CHAPTER 2. SECOND-ORDER
LINEAR ODES
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2.1 Homogeneous Linear ODEs of Second Order

< Linear ODEs of second order: y"+ p(X)y'+q(X)y: r(x) (the standard form)
= Homogeneous (HIXb: r(x)=0

=  Nonhomogeneous (HIHIXD: I’(X);tO

M Ex. Anonhomogeneous linear ODE (HIHI Xt &0|& & A:
y"+25y =67 coS X
n 1 H n l 1
A homogeneous linear ODE: Xy'+Yy'+xy=0 in standard form y"+=y'+y=0
X

A nonlinear ODE: y"y+(y')2 =0
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2.1 Homogeneous Linear ODEs of Second Order

<+ Homogeneous Linear ODEs: Superposition Principle (S ¥al)

s Theorem 1 Fundamental Theorem for the Homogeneous Linear ODE
For a homogeneous linear ODE,

= any linear combination of two solutions on an open interval | is

= again solution of the equation on |I.

In particular, for such an equation, sums and constant multiples of solutions are

again solutions.

* This highly important theorem holds for homogeneous linear ODES only

but does not hold for nonhomogeneous linear or nonlinear ODESs.
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2.1 Homogeneous Linear ODEs of Second Order

“* Homogeneous Linear ODEs: Superposition Principle

M Ex.2 A nonhomogeneous linear ODE y"+y=1 °

The functions y=1+cosx and y=1+sinXx are solutions. Neither is 2(1+ C0S x)

or 5(1+sin x|

M Ex. 3 A nonlinear ODE Yy"'Yy-Xxy' =0 o

The functions Y=1 andy= x* are solutions. But their sum is not a solution.

Neither is -X°, so you cannot even multiply by -1.
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2.1 Homogeneous Linear ODEs of Second Order

+»» Initial Value Problem. Basis. General Solution.

= Initial Value Problems (X713t 2Xl)

. A differential equation consists of the homogeneous linear ODE and two initial

conditions.

= Initial Conditions : y(x,)

Kov y'(Xo): K1

= This results in a particular solution of ODE.

M EX. 4 Solve the initial value problem °
y"+y=0, y(0)=30, y'(0)=-05

Step 1 General solution (& BtdH)
y=¢CosX+C,sinx (wA*+1=0 = A=xi)

Step 2 Particular solution (52=dl)

y(0)=c, =30, y'(0)=c,=-05 (. y'=-¢sinx+c,cosx) = .. y=3.0cosx—0.5sinx
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2.1 Homogeneous Linear ODEs of Second Order

% Definition General Solution, Basis, Particular Solution
A general solution of an ODE on an open interval | is

= asolution y = c,y,*C,y, in which y, and y, are solutions of the equation on | that

are not proportional and c,, ¢, are arbitrary constants.

There y,,y, are called a basis (J| &) (or a fundamental system) of solutions of the

equation on 1.

A particular solution of the equation on | is obtained if we assign specific values to
c, and c, iny =c,y;+C,Y,.

*openinterval: a< x < b (NOTas<sx<b),—co<x<b,a<Xx<o0,—00<Xx<00

rona.
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2.1 Homogeneous Linear ODEs of Second Order

= Two functions y, and y, are called linearly independent on | where they are
defined if k, y, (X) + k, Y, (X) = 0 everywhere on | implies k, =0 and k, = 0.

= y,and Yy, are called linearly dependent on | if k;y, (X) + k, ¥, (X) = 0 also holds for
some constants k;, k, not both zero.

If k,# 0 or k,# 0, we can divide and see that y, and y, are proportional,

K

__ 5 __k
yl kl y2 or y2 - k2 yl

% Definition Basis (Reformulated)

A basis of solutions of the equation on an open interval | is a pair of linearly

independent solutions of the equation on 1.

ona
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2.1 Homogeneous Linear ODEs of Second Order

< Find a Basis if One Solution Is Known. Reduction of Order (K== W)

(Extended Method, 2t &)

Apply reduction of order to the homogeneous linear ODE Y+ p(X y +q(X) =
Y=Y, =W, (substitute) (Y=Y, =u'y,+uy,, y"=y,"=u"y, +2u'y,'+uy,")

= u"y,+ u'(2y,+ py,)+u(y,"+ py, +ay,)=0

= u"+ u'—zyl; Ph _g (" y."+ py,+qy, =0)
1
U=u', U'=u" (Substitute) = U'+ (zy—ll+ pju =0 = d—U:—KZy—llJr ij
A dx Y1

(Separation of variables and integration)

aJ _ [,

— dx & InU|=-21 d
Y E yl+p]x nu| nly,|- jpx
= U:%e_“’dx, y2=uy1:yljde

1
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2.1 Homogeneous Linear ODEs of Second Order

M Ex. 7 Find a basis of solution of the ODE (X2 —x)y"— xy'+y=0
y"+ p(x)y*+a(x)y=0

One solution: Y1 =X

X

Apply reduction of order: P =— =——
Pply NI 1

1 -feax 1 [fax 1 X-1
L) = -1 In(x-1)
— =—¢ =& =—¢ ="
Y1 X X X

= Y, = yl'[de:x(ln\xhéj:xln\xhl

Q : Start from the original assumption.

y, =uy; =UuX
(Y'=y,'=u'y+uy', y =y, "=u"y +2u'y, ruy,")
y"+p(x)y+a(x)y=0

y,”

U=tglw

y, =uy, = y1IUdX
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2.2 Homogeneous Linear ODEs with Constant Coefficients

% Second-order homogeneous linear ODEs with constant coefficients: Y "+ay'+by =0
» Wetry y=¢e"

% Characteristic equation (Auxiliary Equation, EMWAAN: 22 4131+b=0
% Three kinds of the general solution of the equation

= Casel Tworealroots 4, 4, if a°-4b>0 = y=ce”™+ce”?

