CHAPTER 2. SECOND-ORDER LINEAR ODES

2019.4 서울대학교 조선해양공학과

서유택

※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다.

- Linear ODEs of second order: y''+p(x)y'+q(x)y=r(x) (the standard form)
- Homogeneous (**M**x): r(x) = 0
- Nonhomogeneous (**出以)**: $r(x) \neq 0$

☑ Ex. A nonhomogeneous linear ODE (비제차 상미분 방정식):

$$y'' + 25y = e^{-x} \cos x$$

A homogeneous linear ODE: xy'' + y' + xy = 0 in standard form $y'' + \frac{1}{x}y' + y = 0$

A nonlinear ODE:
$$y''y + (y')^2 = 0$$

- ❖ Homogeneous Linear ODEs: Superposition Principle (중첩원리)
- Theorem 1 Fundamental Theorem for the Homogeneous Linear ODE

For a homogeneous linear ODE,

- any linear combination of two solutions on an open interval *I* is
- again solution of the equation on I.

In particular, for such an equation, sums and constant multiples of solutions are again solutions.

❖ This highly important theorem holds for homogeneous linear.odes.only

but does not hold for nonhomogeneous linear or nonlinear ODEs.

Homogeneous Linear ODEs: Superposition Principle

I Ex. 2 A nonhomogeneous linear ODE y''+y=1 —

The functions $y=1+\cos x$ and $y=1+\sin x$ are solutions. Neither is $2(1+\cos x)$ or $5(1+\sin x)$

☑ Ex. 3 A nonlinear ODE y''y-xy'=0

The functions y=1 and $y=x^2$ are solutions. But their sum is not a solution. Neither is $-x^2$, so you cannot even multiply by -1.

❖ Initial Value Problem. Basis. General Solution.

- Initial Value Problems (초기값 문제)
- : A differential equation consists of the homogeneous linear ODE and two initial conditions.
- Initial Conditions: $y(x_0) = K_0$, $y'(x_0) = K_1$
- This results in a particular solution of ODE.

☑ Ex. 4 Solve the initial value problem

$$y'' + y = 0$$
, $y(0) = 3.0$, $y'(0) = -0.5$

Step 1 General solution (일반해)

$$y = c_1 \cos x + c_2 \sin x \quad (\because \lambda^2 + 1 = 0 \implies \lambda = \pm i)$$

Step 2 Particular solution (특수해)

$$y(0) = c_1 = 3.0$$
, $y'(0) = c_2 = -0.5$ (: $y' = -c_1 \sin x + c_2 \cos x$) \Rightarrow : $y = 3.0 \cos x - 0.5 \sin x$

Definition General Solution, Basis, Particular Solution

A general solution of an ODE on an open interval I is

■ a solution $y = c_1y_1 + c_2y_2$ in which y_1 and y_2 are solutions of the equation on I that are not proportional and c_1 , c_2 are arbitrary constants.

There y_1 , y_2 are called a basis (기저) (or a fundamental system) of solutions of the equation on I.

A **particular solution** of the equation on *I* is obtained if we assign specific values to c_1 and c_2 in $y = c_1y_1 + c_2y_2$.

* open interval: a < x < b (NOT $a \le x \le b$), $-\infty < x < b$, $a < x < \infty, -\infty < x < \infty$

- Two functions y_1 and y_2 are called **linearly independent** on I where they are defined if $k_1 y_1(x) + k_2 y_2(x) = 0$ everywhere on I implies $k_1 = 0$ and $k_2 = 0$.
- y_1 and y_2 are called **linearly dependent** on I if $k_1y_1(x) + k_2y_2(x) = 0$ also holds for some constants k_1 , k_2 not both zero.

If $k_1 \neq 0$ or $k_2 \neq 0$, we can divide and see that y_1 and y_2 are proportional,

$$y_1 = -\frac{k_2}{k_1} y_2$$
 or $y_2 = -\frac{k_1}{k_2} y_1$

Definition Basis (Reformulated)

A **basis** of solutions of the equation on an open interval *I* is a pair of linearly independent solutions of the equation on *I*.

Find a Basis if One Solution Is Known. Reduction of Order [자수축소법]

(Extended Method, 확장 방법)

Apply **reduction of order** to the homogeneous linear ODE y'' + p(x)y' + q(x)y = 0.

$$y = y_2 = uy_1$$
 (Substitute) $(y' = y_2' = u'y_1 + uy_1', y'' = y_2'' = u''y_1 + 2u'y_1' + uy_1'')$

$$\Rightarrow u''y_1 + u'(2y_1' + py_1) + u(y_1'' + py_1' + qy_1) = 0$$

$$\Rightarrow u'' + u' \frac{2y_1' + py_1}{y_1} = 0 \qquad (\because y_1'' + py_1' + qy_1 = 0)$$

$$U = u'$$
, $U' = u''$ (Substitute) $\Rightarrow U' + \left(2\frac{y_1'}{y_1} + p\right)U = 0 \Rightarrow \frac{dU}{dx} = -\left(2\frac{y_1'}{y_1} + p\right)U$

(Separation of variables and integration)

$$\Rightarrow \frac{dU}{U} = -\left(2\frac{y_1'}{y_1} + p\right)dx \& \ln|U| = -2\ln|y_1| - \int pdx$$

$$\Rightarrow \quad \therefore \quad U = \frac{1}{y_1^2} e^{-\int p dx}, \quad y_2 = u y_1 = y_1 \int U dx$$

I Ex. 7 Find a basis of solution of the ODE $(x^2 - x)y'' - xy' + y = 0$

One solution: $y_1 = x$

Apply reduction of order:
$$p = -\frac{x}{x^2 - x} = -\frac{1}{x - 1}$$

$$\Rightarrow U = \frac{1}{y_1^2} e^{-\int p dx} = \frac{1}{x^2} e^{\int \frac{1}{x-1} dx} = \frac{1}{x^2} e^{\ln(x-1)} = \frac{x-1}{x^2}$$

$$y_2 = uy_1 = y_1 \int U dx$$

$$\Rightarrow y_2 = y_1 \int U dx = x \left(\ln|x| + \frac{1}{x} \right) = x \ln|x| + 1$$

Q : Start from the original assumption.

$$y_2 = uy_1 = ux$$

 $(y' = y_2' = u'y_1 + uy_1', y'' = y_2'' = u''y_1 + 2u'y_1' + uy_1'')$
 $y'' + p(x)y' + q(x)y = 0$

$$U = \frac{1}{y_1^2} e^{-\int p dx}$$

$$y_2 = uy_1 = y_1 \int U dx$$

- Second-order homogeneous linear ODEs with constant coefficients: y'' + ay' + by = 0
- We try $y = e^{\lambda x}$.
- � Characteristic equation (Auxiliary Equation, 특성방정식): $\lambda^2 + a\lambda + b = 0$
- Three kinds of the general solution of the equation
- Case I Two real roots λ_1 , λ_2 if $a^2 4b > 0$ \Rightarrow $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
- Case II A real double root $\lambda = -a/2$ if $a^2 4b = 0$ \Rightarrow $y = (c_1 + c_2 x)e^{-ax/2}$
- Case III Complex conjugate roots $\lambda = -a/2 \pm i\omega$

if
$$a^2 - 4b < 0 \implies y = e^{-ax/2} (A \cos \omega x + B \sin \omega x)$$

 \bullet Euler formula: $e^{it} = \cos t + i \sin t$

Case II A real double root $\lambda = -a/2$ if $a^2 - 4b = 0$ \Rightarrow $y = (c_1 + c_2 x)e^{-ax/2}$

Prove it by using the method of reduction of order!

