EULER) SOLUTION

• Incremental (Euler) solution is implemented by a load-level factor . l

[input file of Fig 1.1(b)]

[Fig 1.1(b) Simple problem with
one degree of freedom.

Bar with spring]

1.0,2.0,3.0, 12.0
, write mode on
l =

e efl=q q

efq

[Fig. 2.3 Flowchart for an incremental solution
(program NONLTA)]

7

Ch. 2 2.3 A FLOWCHART AND COMPUTER PROGRAM FOR
AN INCREMENTAL (EULER) SOLUTION

2.3.1 Program NONLTA

Ch. 2 2.3 A FLOWCHART AND COMPUTER PROGRAM FOR
AN INCREMENTAL (EULER) SOLUTION

2.3.1 Program NONLTA

Ch. 2 2.3 A FLOWCHART AND COMPUTER PROGRAM FOR
AN INCREMENTAL (EULER) SOLUTION

2.3.1 Program NONLTA

Iterative method for solving linear systems

Unlike direct method such as Gauss elimination, a solution is
assumed in the iterative method and it is iteratively updated until
the convergence is achieved.

Basics of numerical methods

Gauss-Seidel Method

• The Gauss-Seidel method is the most commonly used iterative method for

solving linear algebraic equations [A]{x}={b}.

• The method solves each equation in a system for a particular variable, and

then uses that value in later equations to solve later variables. For a 3x3

system with nonzero elements along the diagonal, for example, the jth

iteration values are found from the j-1th iteration using:

33

2321313
3

22

1
3231212

2

11

1
313

1
2121

1

a
xaxabx

a
xaxabx

a
xaxabx

jj
j

jj
j

jj
j

--
=

--
=

--
=

-

--

1 12 2 13 3
1

11

2 21 1 23 3
2

22

3 31 1 32 2
3

33

b a x a xx
a

b a x a xx
a

b a x a xx
a

- -
=

- -
=

- -
=

If {x}j and {x}j-1 are equal, the equations become self-consistent and
{x}j is the solution set.

Jacobi Iteration

• The Jacobi iteration is similar to the Gauss-Seidel method, except the j-

1th information is used to update all variables in the jth iteration:

a) Gauss-Seidel

b) Jacobi

33

1
232

1
1313

3

22

1
323

1
1212

2

11

1
313

1
2121

1

a
xaxabx

a
xaxabx

a
xaxabx

jj
j

jj
j

jj
j

--

--

--

--
=

--
=

--
=

Gauss-Seidel Jacobi

Convergence

• The convergence of an iterative method can be calculated by determining

the relative percent change of each element in {x}. For example, for the ith

element in the jth iteration,

• The method is ended when all elements have converged to a set tolerance.

ea,i =
xi
j - xi

j-1

xi
j ´100%

Iter. x1 x2 x3 x1 err(%) x2 err(%) x3 err(%)
1 2.61667 -2.79452 7.00561 -Infinity Infinity -Infinity
2 2.99056 -2.49962 7.00029 -14.28878 10.55275 0.07592
3 3.00003 -2.49999 7.00000 -0.31684 -0.01453 0.00416
4 3.00000 -2.50000 7.00000 0.00105 -0.00048 -0.00001
5 3.00000 -2.50000 7.00000 0.00001 0.00000 0.00000

Ex)

Iter. x1 x2 x3 x1 err(%) x2 err(%) x3 err(%)
1 2.61667 -2.75714 7.14000 -Infinity Infinity -Infinity
2 3.00076 -2.48852 7.00636 -14.67880 9.74266 1.87175
3 3.00081 -2.49974 7.00021 -0.00148 -0.45065 0.08778
4 3.00002 -2.50000 6.99998 0.02612 -0.01057 0.00322
5 3.00000 -2.50000 7.00000 0.00079 0.00006 -0.00026

i) Gauss-Seidel (start with x2 = x3 = 0)

ii) Jacobi (x1=x2=x3=0)

function x = GaussSeidel(A,b,es,maxit)
% x = GaussSeidel(A,b):
% Gauss Seidel method.
% input:
% A = coefficient matrix
% b = right hand side vector
% es = (optional) stop criterion (%) (default = 0.00001)
% maxit = (optional) max iterations (default = 50)
% output:
% x = solution vector
if nargin<4, maxit=50; end
if nargin<3, es=0.00001; end
[m,n] = size(A);
if m~=n, error('Matrix A must be square'); end
C = A;
for i = 1:n

C(i,i) = 0;
x(i) = 0;

end
x = x';
for i = 1:n

C(i,1:n) = C(i,1:n)/A(i,i);
end
for i = 1:n

d(i) = b(i)/A(i,i);
end
iter = 0;
while (1)

xold = x;
for i = 1:n

x(i) = d(i)-C(i,:)*x;
if x(i) ~= 0

ea(i) = abs((x(i) - xold(i))/x(i)) * 100;
end

end
iter = iter+1;
if max(ea)<=es | iter >= maxit,

break,
end

end

Convergence condition

Strict diagonal dominance:

Cf. (Weak) diagonal dominance:

aii > aij
j=1
j≠i

n

∑

aii ≥ aij
j=1
j≠i

n

∑

Ex. Determine diagonal dominance:

The Gauss-Seidel method converge if the system is i) strictly diagonally

dominant or ii) symmetric positive-definite.