= Casell Arealdoubleroot A=-a/2 if a’-4b=0 = y=(c +c,x)e™”

= Case lll Complex conjugate roots A=-a/2 tiw

if a°-4b<0 = y=e

"2 (Acos wx + Bsin wx)

< Euler formula: e" =cost+isint
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2.2 Homogeneous Linear ODEs with Constant Coefficients

% Case |l Areal double root A=-a/2 if a’-4b=0 = y=(c +cx)e™"

Prove it by using the method of reduction of order!

y1 _ e—(a/2)x r\
settingy, =uy, = y,=u'y, +uy, y"+ay'+by =0

(uy, +2u'y; +uy;) +a(u'y, +uy;) +buy, =0

Uy, +U'(2y,; 7'@1) FU(y)+ a/—'kbyl) -0

here, 2y, =—ae *'* = -ay,
uy, =0 =>u"=0 = u=cx+c,

we cansimplychoose ¢, =1,¢c,=0=u=x Y, =Uy, =Xy, = e (@/2)x

—ax/2

y=G6Y,+GY, = (Cl T sz)e

ISE3 4
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2.2 Homogeneous Linear ODEs with Constant Coefficients

M Ex. 2 Solver the initial value problem y"+y'-2y=0, y(0)=4, y'(0)=-5—
Step 1 General solution
A? +A-2=0 (Characteristic equation)=> A=1or -2 = .. y=ce'+ce™”
Step 2 Particular solution
y'=ce*-2ce
= y(0)=c,+c,=4, y'(0)=¢,-2c,=5 = ¢ =1 c,=3
= y=e 43

Yy
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2.2 Homogeneous Linear ODEs with Constant Coefficients

M Ex. 4 Solver the initial value problem y"+y+0.25y=0, y(0)=3.0, y'(0)=-35—

Step 1 General solution
A*+2+0.25=0 (Characteristic equation) = A1=-05 = .. y=(c +c,x)e "™
Step 2 Particular solution
y'=c,e ™ -0.5(c +c,x)e ™
= y(0)=c¢, =30, y'(0)=c,-05¢c,=-35 = ¢ =3 ¢,=-2
= ~y=(3-2x)e™*

[ i I
I
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2.2 Homogeneous Linear ODEs with Constant Coefficients

M Ex. 5 Solve the initial value problemy"+04y'+9.04y=0, y(0)=0, y'(0)=3 —

Step 1 General solution

A*+0.4249.04=0 (Characteristic equation) = A=-02+3i = . y =e "% (Acos3x+ Bsin3x)

Step 2 Particular solution
y'=-0.26"" (Acos3x+Bsin3x) +e™** (-3Asin 3x+3B cos 3x)

= y(O):AzO, y'(O):—O.2A+BB=3 = A=0, B=1

= .. y=e"?*sin3x

y
L.OF
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2.2 Homogeneous Linear ODEs with Constant Coefficients

Summary of Cases Il

Case Roots of (2) Basis of (1) General Solution of (1)

. Distinct real MT Ao y = 1M + cpe™®

A1, Ag
I Real dDubl;: root e_mgg’ o~/ v = (¢ + cor)e ax/2
A= —3a
Complex conjugate a2
11 A= —3a + io, € COS @wx y = e~ %2(A cos wx + B sin wx)
Ay = —3a — iw e~ %2 sin wx
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2.2 Homogeneous Linear ODEs with Constant Coefficients

Q: Solve the following initial value problem.

M Ex. y+4y'+(z°+4)y=0, y(1/2)=1 y'(1/2)=-2
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2.3 Differential Operators

= Operator [HAAHXH: A transformation that transforms a function into another
function.

= Operational Calculus [HAEXF]): The technique and application of operators.
= Differential Operator (O|& HAHXH D

. An operator which transforms a (differentiable) function into its derivative.

dy
dx

= |dentity Operator (&S HAHXH: 1y =y

Dy=y'=—=

= Second-order differential operator (2H] O] ®AHXH

-I

L=P(D)=D?+aD+bl = Ly=P(D)y=y"+ay'+hy

* P(D): Operator polynomial (& &K} ChehAl
* L: Linear operator (A O|& ALK}, M ALK}

sl
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2.4 Modeling of Free Oscillations of Mass-Spring System

< Shock Absorber (26| "4 H}")

. XSA MABENS TASHE =R 94
« 2| AZPO| X3 RF, = AO|2 QI ZAH

g gre Azmo| Qo2 HEslM EIE 252 o =

L 24 oot & *
. AZYO| AME|R MHS| SOIL & YL E s A
- AZEol MF R F A7t 9 Ofgf 2 =52 ALt

NSt UG FSAAS G
. AZYo| WSS AHSHE S L4 damping =

force)’

= EEESE shock absorber’ vs. "2 E 22 shock
absorber’ ?

. QAUDN} JEA shock absorber

(WO X|A|8Hnb) &3 Y AH [shock absorber] (FAHEH D} = AtEH T
i EJ f"\" Seoz_l/ 1
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2.4 Modeling of Free Oscillations of Mass-Spring System

= We consider a basic mechanical system, a mass on an elastic spring, which
moves up and down.

% Setting Up the Model

“* Physical Information

L PN P
C'._#:-:’ - — , .
= § < = Newton’s second law: Mass x Acceleration =
= < < Force
_________ : @
T < = Hook’s law
e S-S
Systom at I___ 5 : The restoring force is directly, inversely
rest proportional to the distance.
System in
ti . .
(a) (b) ey = We choose the downward direction as the

< Mechanical mass-spring system >  positive direction.

i i i Lj Nation.
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2.4 Modeling of Free Oscillations of Mass-Spring System

= We consider a basic mechanical system, a mass on an elastic spring, which
moves up and down.

% Setting Up the Model

S < < < Modeling
= = S = System in static equilibrium
T = = —
Unstretched 'st d“: () F k (k )
spring 0 = . .
SR N P PN S = —KS - Spring constant
WI é }T S >FO+W:—kso+mg:0
System at - Weight of body \W =mg
Systim in
() (b) (c) = System in motion

< Mechanical mass-spring system >
Restoring force F =—ky (Hook’s law)

>my"+ky:0

my"=F (Newton’s second law)

(At this time, F, and W cancel each other)

“
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2.4 Modeling of Free Oscillations of Mass-Spring System

% Undamped System: ODE and Solution
= ODE: my"+ky=0 :>/12+£=0
m
= Harmonic oscillation (XZ}XIS): )
2

y(t)=Acosapt+Bsinat =Ccos(mt-5), @)’ =—

m
where, C =+ A*+B?, tand=B/A
Acos X + Bsin x =+ A® + B* cos(x — o)

Period (71, T) = 21/, (sec)
Natural frequency (X /FFLt=, ) = @y/2n (cycles/sec)

"'\..\I -\,\.. .'-I, l..'-_" -..l
o -~ 77 7 : (D Positive
,/ (@) Zero Initial velocity
W .I\.-.. '\.x F ) .-..-l' .-..l' )
) g ~ - , (3) Negative
. -~ A o &

< Harmonic oscillation >

e E )":" Seoul
. . . Lj Nation.
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2.4 Modeling of Free Oscillations of Mass-Spring System

“» Damped System: ODE and Solutions

= Damping force (M =): inversely proportional to the velocity

iy

F, =—cy’ (c:damping constant)

F, = —ky (k :spring constant) - my "4 cy 4+ ky =0

my'=F+F, _ where, ¢,k >0
= Characteristic equation is
A +£/1+h =0 E> A=—a+pf, L, =—a—fF, Wwhere a=-""and ,Bzi\/c2 —4mk
m m 2m 2m

= Three types of motion

Case 1 (Overdamping) c¢®>4mk Distinctreal roots 4, , 4,
Case 2 (Critical damping) c¢?=4mk Areal double root

Case 3 (Underdamping) c¢c?<4mk Complex conjugate roots

Engineering Math, 2. Second-Order Linear ODEs Lj\ if"a



< Positive initial displ

= Discussion of the Three Cases

Case 1 Overdamping (CZ >4mk)

C
. —(a-p —(a+p —
L y(t)=ce M e ™)t where o= o

1

2
ﬂ“(%) (c2-4mk)=a2—%<“2 Sa-f>0, a+f>0 = y({t)—>0

Damping takes out energy so quickly
that the body does not oscillate.