$$y_{1} = e^{-(a/2)x}$$
setting $y_{2} = uy_{1} \implies y'_{2} = u'y_{1} + uy'_{1}$

$$y'' + ay' + by = 0$$

$$(u''y_{1} + 2u'y'_{1} + uy''_{1}) + a(u'y_{1} + uy'_{1}) + buy_{1} = 0$$

$$u''y_{1} + u'(2y'_{1} + ay'_{1}) + u(y''_{1} + ay'_{1} + by_{1}) = 0$$
here, $2y'_{1} = -ae^{-ax/2} = -ay_{1}$

$$u''y_{1} = 0 \implies u'' = 0 \implies u = c_{1}x + c_{2}$$

we can simply choose $c_1 = 1$, $c_2 = 0 \Rightarrow u = x$ $y_2 = uy_1 = xy_1 = xe^{-(a/2)x}$

$$y = c_1 y_1 + c_2 y_2 = (c_1 + c_2 x)e^{-ax/2}$$

 \blacksquare Ex. 2 Solver the initial value problem y'' + y' - 2y = 0, y(0) = 4, y'(0) = -5

Step 1 General solution

$$\lambda^2 + \lambda - 2 = 0$$
 (Characteristic equation) $\Rightarrow \lambda = 1$ or $-2 \Rightarrow \therefore y = c_1 e^x + c_2 e^{-2x}$

Step 2 Particular solution

$$y' = c_1 e^x - 2c_2 e^{-2x}$$

 $\Rightarrow y(0) = c_1 + c_2 = 4, \quad y'(0) = c_1 - 2c_2 = -5 \Rightarrow c_1 = 1, \quad c_2 = 3$
 $\Rightarrow \therefore y = e^x + 3e^{-2x}$

 \blacksquare Ex. 4 Solver the initial value problem y'' + y' + 0.25y = 0, y(0) = 3.0, y'(0) = -3.5

Step 1 General solution

$$\lambda^2 + \lambda + 0.25 = 0$$
 (Characteristic equation) $\Rightarrow \lambda = -0.5 \Rightarrow \therefore y = (c_1 + c_2 x)e^{-0.5x}$

Step 2 Particular solution

$$y' = c_2 e^{-0.5x} - 0.5(c_1 + c_2 x) e^{-0.5x}$$

$$\Rightarrow y(0) = c_1 = 3.0, \quad y'(0) = c_2 - 0.5c_1 = -3.5 \quad \Rightarrow \quad c_1 = 3, \quad c_2 = -2$$

$$\Rightarrow \quad \therefore y = (3 - 2x) e^{-0.5x}$$

Ex. 5 Solve the initial value problem
$$y'' + 0.4y' + 9.04y = 0$$
, $y(0) = 0$, $y'(0) = 3$

Step 1 General solution

$$\lambda^2 + 0.4\lambda + 9.04 = 0$$
 (Characteristic equation) $\Rightarrow \lambda = -0.2 \pm 3i \Rightarrow \therefore y = e^{-0.2x} \left(A\cos 3x + B\sin 3x \right)$

Step 2 Particular solution

$$y' = -0.2e^{-0.2x} \left(A\cos 3x + B\sin 3x \right) + e^{-0.2x} \left(-3A\sin 3x + 3B\cos 3x \right)$$

$$\Rightarrow$$
 $y(0) = A = 0$, $y'(0) = -0.2A + 3B = 3$ \Rightarrow $A = 0$, $B = 1$

$$\Rightarrow$$
 \therefore $y = e^{-0.2x} \sin 3x$

Summary of Cases I-III

Case	Roots of (2)	Basis of (1)	General Solution of (1)
I	Distinct real λ_1, λ_2	$e^{\lambda_1 x}, e^{\lambda_2 x}$	$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
II	Real double root $\lambda = -\frac{1}{2}a$	$e^{-ax/2}$, $xe^{-ax/2}$	$y = (c_1 + c_2 x)e^{-ax/2}$
III	Complex conjugate $\lambda_1 = -\frac{1}{2}a + i\omega,$ $\lambda_2 = -\frac{1}{2}a - i\omega$	$e^{-ax/2}\cos \omega x$ $e^{-ax/2}\sin \omega x$	$y = e^{-ax/2} (A\cos \omega x + B\sin \omega x)$

Q: Solve the following initial value problem.

Ex.
$$y'' + 4y' + (\pi^2 + 4)y = 0$$
, $y(1/2) = 1$, $y'(1/2) = -2$

2.3 Differential Operators

- Operator (연산자): A transformation that transforms a function into another function.
- Operational Calculus (연산자법): The technique and application of operators.
- Differential Operator (미분 연산자) D

: An operator which transforms a (differentiable) function into its derivative.

$$Dy = y' = \frac{dy}{dx}$$

- Identity Operator (항등 연산자): Iy = y
- Second-order differential operator (2계 미분 연산자)

$$L = P(D) = D^2 + aD + bI$$
 \Rightarrow $Ly = P(D)y = y'' + ay' + by$

- * P(D): Operator polynomial (연산자 다항식) * L: Linear operator (2계 미분 연산자, 선형 연산자)

❖ Shock Absorber (흔히 "쇼바")

- 자동차 서스펜션을 구성하는 주요 요소
- 원리: 스프링의 수축을 조절해, 노면 차이로 인해 충격 을 받은 스프링이 위아래로 반복해서 되튐 운동을 하 는 것을 막아 줌
- 스프링이 원상태로 천천히 돌아갈 수 있도록 하는 것
- 스프링의 신축 작용 즉, 차체가 위 아래로 흔들리거나 진동하는 것을 약화시켜줌
- force)'
- '딱딱한 shock absorber' vs. '부드러운 shock absorber'?
- 오일과 가스 shock absorber

가스쇼크업소버

 We consider a basic mechanical system, a mass on an elastic spring, which moves up and down.

Setting Up the Model

< Mechanical mass-spring system >

Physical Information

- Newton's second law: Mass x Acceleration = Force
- Hook's law
 - : The restoring force is directly, inversely proportional to the distance.
- We choose the downward direction as the positive direction.

 We consider a basic mechanical system, a mass on an elastic spring, which moves up and down.

Setting Up the Model

- Modeling
- System in static equilibrium

$$F_0 = -ks_0 \ (k : Spring constant)$$
Weight of body $W = mg$

$$F_0 + W = -ks_0 + mg = 0$$

System in motion

< Mechanical mass-spring system >

Restoring force
$$F_1 = -ky$$
 (Hook's law)
$$my'' = F_1 \quad \text{(Newton's second law)} > my'' + ky = 0$$

(At this time, F_0 and W cancel each other.)

Undamped System: ODE and Solution

• ODE:
$$my'' + ky = 0$$
 $\Rightarrow \lambda^2 + \frac{k}{m} = 0$

Harmonic oscillation (조화진동):

$$y(t) = A\cos\omega_0 t + B\sin\omega_0 t = C\cos(\omega_0 t - \delta), \quad \omega_0^2 = \frac{k}{m}$$

where,
$$C = \sqrt{A^2 + B^2}$$
, $\tan \delta = B/A$

$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x - \delta)$$

Period (주기, T) = $2\pi/\omega_0$ (sec) Natural frequency (고유주파수, f) = $\omega_0/2\pi$ (cycles/sec)

< Harmonic oscillation >

Initial velocity

- Damped System: ODE and Solutions
- Damping force (감쇄력): inversely proportional to the velocity

$$F_2 = -cy'$$
 (c:damping constant)
 $F_1 = -ky$ (k:spring constant)
 $my'' = F_1 + F_2$
 $my'' + cy' + ky = 0$
where, $c, k > 0$

Characteristic equation is

$$\lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} = 0$$
 $\lambda_1 = -\alpha + \beta, \ \lambda_2 = -\alpha - \beta, \text{ where } \alpha = \frac{c}{2m} \text{ and } \beta = \frac{1}{2m}\sqrt{c^2 - 4mk}$

Three types of motion

Case 1 (Overdamping) $c^2 > 4mk$ Distinct real roots λ_1 , λ_2

Case 2 (Critical damping) $c^2 = 4mk$ A real double root

Case 3 (Underdamping) $c^2 < 4mk$ Complex conjugate roots

Discussion of the Three Cases

Case 1 Overdamping $(c^2 > 4mk)$

Case 1 Overdamping
$$(c^2 > 4mk)$$

$$: y(t) = c_1 e^{-(\alpha - \beta)t} + c_2 e^{-(\alpha + \beta)t} \quad \text{where} \quad \alpha = \frac{c}{2m}, \quad \beta = \frac{\sqrt{c^2 - 4mk}}{2m}$$

$$= \frac{c}{2m} \cdot \beta = \frac{1}{2m} \sqrt{c^2 - 4mk}$$

$$\lambda^{2} + \frac{c}{m}\lambda + \frac{k}{m} = 0$$

$$\lambda_{1} = -\alpha + \beta, \ \lambda_{2} = -\alpha - \beta,$$

$$\alpha = \frac{c}{2m}, \ \beta = \frac{1}{2m}\sqrt{c^2 - 4m}$$

$$\beta^2 = \left(\frac{1}{2m}\right)^2 (c^2 - 4mk) = \alpha^2 - \frac{k}{m} < \alpha^2 \implies \alpha - \beta > 0, \quad \alpha + \beta > 0 \implies y(t) \to 0$$
Damping takes out energy so quickly that the body does not oscillate.

