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Ch. 2 2.3 A FLOWCHART AND COMPUTER PROGRAM FOR
AN INCREMENTAL (EULER) SOLUTION

• Incremental (Euler) solution is implemented by a load-level factor     . l

[input file of Fig 1.1(b)]

[Fig 1.1(b) Simple problem with 
one degree of freedom. 

Bar with spring]

1.0,2.0,3.0, 12.0
, write mode on
l = 

e efl=q q

efq

[Fig. 2.3 Flowchart for an incremental solution 
(program NONLTA)]
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Iterative method for solving linear systems

Unlike direct method such as Gauss elimination, a solution is 
assumed in the iterative method and it is iteratively updated until 
the convergence is achieved.

Basics of numerical methods



Gauss-Seidel Method

• The Gauss-Seidel method is the most commonly used iterative method for 

solving linear algebraic equations [A]{x}={b}.

• The method solves each equation in a system for a particular variable, and 

then uses that value in later equations to solve later variables.  For a 3x3 

system with nonzero elements along the diagonal, for example, the jth

iteration values are found from the j-1th iteration using:
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If {x}j and {x}j-1 are equal, the equations become self-consistent and 
{x}j is the solution set. 



Jacobi Iteration

• The Jacobi iteration is similar to the Gauss-Seidel method, except the j-

1th information is used to update all variables in the jth iteration:

a) Gauss-Seidel

b) Jacobi
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Gauss-Seidel Jacobi



Convergence

• The convergence of an iterative method can be calculated by determining 

the relative percent change of each element in {x}.  For example, for the ith

element in the jth iteration, 

• The method is ended when all elements have converged to a set tolerance.

 

ea,i =
xi
j - xi

j-1

xi
j ´100%



Iter.  x1 x2 x3 x1 err(%)   x2 err(%)   x3 err(%)
1   2.61667  -2.79452   7.00561 -Infinity  Infinity -Infinity
2   2.99056  -2.49962   7.00029 -14.28878  10.55275   0.07592
3   3.00003  -2.49999   7.00000  -0.31684  -0.01453   0.00416
4   3.00000  -2.50000   7.00000   0.00105  -0.00048  -0.00001
5   3.00000  -2.50000   7.00000   0.00001   0.00000   0.00000

Ex)

Iter.  x1 x2 x3 x1 err(%)   x2 err(%)   x3 err(%)
1   2.61667  -2.75714   7.14000 -Infinity  Infinity -Infinity
2   3.00076  -2.48852   7.00636 -14.67880   9.74266   1.87175
3   3.00081  -2.49974   7.00021  -0.00148  -0.45065   0.08778
4   3.00002  -2.50000   6.99998   0.02612  -0.01057   0.00322
5   3.00000  -2.50000   7.00000   0.00079   0.00006  -0.00026

i) Gauss-Seidel (start with x2 = x3 = 0)

ii) Jacobi (x1=x2=x3=0)



function x = GaussSeidel(A,b,es,maxit)
% x = GaussSeidel(A,b):
%   Gauss Seidel method.
% input:
%   A = coefficient matrix
%   b = right hand side vector
%   es = (optional) stop criterion (%) (default = 0.00001)
%   maxit = (optional) max iterations (default = 50)
% output:
%   x = solution vector
if nargin<4, maxit=50; end
if nargin<3, es=0.00001; end
[m,n] = size(A);
if m~=n, error('Matrix A must be square'); end
C = A;
for i = 1:n

C(i,i) = 0;
x(i) = 0;

end
x = x';
for i = 1:n

C(i,1:n) = C(i,1:n)/A(i,i);
end
for i = 1:n

d(i) = b(i)/A(i,i);
end
iter = 0;
while (1)

xold = x;
for i = 1:n

x(i) = d(i)-C(i,:)*x;
if x(i) ~= 0

ea(i) = abs((x(i) - xold(i))/x(i)) * 100;
end

end
iter = iter+1;
if max(ea)<=es | iter >= maxit,

break,
end

end



Convergence condition

Strict diagonal dominance:

Cf. (Weak) diagonal dominance: 

  

aii > aij
j=1
j≠i

n

∑

  

aii ≥ aij
j=1
j≠i

n

∑

Ex. Determine diagonal dominance:

The Gauss-Seidel method converge if the system is i) strictly diagonally 

dominant or ii) symmetric positive-definite.



Symmetric positive-definite

A symmetric real matrix M is said to be positive definite if zTMz is 
positive for all nonzero real column vector z 

Ex.

  
I = 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟   
zT Iz = a b( ) 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
a
b

⎛

⎝⎜
⎞

⎠⎟
= a2 + b2

  

M =
2 −1 0
−1 2 −1
0 −1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  

zT Mz = a b c( )
2 −1 0
−1 2 −1
0 −1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = a2 + (a − b)2 + (b− c)2 + c2

  
N = 1 2

2 1
⎛

⎝⎜
⎞

⎠⎟  
1 −1( ) 1 2

2 1
⎛

⎝⎜
⎞

⎠⎟
1
−1

⎛

⎝⎜
⎞

⎠⎟
= −2

Equivalent condition for positive-definitedness is that all eigenvalues of M are positive.



Examples for Gauss-Seidel
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: diagonally dominant. (not symmetric) Changing b 
into (300 2 1)' still results in good convergence. 
The results are checked with A\b.
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Relaxation

• To enhance convergence, an iterative program can introduce relaxation where 

the value at a particular iteration is made up of a combination of the old value 

and the newly calculated value:

where l is a weighting factor that is assigned a value between 0 and 2.

• 0< l <1: underrelaxation

• l =1: no relaxation

• 1< l ≤2: overrelaxation

 

xi
new =lxi

new + 1-l( )xiold

Example with Jacobi method



Newton-Raphson

• Nonlinear systems may also be solved using the Newton-Raphson method 

for multiple variables.

• For a two-variable system, the Taylor series approximation and resulting 

Newton-Raphson equations are:

f1(x1, x2 ) = 0
f2 (x1, x2 ) = 0

Suppose that at the ith step, x1 = x1,i and x2 = x2,i with f1,i(x1,i,x2,i) and f2,i(x1,i,x2,i)

 

f1(x1, x2 )  f1(x1,i , x2,i )+ (x1 − x1,i )
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f1(x1,i+1, x2,i+1) = f2 (x1,i+1, x2,i+1) = 0Choose x1,i+1 and x2,i+1 such that 
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Using Cramer’s rule
In general, for a set of n 
equations with n variables, 
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MATLAB Program

function [J,f] = jf(x)

J = [2*x(1)+x(2) x(1); 3*x(2)^2 1+6*x(1)*x(2)];
f = [x(1)^2+x(1)*x(2)-10;x(2)+3*x(1)*x(2)^2-57];

Ex)



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

• This program uses an iterative solution by extending the concepts of ch 1.2.2 and 1.3 .
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1n n nw w wd+ = +

[Fig 1.5 The Newton-Raphson method]

p

displacement controlb<g r  [eq. 2.30]

0.001~ 0.01b =

• Newton-Raphson method requires convergence criteria, since practically, out-of-balance force 
will never be zero.

: reaction vectorr

[Last part of input file for NONLTB]

Tp
, write nmode ob

• Newton-Raphson method also requires initial guess of    .

e force controlb<g q 



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.1 Program NONLTB



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.1 Program NONLTB



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER



Ch. 2 2.4 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN ITERATIVE SOLUTION USING THE NEWTON-RAPHSON METHOD

2.4.2 Flowchart and computer listing for subroutine ITER



Thank you!