(D Positive
(2) Zero

} Initial velocity
@ Negative

[

~— — ¢

acement (tension) >

y

P

5= \Jc% —4mk

2.4 Modeling of Free Oscillations of Mass-Spring System

2+8 4% 0
m m

A=—a+p, 4 =—a-p,
azzi, ﬂ:i\/cz—4mk
m

2m

2m

< < ES
ol F, < <
Unstretched X (; )

spring o T ‘) £ S
ER TS
7 ¥
w System at *fT,, f
rest @
System in

motion

(a) (b) (c)

< Negative initial displacement (compression) >

Engineering Math, 2. Second-Order Linear ODEs
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2.4 Modeling of Free Oscillations of Mass-Spring System

A=—a+p, L =—a-p,
azzi, ,B:i\/cz—4mk
m

2m

Case 2 Critical damping (¢® =4mk) =0

- y(t) = t)ye ™, L
y(O)=(e et a=o

Damping takes out energy so quickly that the body does not oscillate.

= < > y(0)=c,>0
‘ﬁ ? ; ' —at '
: Grm_sz;gd___j F, S § y'(t)=c,—a(c,+ct)e™ =y'(0)=c,—ac,
T /j 2 A O 2 Case @ Positive initial velocity
N o' y'(0)>0 c,—ac, >0, ¢,>ac, >0 = y(t) =0
\ \RE e - . ——— ~ (a) (b) (c)
\ - Case @ Zero initial velocity
| AN 5@? — y'(0)=0 ¢, —ac, = 0', C, .:0fcl. >0 = y(t.) =0
6, +C,t = o : Case ® Negative initial velocity
@ Positive | | y'(0)<0 c,—ac, <0, ¢, <ac,
%izr;tive Initial velocity c,<0orc,>0 = y(t)=0ory(t) =0
Engineering Math, 2. Second-Order Linear ODEs Cl + Czt = O E]jl %%?Z;"a &)




2.4 Modeling of Free Oscillations of Mass-Spring System

ﬂ,lz—Ol-I-ﬁ, lzz_a_ﬂ1
- 2
Case 3 Underdamping (c® <4mk) o= p=t Joamk
: 2m 2m
p=io’ where o - L amk—' - [K_ € (g
2m m 4m

L=—a+io, L,=-a-io,

()

e (Acosw*t+Bsinw*t)=Ce™ cos(w*t-5)

y where, C =+ A?+B?, tand =B/ A

P

-

Fig. 39. Damped oscillation in Case Ill [see (10]]
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2.5 Euler-Cauchy Equations

2 n

< Euler-Cauchy Equations: x°y"+axy'+by=0

m ' m-1

y=x", y=mx"", y'=m(m-1)x"*

m

x’m(m—=1D)x"* +axmx™ " +bx" =0 = m(m-1)x" +amx™ +bx™ =0

< Auxiliary Equation (2= 2dA): m’+(a-1)m+b=0

1 1 ay Lo tasay-
m1=§(1—a)+\/z(1—a) —b,m2_2(l a) \/4(1 a) —b

*» Three kinds of the general solution of the equation

= CaselTworealroots m, m, = Yy=CX™+CX"

S
333
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2.5 Euler-Cauchy Equations

2 Euler-Cauchy Equations : XY "+axy+by =0
1 1 1 1
m1=§(1—a)+\/z(1—a)2—b, m2=§(1—a)—\/z(1—a)2—b

= Case 2 Areal doubleroot

m, :%(1_3-) Only if b:%(]__a)2 =, :X(l—a)/z

y"+ p(X)y'+q(><)y=

U __2 J-pdx

Yi

y, =uy, = yljUdX

" ! 1 " a’ ! 1
Xy"raxy'+by =0] 0y XY'+axy'+o(1-a)'y=0 orly"+y .

_a)2

4x°

y

=0

Method of reduction of order, vy, =uy,

y'+p(x)y+a(x)y=

u =Ide where U =%exp(—j pdx)

p:i = U —iexp( j—de

1 1
— | —-expll
» v » _exp(—alnx)=— exp(inx?)=

Vi Vi

u:jde:jidxﬂnx

y, =uy, =x"?Inx = y=(c,+c, Inx)x", m:%(l—a)

X0

—a
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2.5 Euler-Cauchy Equations

\/

< Euler-Cauchy Equations : x°y"+axy'+by =0

1 L a) Lo tasar-
mlza(l—a)+\/z(1—a) —b, m2—2(1 a) \/4(1 a) —b

= Case 3 Complex conjugate roots

. . 1 1
m =u+iv,m,=u—iv, where ﬂzi(l_a)’ v:\/b—z(l—a)2
- [ _ InX
trick of writing  x=¢ < Euler formula: e" =cost +isint

y, = X™ = x“" = x# (&™) = x*e""™' = x*(cos(v In x) +isin(v In x))

=x™ = x*" = x* (") = x#e "™ = x“(cos(v In x)—isin(vIn x
Y,

(Y1 +Y.)/2=x"cos(vInx) These are also solutions of Euler-Cauchy
(y,—V,)/2=x"sin(vInx) equation and linearly independent.

m=u tiv = y=x“[Acos(vInx)+Bsin(vinx)]

4
rona.
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2.5 Euler-Cauchy Equations

Q : Solve the followings.
M Ex. 1 Solver the Euler-Cauchy equation Xx*y"+1.5xy'—0.5y =0 .

M Ex. 2 Solver the Euler-Cauchy equation Xy"—5xy'+9y =0 °

M Ex. 3 Solver the Euler-Cauchy equation x°y"+0.6xy'+16.04y =0 o
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2.6 Existence and Uniqueness of Solutions. Wronskian

% Theorem 1 Existence and Uniqueness Theorem for Initial Value Problem

If p(x) and g(x) are continuous functions on some open interval | and X, is in I,
then the initial value problem consisting of y"+p(x)y'+¢(x)y=0 and y(0)=K,, »'(0)=K,

has a unique solution y(x) on the interval I.
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2.6 Existence and Uniqueness of Solutions. Wronskian

* Linear Independence of Solutions
Y., Y, are linearly independent on I if equations
K.y, (X)+K,y,(X)=0 on | implies k, =0, k,=0
Y., Y, are linearly dependent on I if equations
yy =Ky, or y,=ky,

% Theorem 2 Linear Dependence and Independence of Solutions

Let the ODE y"+p(X)y'+q(x)y=0 have continuous coefficients p(x) and g(x) on an open

interval 1. (a) Then two solutions Yy, Y, of the equation on | are linearly dependent on

i Yo

1 Yo

| if and only if their “Wronskian”

W(yliyZ): :ylyZI_yZyll

is 0 at some X, in I.