< Positive initial displacement (tension) >

< Negative initial displacement (compression) >

Case 2 Critical damping
$$(c^2 = 4mk)$$
 $\beta = 0$

$$: y(t) = (c_1 + c_2 t) \underline{e^{-\alpha t}}, \quad \alpha = \frac{c}{2m}$$

 $\alpha = \frac{c}{2m}, \ \beta = \frac{1}{2m} \sqrt{c^2 - 4mk}$

Damping takes out energy so quickly that the body does not oscillate.

$$y(0) = c_1 > 0$$

 $y'(t) = c_2 - \alpha(c_1 + c_2 t)e^{-\alpha t} \implies y'(0) = c_2 - \alpha c_1$

 $\lambda_1 = -\alpha + \beta, \ \lambda_2 = -\alpha - \beta,$

Case 1 Positive initial velocity

$$y'(0) > 0$$
 $c_2 - \alpha c_1 > 0$, $c_2 > \alpha c_1 > 0 \implies y(t) \neq 0$

Case 2 Zero initial velocity

$$y'(0) = 0$$
 $c_2 - \alpha c_1 = 0$, $c_2 = \alpha c_1 > 0 \implies y(t) \neq 0$

Case 3 Negative initial velocity

$$y'(0) < 0$$
 $c_2 - \alpha c_1 < 0$, $c_2 < \alpha c_1$,
 $c_2 < 0$ or $c_2 > 0 \implies y(t) = 0$ or $y(t) \neq 0$

Case 3 Underdamping $(c^2 < 4mk)$

$$\beta = i\omega^* \text{ where } \omega^* = \frac{1}{2m} \sqrt{4mk - c^2} = \sqrt{\frac{k}{m} - \frac{c^2}{4m^2}} \quad (>0)$$

$$\lambda_1 = -\alpha + i\omega^*, \quad \lambda_2 = -\alpha - i\omega^*,$$

$$\lambda_1 = -\alpha + \beta, \ \lambda_2 = -\alpha - \beta,$$

$$\alpha = \frac{c}{2m}, \ \beta = \frac{1}{2m} \sqrt{c^2 - 4mk}$$

Fig. 39. Damped oscillation in Case III [see (10)]

Let Euler-Cauchy Equations: $x^2y'' + axy' + by = 0$

$$y = x^m, y' = mx^{m-1}, y'' = m(m-1)x^{m-2}$$

 $x^2m(m-1)x^{m-2} + axmx^{m-1} + bx^m = 0 \implies m(m-1)x^m + amx^m + bx^m = 0$

� Auxiliary Equation (보조 방정식): $m^2 + (a-1)m + b = 0$

$$m_1 = \frac{1}{2}(1-a) + \sqrt{\frac{1}{4}(1-a)^2 - b}, \ m_2 = \frac{1}{2}(1-a) - \sqrt{\frac{1}{4}(1-a)^2 - b}$$

- Three kinds of the general solution of the equation
- Case 1 Two real roots $m_1, m_2 \Rightarrow y = c_1 x^{m_1} + c_2 x^{m_2}$

• Euler-Cauchy Equations :
$$x^2y'' + axy' + by = 0$$

$$m_1 = \frac{1}{2}(1-a) + \sqrt{\frac{1}{4}(1-a)^2 - b}, \quad m_2 = \frac{1}{2}(1-a) - \sqrt{\frac{1}{4}(1-a)^2 - b}$$

y''+p(x)y'+q(x)y=0

 $y_2 = uy_1 = y_1 \int U dx$

y'' + p(x)y' + q(x)y = 0

$$U = \frac{1}{y_1^2} e^{-\int p dx}$$

Case 2 A real double root

$$m_1 = \frac{1}{2}(1-a)$$
 only if $b = \frac{1}{4}(1-a)^2 \implies y_1 = x^{(1-a)/2}$

$$x^2y'' + axy' + by = 0$$
 \Rightarrow $x^2y'' + axy' + \frac{1}{4}(1-a)^2y = 0$ or $y'' + \frac{a}{x}y' + \frac{(1-a)^2}{4x^2}y = 0$

Method of reduction of order, $y_2 = uy_1$

$$u = \int U dx$$
 where $U = \frac{1}{v^2} \exp(-\int p dx)$

$$p = \frac{a}{x} \implies U = \frac{1}{v_1^2} \exp\left(-\int \frac{a}{x} dx\right) = \frac{1}{v_1^2} \exp\left(-a \ln x\right) = \frac{1}{v_1^2} \exp\left(\ln x^{-a}\right) = \frac{x^{-a}}{x^{(1-a)}} = \frac{1}{x}$$

$$u = \int U dx = \int \frac{1}{x} dx = \ln x$$

$$y_2 = uy_1 = x^{(1-a)/2} \ln x \implies y = (c_1 + c_2 \ln x) x^m, \ m = \frac{1}{2} (1-a)$$

• Euler-Cauchy Equations : $x^2y'' + axy' + by = 0$

$$m_1 = \frac{1}{2}(1-a) + \sqrt{\frac{1}{4}(1-a)^2 - b}, \quad m_2 = \frac{1}{2}(1-a) - \sqrt{\frac{1}{4}(1-a)^2 - b}$$

Case 3 Complex conjugate roots

$$m_1 = \mu + i\nu, m_2 = \mu - i\nu,$$
 where $\mu = \frac{1}{2}(1-a), \nu = \sqrt{b - \frac{1}{4}(1-a)^2}$

trick of writing $x = e^{\ln x}$

$$ightharpoonup$$
 Euler formula: $e^{it} = \cos t + i \sin t$

$$y_1 = x^{m_1} = x^{\mu + iv} = x^{\mu} (e^{\ln x})^{iv} = x^{\mu} e^{(v \ln x)i} = x^{\mu} (\cos(v \ln x) + i \sin(v \ln x))$$

$$y_2 = x^{m_2} = x^{\mu - i\nu} = x^{\mu} (e^{\ln x})^{-i\nu} = x^{\mu} e^{-(\nu \ln x)i} = x^{\mu} (\cos(\nu \ln x) - i\sin(\nu \ln x))$$

$$(y_1 + y_2)/2 = x^{\mu} \cos(\nu \ln x)$$

 $(y_1 - y_2)/2 = x^{\mu} \sin(\nu \ln x)$

These are also solutions of Euler-Cauchy equation and linearly independent.

$$m = \mu \pm i \upsilon$$
 \Rightarrow $y = x^{\mu} \left[A \cos(\nu \ln x) + B \sin(\nu \ln x) \right]$

Q : Solve the followings.

Ex. 1 Solver the Euler-Cauchy equation $x^2y''+1.5xy'-0.5y=0$

Ex. 2 Solver the Euler-Cauchy equation $x^2y''-5xy'+9y=0$

Ex. 3 Solver the Euler-Cauchy equation $x^2y''+0.6xy'+16.04y=0$

❖ Theorem 1 Existence and Uniqueness Theorem for Initial Value Problem

If p(x) and q(x) are continuous functions on some open interval I and x_0 is in I,

then the initial value problem consisting of y''+p(x)y'+q(x)y=0 and $y(0)=K_0$, $y'(0)=K_1$

has a unique solution y(x) on the interval I.