Symmetric positive-definite

A symmetric real matrix M is said to be positive definite if zTMz is
positive for all nonzero real column vector z

Ex.

I = 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
zT Iz = a b() 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
a
b

⎛

⎝⎜
⎞

⎠⎟
= a2 + b2

M =
2 −1 0
−1 2 −1
0 −1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

zT Mz = a b c()
2 −1 0
−1 2 −1
0 −1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = a2 + (a − b)2 + (b− c)2 + c2

N = 1 2

2 1
⎛

⎝⎜
⎞

⎠⎟
1 −1() 1 2

2 1
⎛

⎝⎜
⎞

⎠⎟
1
−1

⎛

⎝⎜
⎞

⎠⎟
= −2

Equivalent condition for positive-definitedness is that all eigenvalues of M are positive.

Examples for Gauss-Seidel

A =
−4 2 1
1 6 2
1 −2 5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ b =

1
3
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

: diagonally dominant. (not symmetric) Changing b
into (300 2 1)' still results in good convergence.
The results are checked with A\b.

A =
2 −4 1
1 6 2
1 −2 5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ b =

1
3
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ :diagonally not dominant but converges.

A =
2 −4 1
6 1 2
1 −2 5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ b =

1
3
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ : diverge

A =
5 2 4
2 4 3
4 3 5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ b =

1
3
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ Not diagonally dominant but positive-definite and

converges

Relaxation

• To enhance convergence, an iterative program can introduce relaxation where

the value at a particular iteration is made up of a combination of the old value

and the newly calculated value:

where l is a weighting factor that is assigned a value between 0 and 2.

• 0< l <1: underrelaxation

• l =1: no relaxation

• 1< l ≤2: overrelaxation

xi
new =lxi

new + 1-l()xiold

Example with Jacobi method

Newton-Raphson

• Nonlinear systems may also be solved using the Newton-Raphson method

for multiple variables.

• For a two-variable system, the Taylor series approximation and resulting

Newton-Raphson equations are:

f1(x1, x2) = 0
f2 (x1, x2) = 0

Suppose that at the ith step, x1 = x1,i and x2 = x2,i with f1,i(x1,i,x2,i) and f2,i(x1,i,x2,i)

f1(x1, x2) f1(x1,i , x2,i)+ (x1 − x1,i)
∂ f1
∂x1 (x1,i ,x2,i)

+ (x2 − x2,i)
∂ f1
∂x2 (x1,i ,x2,i)

f2 (x1, x2) f2 (x1,i , x2,i)+ (x1 − x1,i)
∂ f2
∂x1 (x1,i ,x2,i)

+ (x2 − x2,i)
∂ f2
∂x2 (x1,i ,x2,i)

f1(x1,i+1, x2,i+1) = f2 (x1,i+1, x2,i+1) = 0Choose x1,i+1 and x2,i+1 such that

f1,i + x1,i+1 − x1,i()∂ f1,i∂ x1
+ x2,i+1 − x2,i()∂ f1,i∂ x2

= 0

f2,i + x1,i+1 − x1,i()∂ f2,i∂ x1
+ x2,i+1 − x2,i()∂ f2,i∂ x2

= 0

x1,i+1 = x1,i −
f1,i

∂ f2,i
∂ x2

− f2,i
∂ f1,i
∂ x2

∂ f1,i
∂ x1

∂ f2,i
∂ x2

−
∂ f1,i
∂ x2

∂ f2,i
∂ x1

x2,i+1 = x2,i −
f2,i

∂ f1,i
∂ x1

− f1,i
∂ f2,i
∂ x1

∂ f1,i
∂ x1

∂ f2,i
∂ x2

−
∂ f1,i
∂ x2

∂ f2,i
∂ x1

Using Cramer’s rule
In general, for a set of n
equations with n variables,

xi+1{ } = xi{ }− J −1 f{ }

J =

∂ f1
∂x1

∂ f1
∂xn

∂ fn
∂x1

∂ fn
∂xn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

xi{ }

cf. N-R method for single variable: 1
()
()
i

i i
i

f xx x
f x+ = -
¢

MATLAB Program

function [J,f] = jf(x)

J = [2*x(1)+x(2) x(1); 3*x(2)^2 1+6*x(1)*x(2)];
f = [x(1)^2+x(1)*x(2)-10;x(2)+3*x(1)*x(2)^2-57];

Ex)

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

• This program uses an iterative solution by extending the concepts of ch 1.2.2 and 1.3 .

2 2 3
3

3 1 () 0
2 2

z zwEA N z wg W
l

ww
l

W+æ ö= + + - =ç ÷
è

- =
ø

1d gw g
dw

d
-

æ ö
ç ÷
è ø

= - [eq.1.23,1.28]

1n n nw w wd+ = +

[Fig 1.5 The Newton-Raphson method]

p

displacement controlb<g r [eq. 2.30]

0.001~ 0.01b =

• Newton-Raphson method requires convergence criteria, since practically, out-of-balance force
will never be zero.

: reaction vectorr

[Last part of input file for NONLTB]

Tp
, write nmode ob

• Newton-Raphson method also requires initial guess of .

e force controlb<g q

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.1 Program NONLTB

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.1 Program NONLTB

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER

Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER

Thank you!