PROOF) (a) Ify,, y, be linear dependent on | (y, = ky,) » W=0 at an x, on |

W (Y., Y,) = V1Y — Yo Y =Ky, Y, — y,Ky, =0

Engineering Math, 2. Second-Order Linear ODEs



2.6 Existence and Uniqueness of Solutions. Wronskian

% Theorem 2 Linear Dependence and Independence of Solutions

Let the ODE y"+p(X)y'+q(x)y=0 have continuous coefficients p(x) and g(x) on an open

interval I. (a) Then two solutions y,, y, of the equation on | are linearly dependent on
i Y.

1 Yo

| if and only if their “Wronskian” \ ,
W (Y., Y,)= AN A

IS O at some x, In |. (b) Furthermore, if W =0 at an x=x,in |, then W=0 on I;

PROOF) Inverse of (a) if W=0at an x=x, in | ® vy, Yy, linearly dependent

X=X
Let k. y,(X)+K,y,(x) =0 for unknownk,, k,. E>0 K.Y, (%) +K,¥,(X,) =0

= Ky (X) +K,y,(x) =0 kY1 (%) +K, Y5 (%) =0
‘ 0 (x.) (x) Non zero solutions
06 Va0l k| 10T o it wy, ) =det{y1, on } > exist
Y1 (%)  Ya(%) LK, | | O yr (%) Y2(%)
, , k,, k,are not both 0.
=YY, =Y.V = 0

klzyéykzz_y{ or k1:—y2’k2 :yl Uj;

=

[

ul

s Hona, 3 2

0,
at,
niv.
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2.6 Existence and Uniqueness of Solutions. Wronskian

KiY: (Xo) + K Y, (%) =0
Kiy: (%) +K, Y5 (%) =0

PROOF) (b) ifW=0atan x=x,in |1 ®» W=0on I

y =Kk y,(X) +k,y,(x) is alsosolution of

Y(Xo) =Ky (%) + K, ¥, (%) =0
Y'(X) =K Y (%) +K,¥5(%) =0

"% TO|X[OA &= Ao] Fo|= FH"

o)

k
Same formula Y1 (%) = === ¥, (%)
E> E> 1 0 kl 2 0

y"+p(x)y'+qg(x)y=0

Y(Xo) =0
Y’ (Xo) =0

Initial conditions

Another solution satisfying the same initial condition is y* = 0 (constant 0).

Theorem 1 Unigueness theorem = y = y*,

K.y, +Kk,y, =0 on |

EX) y; = sinwX, Y, = 2SinwX
Y1 =X, Y, = 3X

Now k,, k, are not both zero # linear dependence of y,, y,.
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2.6 Existence and Uniqueness of Solutions. Wronskian

% Theorem 2 Linear Dependence and Independence of Solutions

Let the ODE y"+p(X)y'+q(x)y=0 have continuous coefficients p(x) and g(x) on an open

interval I. (a)Then two solutions y,, y, of the equation on | are linearly dependent on |

Yi Y,
Y'Y,

is 0 at some X, in I. Furthermore, (b) if W =0 at an X=X, in I, then W=0 on I;

if and only if their “Wronskian”

W(y,Y,)= A AN

hence (C) if there is an X, in | at which W is not O, then Yy, Y, are linearly independent
on I.

PROOF)(c)
From (b) y,, y, linearly dependent ® W =0 at an x=x,in | » W=0on |
NOT(W=0onl) » W(x,)#0atanx,on | % vy, vy, linearly independent

Engineering Math, 2. Second-Order Linear ODEs



2.6 Existence and Uniqueness of Solutions. Wronskian

Q: Show linear independence using the Wronskian.

M EX. 1 e*cos wX, e*sin mX

M Ex. 2 e g-1.5x

Engineering Math, 2. Second-Order Linear ODEs
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2.6 Existence and Uniqueness of Solutions. Wronskian

» Theorem 3 Existence of a General Solution

If p(x) and g(x) are continuous on an open interval I, then y"+p(x)y'+¢g(x)y=0 has a

general solution on 1.

» Theorem 4 A General Solution Includes All Solutions

If the ODE y"+p(X)y"+¢q(x)y=0 has continuous coefficients p(x) and g(x) on some open
interval I, then every solution y = Y(x) of the equation on | is of the form

Y (X)=C.y, (x)+C,Y,(x)
where y,, Y, is any basis of solutions of the equation on I and C,, C, are suitable
constants.

Hence the equation does not have singular solutions (that is, solutions not
obtainable from a general solution).
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2.6 Existence and Uniqueness of Solutions. Wronskian

Proof) Let y=Y(x) be any solution of y"+p(X)y+q(x)y=0on /.
if we prove Y(x) = C,y,(x) + C,y,(x) = no singular solutions

“we know Y(X) is a general solution of y"+p(X)y+q(x)y=0, but we don 't know whether
there is any other solution or not”

The ODE has a general solution
y(X)= C1y1(X) + Cy,(x) on [.

We have to find suitable values of ¢, ¢, such that y(x) =Y(x) on I.
For any X,

C,Y1(Xo) +C, Y, (Xe) =Y (%) x Y5 (%) E> CY1Y2 +CoYaYo =YY,
CuY1(Xo) +CoY5(X0) =Y (%) x =Y, (%) —GY2Y1—CoYaY, =YY,

' ' ' ' Y ) — Y,
I:> ClylyZ_ClyZY1=C1W(Y1,Y2):Yy2_yZY I:> Clzﬁzcl
10 Y2

Y1 ,_Yy1' _

Similarly  c,¥,¥; Gy, =cW (Y ¥,) = VY =Yy, ) WLy,
1 J2

lation. 1
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2.6 Existence and Uniqueness of Solutions. Wronskian

Particular solution

y*(x)= Cpy1(x) +Coy,(X)

Therefore y*(x,)= Y(X,) and y"* (Xo)= Y' (X,)
That is,

y*(xo) — C1Y1(X0)+CZY2(X0) :Y(Xo)
y'*(xo) - Clyl'(XO)+C2y;(XO) :Y’(Xo)

From the uniqueness in Theorem 1, y*= Y must be equal everywhere on 1.