Linear Independence of Solutions

 y_1 , y_2 are linearly independent on I if equations

$$k_1 y_1(x) + k_2 y_2(x) = 0$$
 on *I* implies $k_1 = 0$, $k_2 = 0$

 y_1 , y_2 are linearly dependent on *I* if equations

$$y_1 = ky_2$$
 or $y_2 = ky_1$

* Theorem 2 Linear Dependence and Independence of Solutions

Let the ODE y''+p(x)y'+q(x)y=0 have continuous coefficients p(x) and q(x) on an open interval I. (a) Then two solutions y_1 , y_2 of the equation on I are linearly dependent on

I if and only if their "Wronskian"

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2 \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

is 0 at some x_0 in I.

PROOF) (a) If y_1 , y_2 be linear dependent on $I(y_1 = ky_2) \Rightarrow W = 0$ at an x_0 on I

$$W(y_1, y_2) = y_1 y_2' - y_2 y_1' = k y_2 y_2' - y_2 k y_2' = 0$$

Theorem 2 Linear Dependence and Independence of Solutions

Let the ODE y''+p(x)y'+q(x)y=0 have continuous coefficients p(x) and q(x) on an open interval I. (a) Then two solutions y_1 , y_2 of the equation on I are linearly dependent on

I if and only if their "Wronskian"

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2 \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

is 0 at some x_0 in I. (b) Furthermore, if W = 0 at an $x = x_0$ in I, then $W \equiv 0$ on I;

PROOF) Inverse of (a) if W = 0 at an $x = x_0$ in $I \Rightarrow y_1, y_2$ linearly dependent

Let
$$k_1 y_1(x) + k_2 y_2(x) = 0$$
 for unknown k_1 , k_2 .

$$\Rightarrow k_1 y_1'(x) + k_2 y_2'(x) = 0$$

$$x=x_0$$

$$k_1 y_1(x_0) + k_2 y_2(x_0) = 0$$

$$k_1 y_1'(x_0) + k_2 y_2'(x_0) = 0$$

$$\begin{bmatrix} y_{1}(x_{0}) & y_{2}(x_{0}) \\ y'_{1}(x_{0}) & y'_{2}(x_{0}) \end{bmatrix} \begin{bmatrix} k_{1} \\ k_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \text{if } W(y_{1}, y_{2}) = \det \begin{bmatrix} y_{1}(x_{0}) & y_{2}(x_{0}) \\ y'_{1}(x_{0}) & y'_{2}(x_{0}) \end{bmatrix} \implies \text{exist.}$$

$$= \underline{y_{1}y'_{2} - y_{2}y'_{1}} = 0$$

Non zero solutions

 k_1, k_2 are not both 0.

$$k_1 y_1(x_0) + k_2 y_2(x_0) = 0$$

 $k_1 y_1'(x_0) + k_2 y_2'(x_0) = 0$ \Rightarrow Same formula \Rightarrow $y_1(x_0) = -\frac{k_2}{k_1} y_2(x_0)$

PROOF) (b) if W = 0 at an $x = x_0$ in $I \Rightarrow W \equiv 0$ on I

$$y = k_1 y_1(x) + k_2 y_2(x)$$
 is also solution of $y'' + p(x)y' + q(x)y = 0$

$$y(x_0) = k_1 y_1(x_0) + k_2 y_2(x_0) = 0$$

 $y'(x_0) = k_1 y_1'(x_0) + k_2 y_2'(x_0) = 0$
"앞 페이지에서 두 식의 정의로 부터"

Initial conditions

Another solution satisfying the same initial condition is $y^* \equiv 0$ (constant 0).

Theorem 1 Uniqueness theorem $\Rightarrow y \equiv y^*$.

$$k_1 y_1 + k_2 y_2 \equiv 0 \quad on \ I$$

Ex)
$$y_1 = \sin \omega x$$
, $y_2 = 2\sin \omega x$
 $y_1 = x$, $y_2 = 3x$

Now k_1 , k_2 are not both zero \Rightarrow linear dependence of y_1 , y_2 .

Theorem 2 Linear Dependence and Independence of Solutions

Let the ODE y''+p(x)y'+q(x)y=0 have continuous coefficients p(x) and q(x) on an open interval I. **(a)**Then two solutions y_1 , y_2 of the equation on I are linearly dependent on I if and only if their "**Wronskian**" $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix} = y_1 y_2 - y_2 y_1$

is 0 at some x_0 in I. Furthermore, **(b)** if W = 0 at an $x = x_0$ in I, then $W \equiv 0$ on I;

hence (C) if there is an x_1 in I at which W is not 0, then y_1 , y_2 are linearly independent on I.

PROOF)(c)

From (b) y_1, y_2 linearly dependent $\Rightarrow W = 0$ at an $x = x_0$ in $I \Rightarrow W \equiv 0$ on INOT($W \equiv 0$ on I) $\Rightarrow W(x_1) \neq 0$ at an x_1 on $I \Rightarrow y_1, y_2$ linearly independent

Q: Show linear independence using the Wronskian.

 \blacksquare Ex. 1 $e^{-x}\cos \omega x$, $e^{-x}\sin \omega x$

Ex. 2 e^{-4x} $e^{-1.5x}$

Theorem 3 Existence of a General Solution

If p(x) and q(x) are continuous on an open interval I, then y''+p(x)y'+q(x)y=0 has a general solution on I.

Theorem 4 A General Solution Includes All Solutions

If the ODE y''+p(x)y'+q(x)y=0 has continuous coefficients p(x) and q(x) on some open interval I, then every solution y=Y(x) of the equation on I is of the form

$$Y(x) = C_1 y_1(x) + C_2 y_2(x)$$

where y_1 , y_2 is any basis of solutions of the equation on I and C_1 , C_2 are suitable constants.

Hence the equation does not have **singular solutions** (that is, solutions not obtainable from a general solution).

2.6 Existence and Uniqueness of Solutions. Wronskian

Proof) Let y=Y(x) be any solution of y''+p(x)y+q(x)y=0 on I. if we prove $Y(x)=C_1y_1(x)+C_2y_2(x)$ \rightarrow no singular solutions

"we know Y(x) is a general solution of y''+p(x)y+q(x)y=0, but we don't know whether there is any other solution or not"

The ODE has a general solution

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$
 on *I*.

We have to find suitable values of c_1 , c_2 such that y(x) = Y(x) on I.

For any
$$x_0$$

$$\begin{vmatrix} c_1 y_1(x_0) + c_2 y_2(x_0) = Y(x_0) \\ c_1 y_1'(x_0) + c_2 y_2'(x_0) = Y'(x_0) \\ \times y_2'(x_0) \end{vmatrix} \times y_2'(x_0)$$

$$\begin{vmatrix} c_1 y_1 y_2' + c_2 y_2 y_2' = Yy_2' \\ -c_1 y_2 y_1' - c_2 y_2 y_2' = -Y'y_2 \end{vmatrix}$$

$$c_1 y_1 y_2' - c_1 y_2 y_1' = c_1 W(y_1, y_2) = Y y_2' - y_2 Y' \qquad \Rightarrow c_1 = \frac{Y y_2' - y_2 Y'}{W(y_1, y_2)} = C_1$$

Similarly
$$c_2 y_1 y_2' - c_2 y_2 y_1' = c_2 W(y_1, y_2) = y_1 Y' - Y y_1'$$
 $c_2 = \frac{y_1 Y' - Y y_1'}{W(y_1, y_2)} = C_2$

2.6 Existence and Uniqueness of Solutions. Wronskian

Particular solution

$$y*(x) = C_1 y_1(x) + C_2 y_2(x)$$

Therefore $y^*(x_0) = Y(x_0)$ and $y'^*(x_0) = Y'(x_0)$ That is,

$$y*(x_0) = C_1 y_1(x_0) + C_2 y_2(x_0) = Y(x_0)$$

$$y'*(x_0) = C_1 y_1'(x_0) + C_2 y_2'(x_0) = Y'(x_0)$$

From the uniqueness in Theorem 1, $y^* \equiv Y$ must be equal everywhere on I.

Nonhomogeneous linear ODEs: $y'' + p(x)y' + q(x)y = r(x), r(x) \neq 0$

❖ Definition General Solution, Particular Solution

A general solution of the nonhomogeneous ODE y''+p(x)y'+q(x)y=r(x) on an open interval I is a solution of the form

$$y(x) = y_h(x) + y_p(x)$$

here, $y_h = c_1 y_1 + c_2 y_2$ is a general solution of the homogeneous ODE y'' + p(x)y' + q(x)y = 0 on I and y_p is any solution of y'' + p(x)y' + q(x)y = r(x) on I containing no arbitrary constants.

A particular solution of y''+p(x)y'+q(x)y=r(x) on I is a solution obtained from $y(x)=y_h(x)+y_p(x)$ by assigning specific values to the arbitrary constants c_1 and c_2 in y_h .

❖ Theorem 1

Relations of Solution of y''+p(x)y'+q(x)y=r(x) to those of y''+p(x)y'+q(x)y=0

- y: a solution of y''+p(x)y'+q(x)y=r(x) on some open interval I
- \tilde{y} : a solution of y''+p(x)y'+q(x)y=0
- (a) $y + \tilde{y}$: a solution of y'' + p(x)y' + q(x)y = r(x) on I.

In particular, $y(x) = y_h(x) + y_p(x)$ is a solution of y'' + p(x)y' + q(x)y = r(x) on I.

PROOF) (a) Let L[y] denotes the left side of y''+p(x)y'+q(x)y=r(x)

$$L[y + \widetilde{y}] = L[y] + L[\widetilde{y}] = r(x) + 0 = r(x)$$

Theorem 1

Relations of Solution of y''+p(x)y'+q(x)y=r(x) to those of y''+p(x)y'+q(x)y=0

- y, y^* : two solutions of y''+p(x)y'+q(x)y=r(x) on some open interval I
- (b) the difference of two solutions $(y-y^*)$ of y''+p(x)y'+q(x)y=r(x) on I
 - \Rightarrow a solution of y''+p(x)y'+q(x)y=0 on I.

PROOF) (b)
$$L[y-y^*] = L[y] - L[y^*] = r - r = 0$$

Theorem 2 A General Solution of a Nonhomogeneous ODE Includes All Solutions

If the coefficients p(x), q(x), and the function r(x) in y''+p(x)y'+q(x)y=r(x) are continuous on some open interval I,

then every solution of y''+p(x)y'+q(x)y=r(x) on I is obtained by assigning suitable values to the arbitrary constants c_1 and c_2 in a general solution $y(x)=y_h(x)+y_p(x)$ of y''+p(x)y'+q(x)y=r(x) on I.

PROOF) Let y^* any solution of y''+p(x)y'+q(x)y=r(x) on I $y_p \text{ is particular solution of } y''+p(x)y'+q(x)y=r(x)$ $Y=y^*-y_p\text{: a solution of } y''+p(x)y'+q(x)y=0 \Leftrightarrow Theorem \ 1(b)$ $At \ x_0 \ we \ have \ Y(x_0)=y^*(x_0)-y_p(x_0), \ Y'(x_0)=y^*'(x_0)-y_p'(x_0)$

Theorem 4 in Sec. 2.6 \Rightarrow There exists a unique particular solution (Y) of y''+p(x)y'+q(x)y=0 obtained by assigning suitable values to c_1 and c_2 in $y_h=c_1y_1+c_2y_2$. \Rightarrow From this and $y^*=Y(=y_h)+y_p$, the statement follows.

 (y_h) : general solution of y''+p(x)y'+q(x)y=0

- ❖ Method of Undetermined Coefficients (미정계수법)
- Choice Rules for the Method of Undetermined Coefficients
- a. Basic Rule (기본규칙). If r(x) in y''+p(x)y'+q(x)y=r(x) is one of the functions in the first column in Table 2.1, choose y_p in the same line and determine its undetermined coefficients by substituting y_p and its derivatives into y''+ay'+by=r(x).

- **b. Modification Rule (**변형규칙**).** If a term in your choice for y_p happens to be a solution of the homogeneous ODE corresponding to y''+ay'+by=r(x), multiply your choice of by x (or by x^2 if this solution corresponding to a double root of the y_p characteristic equation of the homogeneous ODE).
- **c.** Sum Rule (합규칙). If r(x) is a sum of functions in the first column of Table 2.1, choose for y_p the sum of the functions in the corresponding lines of the second column.

Table 2.1 Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^{n} (n = 0, 1, \cdots)$ $k \cos \omega x$ $k \sin \omega x$ $ke^{\alpha x} \cos \omega x$ $ke^{\alpha x} \sin \omega x$	$Ce^{\gamma x}$ $K_{n}x^{n} + K_{n-1}x^{n-1} + \dots + K_{1}x + K_{0}$ $\begin{cases} K\cos \omega x + M\sin \omega x \\ e^{\alpha x}(K\cos \omega x + M\sin \omega x) \end{cases}$

$$\blacksquare$$
 Ex. 1 Solve the initial value problem $y''+y=0.001x^2$, $y(0)=0$, $y'(0)=1.5$

Step 1 General solution of the homogeneous ODE. $y_h = A\cos x + B\sin x$

Step 2 Solution y_p of the nonhomogeneous ODE. ("Basic Rule" 이용)

$$r(x) = 0.001x^2$$
 \Rightarrow $y_p = K_2x^2 + K_1x + K_0$ \Rightarrow $K_2 = 0.001$, $K_1 = 0$, $K_0 = -0.002$
 \Rightarrow $y_p = 0.001x^2 - 0.002$ \Rightarrow \therefore $y = A\cos x + B\sin x + 0.001x^2 - 0.002$

Step 3 Solution of the initial value problem.

$$y(0) = A - 0.002 = 0$$
, $y'(0) = B = 1.5$ \Rightarrow $\therefore y = 0.002 \cos x + 1.5 \sin x + 0.001x^2 - 0.002$

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^n (n = 0, 1, \cdots)$	$Ce^{\gamma x}$ $K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + K_0$
$k \cos \omega x$ $k \sin \omega x$ $ke^{\alpha x} \cos \omega x$ $ke^{\alpha x} \sin \omega x$	$\begin{cases} K\cos\omega x + M\sin\omega x \\ e^{\alpha x}(K\cos\omega x + M\sin\omega x) \end{cases}$

Ex. 2 Solve the initial value problem
$$y'' + 3y' + 2.25y = -10e^{-1.5x}$$
, $y(0) = 1$, $y'(0) = 0$

Step 1 General solution of the homogeneous ODE. $y_h = (c_1 + c_2 x)e^{-1.5x}$

Step 2 Solution y_p of the nonhomogeneous ODE. ("Modification Rule" 이용)

$$r(x) = -10e^{-1.5x}$$
 \Rightarrow $y_p = C\underline{x}^2 e^{-1.5x}$ \Rightarrow $C = -5$

Solution of the homogeneous ODE → Multiply by x²

$$y_n = -5x^2e^{-1.5x}$$

$$C = -3$$

and corresponding to a double root
$$\Rightarrow$$
 $y_n = -5x^2e^{-1.5x}$ \Rightarrow $\therefore y = (c_1 + c_2x)e^{-1.5x} - 5x^2e^{-1.5x}$

Step 3 Solution of the initial value problem.

$$y(0) = c_1 = 1$$
, $y'(0) = c_2 - 1.5c_1 = 0$ \Rightarrow $\therefore y = (1 + 1.5x)e^{-1.5x} - 5x^2e^{-1.5x}$

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$	$Ce^{\gamma x}$
$kx^n (n=0,1,\cdots)$	$K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + K_0$
$k \cos \omega x$	
$k \sin \omega x$	$K \cos \omega x + M \sin \omega x$
$ke^{\alpha x}\cos\omega x$	$e^{\alpha x}(K\cos\omega x + M\sin\omega x)$
$ke^{\alpha x}\sin\omega x$	