S22
w
-]

(S
v
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2.7 Nonhomogeneous ODEs

<» Nonhomogeneous linear ODEs: y"+p(x)y+q(x)y=r(x), r(x)=0

«» Definition General Solution, Particular Solution

A general solution of the nonhomogeneous ODE y"+p(x)y'+¢(X)y=r(x) on an open
interval I is a solution of the form

Y(X) = Yr(X) +Yp(X)

here, y,=C, Yy, +C, Y, IS a general solution of the homogeneous ODE y"+p(x)y"+q(x)y=0
on I and y, is any solution of y"+p(x)y"+q(x)y=r(x) on | containing no arbitrary
constants.

A particular solution of y"+p(x)y"+g(X)y=r(x) on | is a solution obtained from

y(X) =yn(X) +Y, (x) by assigning specific values to the arbitrary constants ¢, and c,

in yp.

ation, :
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2.7 Nonhomogeneous ODEs

s Theorem 1
Relations of Solution of y"+p(x)y'+q(X)y=r(x) to those of y"+p(x)y'+q(x)y=0

= y:asolution of y"+p(X)y'+qg(X)y=r(x) on some open interval |
= j:asolution of y"+p(x)y'+q(x)y=0
(@) y +y : a solution of y"+p(x)y"+qg(X)y=r(x) on I.

In particular, y(x) = y,(x) + Y, (x) is a solution of y"+p(x)y+q(X)y=r(x) on I.

PROOF) (a) Let [[y] denotes the left side of y"+p(X)y'+g(X)y=r(x)

L[y +yl=LIy]+L[y]=r(x)+0=r(x)

ona
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2.7 Nonhomogeneous ODEs

s Theorem 1

Relations of Solution of y"+p(x)y'+q(X)y=r(x) to those of y"+p(X)y'+q(x)y=0
=y, y*:two solutions of y"+p(X)y'+g(X)y=r(x) on some open interval |
(b) the difference of two solutions (y—y*) of y"+p(X)y'+q(x)y=r(x) on |

= a solution of y"+p(X)y'+¢(x)y=0 on I.

PROOF) (b) L[y-y*l=L[y]-L[y*]=r-r=0

ona
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2.7 Nonhomogeneous ODEs

s Theorem 2 A General Solution of a Nonhomogeneous ODE Includes All
Solutions

If the coefficients p(x), q(x), and the function r(x) in y"+p(X)y'+q(X)y=r(x) are

continuous on some open interval I,

then every solution of y"+p(x)y"+g(X)y=r(x) on | is obtained by assigning suitable

values to the arbitrary constants ¢, and c, in a general solution y(x) = y,(x) + y,(x) of

y"+p(X)y"+q(x)y=r(x) on I.
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2.7 Nonhomogeneous ODEs

PROOF) Let y* any solution of y"+p(x)y"+g(x)y=r(x) on |
y,is particular solution of y"+p(x)y"+q(X)y=r(x)
Y=y*=y,: a solution of y"+p(x)y"+q(x)y=0 < Theorem 1(b)
At X We have Y (x,)=y*(Xo) = Yo(¥o), Y (%)=*/(%g) = 1, (o)

Theorem 4 in Sec. 2.6 = There exists a unique particular solution (Y) of
y"+p(X)y'+q(x)y=0 obtained by assigning suitable values to ¢, and c, in y,=C, Yy, +C, Y,.
= From this and y* =Y (=y,) + Y, the statement follows.

(yy: general solution of y"+p(x)y'"+q(x)y=0)

S
=Y
W

(S
i
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2.7 Nonhomogeneous ODEs

< Method of Undetermined Coefficients (J|ZHlITY)

«» Choice Rules for the Method of Undetermined Coefficients

a. Basic Rule (OI27&). If r(x) in y"+p(X)y"+g(X)y=r(x) is one of the functions in the
first column in Table 2.1, choose y, in the same line and determine its
undetermined coefficients by substituting y, and its derivatives into y"+ay+by=r(x).

b. Modification Rule (H &+ 3). If a term in your choice for y, happens to be a
solution of the homogeneous ODE corresponding to y"+ay'+by=r(x), multiply your
choice of by x (or by x? if this solution corresponding to a double root of the y,
characteristic equation of the homogeneous ODE).

c. Sum Rule (&7#&). If r(x) is a sum of functions in the first column of Table 2.1,
choose for y, the sum of the functions in the corresponding lines of the second
column.
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2.7 Nonhomogeneous ODEs

Table 2.1 Method of Undetermined Coefficients

Term in r(x) Choice for y,(x)
ke Ce’™
kx"(n=0,1,-") | Kpx"+Kp_x" 1+ +Kux+ Ko
k cos wx

) K cos wx + M sin wx
k sin wx

ke cos wx _
. e“*(K cos wx + M sin wx)
ke® sin wx

Engineering Math, 2. Second-Order Linear ODEs LJ\ nifna



2.7 Nonhomogeneous ODEs

M Ex. 1 Solve the initial value problem y"+y=0.001x*, y(0)=0, y'(0)=15 —

Step 1 General solution of the homogeneous ODEI Y, = ACos X+ Bsin x
us ODE. (“Basic Rule” 0| &)
r(x)=0.001x* =y =K, xX*+Kx+K; = K,=0001, K, =0, K,=-0.002
= y,=0.001x*-0.002 = .. y=Acosx+Bsinx+0.001x*-0.002
Step 3 Solution of the initial value problem.

Step 2 Solution y, of the nonhomogeneo

y(0)=A-0002=0, y'(0)=B=15 = ..y=0.002c0sx+1.5sinx+0.001x? —0.002

Term in r(x) Choice for yp(x)
ke”™ Ce"™ y
kx"(n=0,1,--) Kox" + Kpy_1x" 1 4 -« + Kix + Ko ol
k cos wx

—

. K cos wx + M sin wx
k sin wx

0 =
o, 1\@ 20/ 30 40 «x
ke™ cos wx }e‘“x(K cos wx + M sin wx) -1 v U

ke™ sin wx

i i i Lj ationa
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2.7 Nonhomogeneous ODEs

M Ex. 2 Solve the initial value problem

Step 2 Solution y, of the nonhomogeneous ODE. (“Modification Rule” 0| &)

r(x)=-10e™* =Cxe"™ = C=-5

Solution of the homogeneous ODE

= yp

and corresponding to a double root —=>

» Multiply by x?

y, = _5y2e 5 Ly

Step 3 Solution of the initial value problem.

y'(0)=c,-15c,=0 = ..y=

Choice for yp(x)

Kﬂ_xﬂ + Kﬂ_lxﬂ-—]. + .

y(0)=c, =1,
Term in r(x)
ke?™ Ce"™
kx"(n=0,1,--)
k cos wx
k sin wx

ke™" cos wx
ke™" sin wx

-+ Kix + Ko

}Kcos wXx + M sin wx

}e‘*x(K cos wx + M sin wx)

(c,+c,x)e™

(1+1.5x)e™

.-"-

y"+3y'+2.25y =-10e "

y(0)=1 y'(0)=0

Step 1 General solution of the homogeneous|ODE. Y, =(¢, +¢,x)e™”

5X2 -1.5x

ARRLIRLILY REELLARYY
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Term in r(x) Choice for yp(x)

2.7 Nonhomogeneous ODEs N A
i::j;jj }Kcos wx + M sin wx
M Ex. 3 Solve the initial value problem ’;jjj:ﬁj;j }ew(xcowﬁmmwx)
y"+2y'+0.75y = 2cos x—0.25sin x+0.09x, y(0)=2.78, y'(0)=-0.43 .