Term in
$$r(x)$$
 Choice for $y_p(x)$

$$ke^{\gamma x} \qquad Ce^{\gamma x} \\ kx^n (n = 0, 1, \cdots) \qquad K_n x^n + K_{n-1} x^{n-1} + \cdots + K_1 x + K_0$$

$$k \cos \omega x \\ k \sin \omega x \qquad \begin{cases} k \sin \omega x \\ ke^{\alpha x} \cos \omega x \\ ke^{\alpha x} \sin \omega x \end{cases}$$

$$e^{\alpha x} (K \cos \omega x + M \sin \omega x)$$

 $y_h = c_1 e^{-x/2} + c_2 e^{-3x/2}$

☑ Ex. 3 Solve the initial value problem

Step 1 General solution of the homogeneous ODE.

$$y'' + 2y' + 0.75y = 2\cos x - 0.25\sin x + 0.09x$$
, $y(0) = 2.78$, $y'(0) = -0.43$

Ston 2 Solution was of the nonhamogeneous ODE ("Sum Pule" (IS)

Step 2 Solution y_p of the nonhomogeneous ODE. ("Sum Rule" 이용)

$$r_1(x) = 2\cos x - 0.25\sin x \implies y_{p1} = K\cos x + M\sin x \implies K = 0, \quad M = 1$$

 $r_2(x) = 0.09x \implies y_{p2} = K_1x + K_0 \implies K_1 = 0.12, \quad K_0 = -0.32$
 $\implies y_{p1} = \sin x, \quad y_{p2} = 0.12x - 0.32$
 $\implies \therefore y = c_1 e^{-x/2} + c_2 e^{-3x/2} + \sin x + 0.12x - 0.32$

Step 3 Solution of the initial value problem.

$$y(0) = c_1 + c_2 - 0.32 = 2.78, \quad y'(0) = -\frac{1}{2}c_1 - \frac{3}{2}c_2 + 1 + 0.12 = -0.4$$

$$\Rightarrow c_1 = 3.1, \quad c_2 = 0$$

$$\Rightarrow \therefore y = 3.1e^{-x/2} + \sin x + 0.12x - 0.32$$

$$y = 3.1e^{-x/2} + \sin x + 0.12x - 0.32$$

2.2 Homogeneous Linear ODEs with Constant Coefficients

Q: Solve the following problem.

Ex.
$$y'' + 5y' + 6y = 2e^{-x}$$

Table 2.1 Method of Undetermined Coefficients

 We consider a basic mechanical system, a mass on an elastic spring, which moves up and down.

Setting Up the Model

- Modeling
- System in static equilibrium

$$F_0 = -ks_0 \ (k : Spring constant)$$
Weight of body $W = mg$

$$F_0 + W = -ks_0 + mg = 0$$

System in motion

< Mechanical mass-spring system >

Restoring force
$$F_1 = -ky$$
 (Hook's law)
 $my'' = F_1$ (Newton's second law) $y'' + ky = 0$

(At this time, F_0 and W cancel each other.)

Undamped System: ODE and Solution

• ODE:
$$my'' + ky = 0$$
 $\Rightarrow \lambda^2 + \frac{k}{m} = 0$

Harmonic oscillation (조화진동):

$$y(t) = A\cos\omega_0 t + B\sin\omega_0 t = C\cos(\omega_0 t - \delta), \quad \omega_0^2 = \frac{k}{m}$$

where,
$$C = \sqrt{A^2 + B^2}$$
, $\tan \delta = B/A$
 $A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x - \delta)$

Period (주기, T) = $2\pi/\omega_0$ (sec) Natural frequency (고유주파수, f) = $\omega_0/2\pi$ (cycles/sec)

< Harmonic oscillation >

Initial velocity

Damping takes out energy so quickly that the body does not oscillate.

< Positive initial displacement (tension) > < Negative initial displacement (compression) >

Critical damping

$$\left(c^2 = 4mk\right) \quad \beta = 0$$

$$: y(t) = (c_1 + c_2 t) \underline{e^{-\alpha t}}, \quad \alpha = \frac{c}{2m}$$

Damping takes out energy so quickly that the body does not oscillate.

$$y(0) = c_1 > 0$$

 $y'(t) = c_2 - \alpha(c_1 + c_2 t)e^{-\alpha t} \implies y'(0) = c_2 - \alpha c_1$

Case 1 Positive initial velocity

$$y'(0) > 0$$
 $c_2 - \alpha c_1 > 0$, $c_2 > \alpha c_1 > 0 \implies y(t) \neq 0$

Case 2 Zero initial velocity

$$y'(0) = 0$$
 $c_2 - \alpha c_1 = 0$, $c_2 = \alpha c_1 > 0 \implies y(t) \neq 0$

Case 3 Negative initial velocity

$$y'(0) < 0$$
 $c_2 - \alpha c_1 < 0$, $c_2 < \alpha c_1$,
 $c_2 < 0$ or $c_2 > 0 \implies y(t) = 0$ or $y(t) \neq 0$

- ❖ Free Motion (자유진동): Motions in the absence of external forces caused solely by internal forces. my'' + cy' + ky = 0
- Forced Motion (강제진동): Model by including an external force

$$my"+cy'+ky=r(t)$$

- r(t): Input or Driving Force
- y(t): Output or Response

Motion with periodic external forces

- Nonhomogeneous ODE: $my'' + cy' + ky = F_0 \cos \omega t$
- Use the method of undetermined coefficients

$$y_p(t) = a\cos\omega t + b\sin\omega t$$
 $y_p'(t) = -\omega a\sin\omega t + \omega b\cos\omega t$ $y_p''(t) = -\omega^2 a\sin\omega t - \omega^2 b\cos\omega t$

Table 2.1 Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$k \cos \omega x$ $k \sin \omega x$	$Ce^{\gamma x}$ $K_{n}x^{n} + K_{n-1}x^{n-1} + \dots + K_{1}x + K_{0}$ $K \cos \omega x + M \sin \omega x$
$ke^{\alpha x}\cos \omega x$ $ke^{\alpha x}\sin \omega x$	$\bigg\} e^{\alpha x} (K\cos \omega x + M\sin \omega x)$

$$[(k - m\omega^{2})a + \omega cb] \cos \omega t + [-\omega ca + (k - m\omega^{2})b] \sin \omega t = F_{0} \cos \omega t$$

$$= \mathbf{0}$$

$$(k - m\omega^{2})a + \omega cb = F_{0}$$

$$-\omega ca + (k - m\omega^{2})b = 0$$

$$a = F_0 \frac{k - m\omega^2}{(k - m\omega^2)^2 + \omega^2 c^2}, \quad b = F_0 \frac{\omega c}{(k - m\omega^2)^2 + \omega^2 c^2}$$

if we set
$$\sqrt{k/m} = \omega_0 (> 0)$$

$$a = F_0 \frac{m(\omega_0^2 - \omega^2)}{m^2(\omega_0^2 - \omega^2)^2 + \omega^2 c^2}, \quad b = F_0 \frac{\omega c}{m^2(\omega_0^2 - \omega^2)^2 + \omega^2 c^2}$$

$$y_p(t) = a\cos\omega t + b\sin\omega t$$

Case 1 Undamped Forced Oscillations. Resonance

$$a = F_0 \frac{m(\omega_0^2 - \omega^2)}{m^2(\omega_0^2 - \omega^2)^2 + \omega^2 c^2}, \quad b = F_0 \frac{\omega c}{m^2(\omega_0^2 - \omega^2)^2 + \omega^2 c^2}$$

$$c = 0 \qquad \Rightarrow \qquad y_p = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t \qquad \Rightarrow \qquad y = \frac{C \cos(\omega_0 t - \delta)}{m(\omega_0^2 - \omega^2)} + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t$$
where, $\omega \neq \omega_0$
where $C = \sqrt{a^2 + b^2} = a + \tan \delta = b / a = 0$

$$y_p = \frac{F_0}{k[1 - (\omega/\omega_0)^2]} \cos \omega t, \quad \omega_0^2 = k/m$$

where, $C = \sqrt{a^2 + b^2} = a$, $\tan \delta = b/a = 0$

- This output is a superposition of two harmonic oscillations of the frequencies just mentioned.
- Natural frequency (자유비감쇠진동의 주파수): $\frac{\omega_0}{2\pi}$ $\left[\begin{array}{c} \text{cycles} \\ \text{sec} \end{array}\right]$
- Frequency of the driving force (강제비감쇠진동의 주파수): $\frac{\omega}{2\pi}$ | $\frac{\text{cycles}}{\text{sec}}$