Step 1 General solution of the homogeneous ODE. y, =ce % +c,e "

Step 2 Solution y, of the nonhomogeneous ODE. (“Sum Rule” 0| &)
(x)=2cosx—0.25sinx = y,=Kcosx+Msinx = K=0 M=1
L(x)=009x = vy,=Kx+K, = K =012, K;=-0.32

= Yy =sinx, Yy, =0.12x-0.32

= y=ce ¥+, +sinx+0.12x-0.32

Step 3 Solution of the initial value problem.
y(0)=c,+¢c,-0.32=2.78, y'(O):—%cl—gcz+1+O.12:—O.4

= c,=31 ¢c,=0
= . y=31e"+sinx+0.12x—0.32
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2.7 Nonhomogeneous ODEs

y =3.1e7% +5sin x+0.12x - 0.32

2.5

0.5

|

v N
2 4 /6 8 10 1

L1 1 |
2 14 16 18 20 «

= Seoul

. . . .‘E'Ejy Nationa 49
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2.2 Homogeneous Linear ODEs with Constant Coefficients

Q: Solve the following problem.

M Ex. y"+by+6y=2¢"

Table 2.1 Method of Undetermined Coefficients

Term in r(x) Choice for yp(x)
ke?™ Ce™
x"m=0,1,-") | Kx" +Kn_1x" 1+ + Kix + Ko
k cos wx

. K cos wx + M sin wx
k sin wx

ke®™ cos wx
ke®™® sin wx

}e‘*’""(K cos wx + M sin wx)

o EJ f" Seoul
Nationa
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(Review) 2.4 Modeling of Free Oscillations of Mass-Spring System

= We consider a basic mechanical system, a mass on an elastic spring, which
moves up and down.

% Setting Up the Model

=N Q__ H__ o I
; ; _;} Modeling
= < § = System in static equilibrium
N F = &
Unstrgtched js - g F k (k )
spring 0 . .
S | SV WO 0 = —KS - Spring constant
WIStCSt ZET S >FO+W:—kso+mg:0
ystem 2 ———5 Weight of body \W =mg
Systim in
() (b) (©) = System in motion

< Mechanical mass-spring system >
Restoring force F =—ky (Hook’s law)

>my"+lq1:0

my"=F (Newton’s second law)

(At this time, F, and W cancel each other)

oul
_ _ _ EJJ t 51
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(Review) 2.4 Modeling of Free Oscillations of Mass-Spring System

% Undamped System: ODE and Solution

my"+ky =0 :>/12+£=0

m

= ODE:

= Harmonic oscillation (XZ}XIS):
y(t)=Acosayt+Bsin oyt = C cos(amt —5),

where, C =+ A*+B?, tand=B/A

k

a)o =

m

Acos X + Bsin x =+ A® + B* cos(x — o)

Period (71, T) = 21/, (sec)

Natural frequency (XTIt f) =

Fa

\“‘x

/\/

< Harmonic oscillation >

y /@ c
S N / - "

/21 (cycles/sec)

: (D Positive
@ Zero

(3) Negative

Initial velocity
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(Review) 2.4 Modeling of Free Oscillations of Mass-Spring System

C K
. . ) A +—2+—=0
< Overdamping (¢? > 4mk) m  m
@Bl | o(atph c Jei—dmk  \h=—at B A =—a-p
Ly (t)=ce +C,e where =5 P=—F—— c 1
m m a=—, B=--1c*—4mk
1) k 2m 2m
,82:(—) (c*—4mk)=a’-—<a’® =a-$>0, a+p>0 = yt)—>0
2m m
Damping takes out energy so quickly = EN <
that the body does not oscillate. = . § <
Unstretched Irs TO (; §
spring _0_ I F_}_‘\
WISystCejn)i at ( jg i - ??
¥ rest O
(D Positive i . Sy"f‘:’ef?"m
(2 Zero Initial velocity P it
@ Negative - T =

Fl
£
=
s =~
LY
A
LY
i
A
\ \
AY
, \
A
, Y b
\ \
, 4 \
@{I\xl‘x \ i
\

[

~— — ¢

< Positive initial displacement (tension) > < Negative initial displacement (compression) >

BT Seoul
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(Review) 2.4 Modeling of Free Oscillations of Mass-Spring System

A=—a+p, L =—a-p,
a=-—" ,B:i\/cz—4mk
2m 2m

<% Critical damping (¢ =4mk) p=0

L y(t)= e, a=——
y(O)=(e et a=o

Damping takes out energy so quickly that the body does not oscillate.
= <

= -
§ ; ;v y(0)=c, >0
: = ; . < yM)=c,—alc+ct)e™ =y(0)=c,-ag,
¥ Unstref(ched s S 2
spring 0 T ‘ - e
T /O 2 W O j};__(g Case @ Positive initial velocity
N A e’ y'(0)>0 c,—ac, >0, ¢,>ac,>0 = y(t)=0
\, ~ ~ . _ T~ (a) (b) (c)
\ Case @ Zero initial velocity
\}@ o y'(0)=0c,—ac, =0, c,=ac, >0 = y(t)=0
cict=0" : Case ® Negative initial velocity
@ Positive | | y'(0)<0 c,—ac, <0, ¢, <ac,
%izr;tive Initial velocity c,<0orc,>0 = y(t)=0ory(t) =0
v |
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2.8 Modeling: Forced Oscillations. Resonance

< Free Motion (A}5= &l &): Motions in the absence of external forces caused solely

by internal forces. my"+cy '+ ky

=0

»» Forced Motion (Z Ml &l S=): Model by including an external force

my "+cy+ky =r(t)
= r(t): Input or Driving Force

= y(t): Output or Response

Table 2.1 Method of Undetermined Coefficients

Term in r(x)

Choice for yp(x)

ke?*
kx"(n=0,1,--+)
k cos wx

k sin wx

Ce’™

Kpx™ + Kp_1x™" 1+ - + Kix + Ko

}Kcos wx + M sin wx

ke®™" cos wx

% Motion with periodic external forces ke sinwr

}e“‘"(K cos wx + M sin wx)

= Nonhomogeneous ODE: my"+cy'+ky = F, cos ot

= Use the method of undetermined coefficients

y,(t) =acosmt + bsin wt

y; (t) = —wasin ot + wh cos wt

y; (t) =—w*asin ot —w’bcos ot

Engineering Math, 2. Second-Order Linear ODEs




2.8 Modeling: Forced Oscillations. Resonance

(k — ma)z)a+a)cb =F,

—aca +(Kk-mo’)b=0

k —mo?
" (k—maw?)? + w’c?’

If weset vkim =, (>0)

m(w; — @°)

C

a=F,

y,(t) =acosat + bsin wt

m? (w? —0°)* + w’c®’

° (k—ma?)? + w*c?

o

—0)2)2 + »2c?

Enginee
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2.8 Modeling: Forced Oscillations. Resonance

Case 1 Undamped Forced Oscillations. Resonance

2 2
M, — @ aC

a=F, 2 2(022)22’b:F0 2, 2 272 2 2
M (w, —w”)" +o°C M (w;, —®w")" +o°C

F, F
= COS wt __y=Ccos(mt—0)+ 0 COS wt
Yo m(a)oz_a)z) @ = y (a)O —yz m(a)oz_wz) @

where, o # o,
0 where, C =+/a’+b? =a, tand=b/a=0

c=0 —

Y, coswt, @’ =k/m

M@/ o)]

“ This output is a superposition of two harm|onic oscillations of the frequencies just
mentioned. *

_ @, | cycles
= Natural frequency (At HI 24 XS 2| F=10H=): i[ /%CJ

= Frequency of the driving force (Z 8|2t & & S 2| F=1t=+): g[cycley%c}

ona
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2.8 Modeling : Forced Oscillations. Resonance

= Resonance: Excitation of large oscillations by matching input and natural

frequencies. (60 = a)o)

y. = Ko cos wt
Maximum amplitude (a,) of y, (when cosat = 1) " K[ (@/ @, )?]
a Ry o Wwhere p 1 fact
= = . resonance ractor
° k 1- (0! w,)?
The ratio of the amplitudes and the input F,coswt
o I
k FO III' :
/
/o
a
1|
' o — o
iD ,.r'/(’f
| III.'
¥
| |
[
< Resonance factor p >
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2.8 Modeling: Forced Oscillations. Resonance

* Resonance: (w=a,)

: F
We obtained vy, = 0 —~cosat = y=Ccos(at-5)+
m(ey’ ~of)

W, —

where, @ # @,

Valid or not when resonance?

W = @,

vkim=w=aw,

FO
m(a)oz_wz)cosa)t

" F
my"+?/+ky:Focosa)t ) Y'+toyy=—-cosat

How to solve?

Engineering Math, 2. Second-Order Linear ODEs




(Review) 2.7 Nonhomogeneous ODEs

< Choice Rules for the Method of Undetermined Coefficients (J|&HlF¥)

a. Basic Rule (127 &). If r(x) in y"+p(x)y"+q(X)y=r(x) is one of the functions in the first column
in Table 2.1, choose y, in the same line and determine its undetermined coefficients by
substituting y, and its derivatives into y"+ay+by=r(x).

b. Modification Rule (& &). If a term in your choice for y, happens to be a solution of the

homogeneous ODE corresponding to y"+ay'+by=r(x), multiply your choice of by x (or by x? if
this solution corresponding to a double root of the y,).

characteristic equation of the homogeneous ODE).

c. Sum Rule (&7 &). If r(x) is a sum of functions in the first column of Table 2.1, choose for y,
the sum of the functions in the corresponding lines of the second column.

Table 2.1 Method of Undetermined Coefficients

Term in r(x) Choice for yp(x)
ke Ce"™
kx™(n=0,1,) | K"+ Kp_x" 1+ + Kix + Ko
k cos wx

. K cos wx + M sin wx
k sin wx

ke™™ cos wx . .
.. e“* (K cos wx + M sin wx)
ke™ sin wx

==~ Univ.
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2.8 Modeling: Forced Oscillations. Resonance

= Resonance: (o=a,)

® = O,

vkim=w=aw,

14 F
mY"+?/+kY=Focosa)t > Y +a)oy=H°coswot

y, =t(acosagt +bsinayt)  (From the modification rule, we multiply y, by t)

Table 2.1 Method of Undetermined Coefficients

Choice for y,(x)

Ce"™

Kox" + Ky 1x" Y+ - + Kix + Ko

}Kcos wx + M sin wx

yp — FO tSln O)Ot Term in r(x)
2ma)0 ke?™
kx"(n=0,1,--+)
k cos wx
k sin wx
¥ - ke™" cos wx
/////// ke®” sin wx

}e“’""(K cos wx + M sin wx)

~

< Particular solution in the case of resonance >

Engineering Math, 2. Second-Order Linear ODEs




2.8 Modeling: Forced Oscillations. Resonance

= Beats (2 =0[): Forced undamped oscillation (2 Al 5|2 2 & &) when the

difference of the input and natural frequencies (o - w,) is small.

y =Ccos(a)0t—5)+L)cosa)t :> Take a particular solution

Resulting from the

\\ \\ second sine factor:
 # \ ®» This /s what

A

\/ /V\U ¢ musicians are listening
U U U U U U to when they tune (&£

=) the instruments.

\

< Beasts > sin A-sinB:—%{cos(A+ B) —cos(A-B)}

Engineering Math, 2. Second-Order Linear ODEs
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2.8 Modeling: Forced Oscillations. Resonance

Case 2 Damped Forced Oscillations e e
| ,/V Hﬁjnh? i
=y, — 0 as t goes infinity. \ ,’i\ e
5o
Overdamping Underdamping

= Transient Solution: The general solution y=y, , y, of the nonhomogeneous ODE

= Steady-State Solution: The particular solution y, (because y, — 0)

s Steady-State Solution

After a sufficiently long time the output of a damped vibrating system under a
purely sinusoidal driving force will practically be a harmonic oscillation whose

frequency is that of the input.

Engineering Math, 2. Second-Order Linear ODEs ) LJ\ nilvo"a




2.8 Modeling: Forced Oscillations. Resonance

« Amplitude of the Steady-State Solution. Practical Resonance

y, =acosat +bsin ot = C*cos(wt —7)

C*. amplitude, r : pahse lag

C'(w) =a? +b? = i

\/mz(a)g —0*)* +o’c?

b e =R
tani(@) = a m(w? — w*)
0

m(a}

)

e

L
— 0?)? + w’c?

° m?(a? - 0*)? + w*c?

where, n (phase lag): The lag of the output behind the input (also called phase angle)
= For what w, C*(w) has maximum? what is the size?

dw
=k /m)

2m’w® = 2m°w; —c* = 2mk —c¢?

¢’ =2m* (& —0°) (@f

*

dC
= |f 02>2mkE> —<0

= If ¢2<2mk £ areal sOlution w= wp,,

C(w

max )

.bﬂﬁﬂt?