• Resonance: Excitation of large oscillations by matching input and natural frequencies. $(\omega = \omega_0)$

Maximum amplitude (a₀) of y_p (when $\cos \omega t = 1$)

$$y_p = \frac{F_0}{k[1 - (\omega/\omega_0)^2]} \cos \omega t$$

$$a_0 = \frac{F_0}{k} \rho$$
 where $\rho = \frac{1}{1 - (\omega/\omega_0)^2}$: resonance factor

The ratio of the amplitudes and the input $F_0 cos\omega t$

$$\frac{\rho}{k} = \frac{a_0}{F_0}$$

< Resonance factor ρ >

• Resonance: $(\omega = \omega_0)$

We obtained
$$y_p = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t$$
 \Rightarrow $y = C \cos(\omega_0 t - \delta) + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t$ where, $\omega \neq \omega_0$

Valid or not when resonance?

$$\omega = \omega_0$$

$$\sqrt{k/m} = \omega = \omega_0$$

$$y'' + \omega_0 y = \frac{F_0}{m} \cos \omega_0 t$$

How to solve?

(Review) 2.7 Nonhomogeneous ODEs

- ❖ Choice Rules for the Method of Undetermined Coefficients (미정계수법)
- a. Basic Rule (기본규칙). If r(x) in y''+p(x)y'+q(x)y=r(x) is one of the functions in the first column in Table 2.1, choose y_p in the same line and determine its undetermined coefficients by substituting y_p and its derivatives into y''+ay'+by=r(x).
- b. Modification Rule (변형규칙). If a term in your choice for y_p happens to be a solution of the homogeneous ODE corresponding to y''+ay'+by=r(x), multiply your choice of by x (or by x^2 if this solution corresponding to a double root of the y_p). characteristic equation of the homogeneous ODE).
- **c.** Sum Rule (합규칙). If r(x) is a sum of functions in the first column of Table 2.1, choose for y_p the sum of the functions in the corresponding lines of the second column.

Table 2.1 Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^{n} (n = 0, 1, \cdots)$ $k \cos \omega x$ $k \sin \omega x$ $ke^{\alpha x} \cos \omega x$ $ke^{\alpha x} \sin \omega x$	$Ce^{\gamma x}$ $K_{n}x^{n} + K_{n-1}x^{n-1} + \dots + K_{1}x + K_{0}$ $\begin{cases} K\cos \omega x + M\sin \omega x \\ e^{\alpha x}(K\cos \omega x + M\sin \omega x) \end{cases}$

• Resonance: $(\omega = \omega_0)$

$$my" + cy' + ky = F_0 \cos \omega t$$

$$\frac{\omega = \omega_0}{\sqrt{k/m} = \omega = \omega_0}$$

$$y'' + \omega_0 y = \frac{F_0}{m} \cos \omega_0 t$$

 $y_p = t(a\cos\omega_0 t + b\sin\omega_0 t)$ (From the modification rule, we multiply y_p by t)

$$y_p = \frac{F_0}{2m\omega_0} t \sin \omega_0 t$$

Table 2.1 Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^{n} (n = 0, 1, \cdots)$ $k \cos \omega x$ $k \sin \omega x$	$Ce^{\gamma x}$ $K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + K_0$ $K \cos \omega x + M \sin \omega x$
$ke^{\alpha x}\cos \omega x$ $ke^{\alpha x}\sin \omega x$	$\bigg\} e^{\alpha x} (K \cos \omega x + M \sin \omega x)$

< Particular solution in the case of resonance >

■ Beats (맥놀이): Forced undamped oscillation (강제비감쇠진동) when the difference of the input and natural frequencies (ω - ω_0) is small.

$$y = C\cos(\omega_0 t - \delta) + \frac{F_0}{m(\omega_0^2 - \omega^2)}\cos\omega t$$
 Take a particular solution

$$y = \frac{F_0}{m(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin \left(\frac{\omega_0 + \omega}{2}t\right) \sin \left(\frac{\omega_0 - \omega}{2}t\right)$$

Resulting from the second sine factor.

→ This is what musicians are listening to when they tune (조 율) the instruments.

$$\sin A \cdot \sin B = -\frac{1}{2} \left\{ \cos(A+B) - \cos(A-B) \right\}$$

Case 2 Damped Forced Oscillations

• $y_h \rightarrow 0$ as t goes infinity.

- Transient Solution: The general solution $y = y_p + y_h$ of the nonhomogeneous ODE
- Steady-State Solution: The particular solution y_p (because $y_h \to 0$)

Steady-State Solution

After a sufficiently long time the output of a damped vibrating system under a purely sinusoidal driving force will practically be a harmonic oscillation whose frequency is that of the input.

Amplitude of the Steady-State Solution. Practical Resonance

 $y_p = a\cos\omega t + b\sin\omega t = C*\cos(\omega t - \eta)$ C*: amplitude, η : pahse lag

$$C^{*}(\omega) = \sqrt{a^{2} + b^{2}} = \frac{F_{0}}{\sqrt{m^{2}(\omega_{0}^{2} - \omega^{2})^{2} + \omega^{2}c^{2}}}$$

$$\tan \eta(\omega) = \frac{b}{a} = \frac{\omega c}{m(\omega_{0}^{2} - \omega^{2})}$$

$$= R$$

$$\tan \eta(\omega) = \frac{b}{a} = \frac{\omega c}{m(\omega_{0}^{2} - \omega^{2})}$$

where, η (phase lag): The lag of the output behind the input (also called phase angle)

For what ω , $C^*(\omega)$ has maximum? what is the size?

$$\frac{dC^*}{d\omega} = F_0 \left(-\frac{1}{2} R^{-3/2} \right) \left[2m^2 (\omega_0^2 - \omega^2)(-2\omega) + 2\omega c^2 \right] = 0 \quad C^*(\omega_{\text{max}}) = 0$$

$$c^2 = 2m^2 (\omega_0^2 - \omega^2) \quad (\omega_0^2 = k/m)$$

$$2m^2 \omega^2 = 2m^2 \omega_0^2 - c^2 = 2mk - c^2$$

• If $c^2 < 2mk$ \Rightarrow a real solution $\omega = \omega_{max}$

Fig. 57. Amplification C^*/F_0 as a function of ω for m=1, k=1, and various values of the damping constant c

$$my$$
"+ cy '+ $ky = F_0 \cos \omega t$

$$my$$
"+ cy '+ $ky = F_0 \cos \omega t$ $y_p = a \cos \omega t + b \sin \omega t = C * \cos(\omega t - \eta)$ C^* : amplitude, η : pahse lag