@ _ FO(—% R3’2j[2m2(a)§ — 0°)(=20) + 26°] = 0

1

0O

__1_:——0& c= 1
—
i
= 4 “'\-q___\_____\_;-_:i_—E
| | |
1 2 @
a)max

Fig. 57. Amplification C*/F, as a function of
w form = 1,k = 1, and various values of the
damping constant ¢
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2.8 Modeling: Forced Oscillations. Resonance

my "+cy '+ ky = F, cos ot

y, =acoswt +bsin et = C*cos(wt — 1)

C*: amplitude, 7 : pahse lag

< Amplitude of the Steady-State Solution. Practical Resonance

C2

2m°e’ =2m°e; —¢* = 2mk —c’ 08 P
m

C' (@, )="a>+b” =

2
=@y —

VM (o) -

2
max

2 C2:

2 2 2 2
M (o; —o5.,)" + 0. - + (w5 —

2m?
_c*+4mw,c” —2¢”
- 4m?

_ c*(4mw; —c?)

- 4Am?

2mF,

C* a)max =
(nac) (:\/4mza)02—c2

Fig. 57. Amplification C*/F, as a function of

C—0 then C* — infinity
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2.8 Modeling: Forced Oscillations. Resonance

my"+cy'+Kky = F, cosat| |y, =acoswt+bsinat=C*cos(wt—-7») C*: amplitude, ;7 : pahse lag

tann(w) = E — o where, 7 (phase lag): The lag of the output behind the input
T a m(wg _a)z) (also called phase angle)
-1
n(w) = tan —— ,
m(w; — ") Tl R
I c=1/2
: c=1
I c=2
|
; T - I
If o<w, =>n<— i
; :
if o>0, =>n> > |
|
: |
C}O 1 2 ®

Fig. 58. Phase lag 0 as a function of w for
m = 1,k = 1, thus w, = 1, and various values
of the damping constant ¢
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2.9 Modeling: Electric Circuits - Skip

0 ©
Et) = EO sin wt

< RLC-circuit >

% Name Symbol Notation Unit Voltage Drop

; Ohm’s resistor —'\/\/\/\/— R Ohm'’s resistance ohms () RI
Inductor RS L Inductance henrys (H) L %
Capacitor —) }— C Capacitance farads (F) Q/C

< Elements in an RLC-circuit >
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2.9 Modeling: Electric Circuits - Skip

% Kirchhoff’'s Voltage Law (KVL): The voltage ( the electromotive force ) impressed on
a closed loop is equal to the sum of the voltage drops across the other elements of

the loop.

“* Voltage Drops

RI (Ohm’s law) Voltage drop for a resistor of resistance R ohms (W)
LI'= L% Voltage drop for an inductor of inductance L henrys(H)
% Voltage drop for a capacitor of capacitance C farads (F)
<+ Model of an RLC-circuit with electromotive force: L%-l- R%Jrél =E'(t) = E,wcos wt

| =acoswt+bsinwt = I sin(wt-06)

~E_ S ~E R E a S
a= 0™ b=—"", |,=+va’+b’ = 0 . tanf=——==
R? +52 R?+S? ° JR? + 52 b R

(2ad]
L
A

%
s
ISEE
:gg
o
®
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2.9 Modeling: Electric Circuits - Skip

“ Analogy of Electrical and Mechanical Quantities

= Entirely different physical or other systems may have the same mathematical
model.

= Practical importance of this analogy
1. Electric circuits are easy to assemble.

2. Electric quantities can be measured much more quickly and accurately
than mechanical ones.

Electrical System Mechanical System

Inductance L Mass m

Resistance R Damping constant ¢
Reciprocal % of capacitance Spring modulus k
Derivative E,@COSat of electromotive force Driving force F,cos wt
Current I(t) Displacement y(t)

< Analogy of Electrical and Mechanical Quantities >
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2.10 Solution by Variation of Parameters

= y"™p(x) y+ax)y = r(x)
y =Y}, (solution of y"+p y'+qy=0) + y, (solution of y"+py'+qy=r)

% Method of undetermined coefficient

= If r(x) is not complicated (ex. e™, cos wX, Sin wX, € ** CoS wX, € * sin wX)

— Method of undetermined coefficient

< Method of Variation of Parameter for more general r(x) (QH7H% 4= H2HH)

= p(x), q(x), r(x) in y"+ p(x) y'+q(x)y = r(x) are continuous on some open interval I.

= Solution formula: y, (X —yljyidx+ yzj Aoy w = V.Ys — V1Y,

Y, Y,: a basis of solution of the homogeneous ODE y"+ p(x) y+ q(x)y =0

= |f it starts with f (x)y", divide first by f (x).

"
= The integration in Y, (X)=-Y, yLdX+y2ij¢dX may often cause difficulties.

ona
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2.10 Solution by Variation of Parameters

M Ex. 1 Solve the nonhomogeneous ODE y"+Yy=secX o

A basis of solutions of the homogeneous ODE: Y, =C0SX, Y, =SInX

1

Wronskian: W (y,, y, ) = c0sxcos X —sin x(—sin x)

Apply the method of variation of parameters: y ( )__yl Yor dX + Y, VAl dx
p
W

= Particular solution
y, =—COS xIsin xsec xdx +sin x_[cos xsec xdx = cos xIn|cos x| + xsin x
= General solution

Y, = CyY; + C,Y, = €, COS X + C,Sin X R

" .-'Iu: - rl L I. = 4\ — =l
6 8 1012 x

M_

Y =Yp+Y, =(c; +Infcos x]) cos x + (c, + X) sin x

—1oF

The particular solution vy,

o _ secx=1/cosx, cosecx =1/sinx, cotx=1/tan x @1 it, i T1
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2.10 Solution by Variation of Parameters

% ldea of the Method. Derivation
Yi(X) =c, y1(X) + ¢, ¥,(x) is a general solution of y"+py'+qy = 0
Yp(X) = u(x)y,(X) + v(X)y,(x) is assumed to be a particular solution of y"+p y'+qy =r
Here, u(x) and v(x) should be determined.

V' :)Vﬁ+ uy'y+ v, + wh
a second condition: u’y, + v'y,=0 (assumption)
= V= wyt v
[/ A—

Y= Uy uy vy + vy

u(:"; +/ﬁy/’1 +qy") +V(V"z+,m/’2'+qy’2)+ uy+ vy, =r <{J |y py+ay=0

D Uy VY, =T

u’'y,+v'y,=0 from a second condition

R e
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2.10 Solution by Variation of Parameters

¢ |dea of the Method. Derivation

uy Lt vy, =t

u'y, +v'y,=0 from a second condition

MR

AT

sl Ml
Vi¥o = ViYo = Y1 Yo JLr] Yo y,F
A L /1)
1Yo = Y1¥s W
Vv = Al _
Vi¥o = Wi¥, W
| i Yo(X) = u(x)yl(x: + v(x)yz(xi
. -[W XV IW X yp(x):—ylijidx+yzijLdX
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