* Amplitude of the Steady-State Solution. Practical Resonance

$$2m^{2}\omega^{2} = 2m^{2}\omega_{0}^{2} - c^{2} = 2mk - c^{2}$$

$$C^{*}(\omega_{\text{max}}) = \sqrt{a^{2} + b^{2}} = \frac{F_{0}}{\sqrt{m^{2}(\omega_{0}^{2} - \omega_{\text{max}}^{2})^{2} + \omega_{\text{max}}^{2}c^{2}}}$$

$$m^{2}(\omega_{0}^{2} - \omega_{\text{max}}^{2})^{2} + \omega_{\text{max}}^{2}c^{2} = \frac{c^{4}}{4m^{2}} + (\omega_{0}^{2} - \frac{c^{4}}{2m^{2}})c^{2}$$

$$= \frac{c^{4} + 4m^{2}\omega_{0}^{2}c^{2} - 2c^{4}}{4m^{2}}$$

$$= \frac{c^{2}(4m^{2}\omega_{0}^{2} - c^{2})}{4m^{2}}$$

$$C*(\omega_{\text{max}}) = \frac{2mF_0}{c\sqrt{4m^2\omega_0^2 - c^2}}$$

 $c \rightarrow 0$ then $C^* \rightarrow infinity$

Fig. 57. Amplification C^*/F_0 as a function of ω for m = 1, k = 1, and various values of the damping constant c

$$my$$
"+ cy '+ $ky = F_0 \cos \omega t$

$$my$$
"+ cy '+ $ky = F_0 \cos \omega t$ $y_p = a \cos \omega t + b \sin \omega t = C * \cos(\omega t - \eta)$ $C*$: amplitude, η : pahse lag

$$\tan \eta(\omega) = \frac{b}{a} = \frac{\omega c}{m(\omega_0^2 - \omega^2)}$$

 $\tan \eta(\omega) = \frac{b}{a} = \frac{\omega c}{m(\omega_0^2 - \omega^2)}$ where, η (phase lag): The lag of the output behind the input (also called phase angle)

$$\eta(\omega) = \tan^{-1} \left(\frac{\omega c}{m(\omega_0^2 - \omega^2)} \right)$$

if
$$\omega < \omega_0 \implies \eta < \frac{\pi}{2}$$

if $\omega > \omega_0 \implies \eta > \frac{\pi}{2}$

if
$$\omega > \omega_0 \implies \eta > \frac{\pi}{2}$$

Fig. 58. Phase lag η as a function of ω for m=1, k=1, thus $\omega_0=1$, and various values of the damping constant c

2.9 Modeling: Electric Circuits - Skip

< RLC-circuit >

Name	Symbol		Notation	Unit	Voltage Drop
Ohm's resistor	-\\\\-	R	Ohm's resistance	ohms (Ω)	RI
Inductor		L	Inductance	henrys (H)	$L \frac{dI}{dt}$
Capacitor		C	Capacitance	farads (F)	Q/C

< Elements in an RLC-circuit >

2.9 Modeling: Electric Circuits - Skip

- Kirchhoff's Voltage Law (KVL): The voltage (the electromotive force) impressed on a closed loop is equal to the sum of the voltage drops across the other elements of the loop.
- Voltage Drops

RI (Ohm's law) Voltage drop for a resistor of resistance R ohms (W)

 $LI' = L \frac{dI}{dt}$ Voltage drop for an inductor of inductance L henrys(H)

 $\frac{Q}{C}$ Voltage drop for a capacitor of capacitance C farads (F)

❖ Model of an *RLC*-circuit with electromotive force: $L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = E'(t) = E_0\omega\cos\omega t$

$$I_{p} = a\cos\omega t + b\sin\omega t = I_{0}\sin(\omega t - \theta)$$

$$a = \frac{-E_0 S}{R^2 + S^2}$$
, $b = \frac{-E_0 R}{R^2 + S^2}$, $I_0 = \sqrt{a^2 + b^2} = \frac{E_0}{\sqrt{R^2 + S^2}}$, $\tan \theta = -\frac{a}{b} = \frac{S}{R}$

2.9 Modeling: Electric Circuits - Skip

- Analogy of Electrical and Mechanical Quantities
- Entirely different physical or other systems may have the same mathematical model.
- Practical importance of this analogy
 - Electric circuits are easy to assemble.
 - 2. Electric quantities can be measured much more quickly and accurately than mechanical ones.

Electrical System	Mechanical System	
Inductance L	Mass m	
Resistance R	Damping constant c	
Reciprocal $\frac{1}{C}$ of capacitance	Spring modulus k	
Derivative $E_0\omega\cos\omega t$ of electromotive force	Driving force $F_0 \cos \omega t$	
Current $I(t)$	Displacement $y(t)$	

< Analogy of Electrical and Mechanical Quantities >

- y''+p(x)y'+q(x)y=r(x) $y = y_h \text{ (solution of } y''+py'+qy=0) + y_p \text{ (solution of } y''+py'+qy=r)$
- Method of undetermined coefficient
 - If r(x) is not complicated (ex. e^{rx} , $\cos \omega x$, $\sin \omega x$, $e^{\alpha x} \cos \omega x$, $e^{\alpha x} \sin \omega x$)
 - → Method of undetermined coefficient
- ❖ Method of Variation of Parameter for more general r(x) (매개변수 변환법)
 - p(x), q(x), r(x) in y'' + p(x)y' + q(x)y = r(x) are continuous on some open interval I.
 - Solution formula: $y_p(x) = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$ $W = y_1 y_2' y_1' y_2$ y_1, y_2 : a basis of solution of the homogeneous ODE y'' + p(x) y' + q(x)y = 0
 - If it starts with f(x)y'', divide first by f(x).
 - The integration in $y_p(x) = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$ may often cause difficulties.

I Ex. 1 Solve the nonhomogeneous ODE $y'' + y = \sec x$

A basis of solutions of the homogeneous ODE: $y_1 = \cos x$, $y_2 = \sin x$

Wronskian:
$$W(y_1, y_2) = \cos x \cos x - \sin x(-\sin x) = 1$$

Apply the method of variation of parameters:

$$y_p(x) = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$$

Particular solution

$$y_p = -\cos x \int \sin x \sec x dx + \sin x \int \cos x \sec x dx = \cos x \ln |\cos x| + x \sin x$$

General solution

$$y_h = c_1 y_1 + c_2 y_2 = c_1 \cos x + c_2 \sin x$$

 $y = y_h + y_p = (c_1 + \ln/\cos x/) \cos x + (c_2 + x) \sin x$

The particular solution y_h

Idea of the Method. Derivation

$$y_h(x) = c_1 y_1(x) + c_2 y_2(x)$$
 is a general solution of $y'' + py' + qy = 0$

 $y_p(x) = u(x)y_1(x) + v(x)y_2(x)$ is assumed to be a particular solution of y'' + py' + qy = r

Here, u(x) and v(x) should be determined.

$$y'_{p} = y'y_{1} + uy'_{1} + v'y_{2} + vy'_{2}$$

a second condition: $u'y_1 + v'y_2 = 0$ (assumption)

$$y''_{p} = uy'_{1} + vy'_{2}$$

$$y''_{p} = u'y'_{1} + uy''_{1} + v'y'_{2} + vy''_{2}$$

$$u(y''_{1} + py'_{1} + qy'_{1}) + v(y''_{2} + py'_{2} + qy'_{2}) + u'y'_{1} + v'y'_{2} = r$$

$$y'' + py' + qy = 0$$

$$\Rightarrow u'y'_1 + v'y'_2 = r$$

$$u'y_1 + v'y_2 = 0 \quad \text{from a second condition}$$

Idea of the Method. Derivation

$$u'y'_1 + v'y'_2 = r$$

 $u'y_1 + v'y_2 = 0$ from a second condition

$$\begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix} \begin{bmatrix} u' \\ v' \end{bmatrix} = \begin{bmatrix} 0 \\ r \end{bmatrix} \implies \begin{bmatrix} u' \\ v' \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ r \end{bmatrix}$$

$$= \frac{1}{y_1 y_2' - y_1' y_2} \begin{bmatrix} y_2' & -y_2 \\ -y_1' & y_1 \end{bmatrix} \begin{bmatrix} 0 \\ r \end{bmatrix} = \frac{1}{y_1 y_2' - y_1' y_2} \begin{bmatrix} -y_2 r \\ y_1 r \end{bmatrix}$$

$$u' = \frac{-y_2 r}{y_1 y_2' - y_1' y_2} = -\frac{y_2 r}{W}$$

$$v' = \frac{y_1 r}{y_1 y_2' - y_1' y_2} = \frac{y_1 r}{W}$$

$$u = -\int \frac{y_2 r}{W} dx, \quad v = \int \frac{y_1 r}{W} dx$$

$$y_p(x) = u(x)y_1(x) + v(x)y_2(x)$$

$$y_p(x) = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$$