
운영체제의기초:

Processes and Threads

2023년 3월 23, 28, 30일, 4월 4, 6일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수

2

Agenda

I. Process Concepts

II. Process Scheduling

III. Context Switching

IV. Process Creation and Termination

V. Multithreading

Processes and Threads

I. Process Concepts

4

Process Concepts (1)

❖What is a process and why is it useful?

❖Why?

▪ With many things happening at once in a system,

need some way of separating them all out cleanly

▪ Important concept: “Decomposition”

• Solve a hard problem by chopping it into several simpler

problems that can be solved separately

I. Process Concepts

5

Process Concepts (2)

❖What?

▪ Definition of a process

• Program in execution, or

• An execution stream in the context of a particular process state

▪ What is an “execution stream” and what is a “process state”?

• Process state is everything that can affect,

or be affected by the process

– code, data values, open files, etc.

• Execution stream is a sequence of instructions

performed in a process state

– Key simplifying feature of a process

– Only one thing happens at a time within a process

I. Process Concepts

6

Process Concepts (3)

❖ Process state or context

▪ Collection of three types of contexts

• Memory context

– Code segment, data segment, stack segment, heap

• Hardware context

– CPU registers, I/O registers

• System context

– Process table, open file table, page table

▪ Realization of the notion of process

I. Process Concepts

7

Process Concepts (4)

❖Multiprogramming vs. multiprocessing

▪ Uniprogramming

• Only one process in memory at a time

• Mostly old PC OS

• Makes some parts of OS easier, but others hard

▪ Multiprogramming

• Multiple processes in memory

• Most systems support multiprogramming

▪ Multiprocessing

• Multiple processes are running together at the same time

• CPU is multiplexed

I. Process Concepts

8

Process Concepts (5)

❖ Design-time entity vs. run-time entity

▪ System design is an activity of

• Accepting the system requirements

• Generating a collection of tasks

– Design by decomposition

▪ Task is a design-time entity

▪ Process is a run-time entity

• Target of CPU scheduling and resource allocation

▪ Implementation is

• A mapping from design-time entities onto run-time entities

I. Process Concepts

9

Process Control Block

❖With multiprocessing, OS must keep track of

processes

▪ For each process, a process control block (PCB) holds

• Execution state (saved registers, etc.)

• Scheduling information (priority)

• Accounting and other misc. information (open files)

▪ System-wide table of PCB

• Process table

▪ Unix

• Fixed-size array of PCB’s

I. Process Concepts

10

State Transition (1)

❖ As a process executes, it changes state

▪ New

• Process is being created

▪ Running

• Instructions are being executed

▪ Waiting

• Process is waiting for some event to occur

▪ Ready

• Process is waiting to be assigned to CPU

▪ Terminated

• Process has finished execution

I. Process Concepts

11

State Transition (2)

❖ State transition diagram

I. Process Concepts

Ready Running

Waiting

Created

Interrupted

Terminated

Dispatched

I/O Completion or

Event Occurrence Waiting for I/O or Event

12

State Transition (3)

❖ State transitions and scheduling queues

▪ Queues in different states

• Ready queue

– Set of all processes residing in main memory,

ready and waiting to execute

• Device queues (I/O waiting queues)

– Set of processes waiting for an I/O device

▪ State transition

• Migrating processes between various queues

I. Process Concepts

II. Process Scheduling

14

Process Scheduling

❖ Goal

▪ For several processes to share a CPU,

OS must select a process to run next

❖ Constraints

▪ OS must offer

• Fair scheduling

– Make sure each process gets a chance to run

• Protection

– Making sure processes don’t trash each other

II. Process Scheduling

15

Scheduler Design Principle

❖ Principle in designing system software

▪ Separation of policy and mechanism

• Separation of scheduling policies and dispatching mechanisms

▪ Leads to two-level architecture

II. Process Scheduling

Policy 1

Dispatcher Mechanism

Replaceable Scheduling Policies

Policy 2 Policy 3 Policy 4 Policy n…

16

Dispatcher (1)

❖ Inner-most portion of OS that runs processes

loop forever

{

run the process for a while

stop it and save its state

load state of another process

}

II. Process Scheduling

17

Dispatcher (2)

❖ Challenges

1. How does the dispatcher regain control?

• CPU can only be doing one thing at a time

• User process running means that dispatcher isn’t.

2. Which process is executed next?

• Need to locate runnable processes efficiently

II. Process Scheduling

18

1. Entering and Leaving the Kernel (1)

❖ How does the dispatcher regain control?

▪ Trust the process to wake up the dispatcher

• On a voluntary basis – “non-preemptive” way

• Problem: Sometimes processes misbehave

▪ Provide the dispatcher with an alarm clock

• On a compulsory basis – “preemptive” way

• Timer hardware and interrupts

II. Process Scheduling

19

1. Entering and Leaving the Kernel (2)

❖ “Misconceptions” about the kernel

▪ Like a user process, the kernel is an active and

independent entity possessing a thread of control

▪ The kernel is continuously monitoring user processes

while they are running

❖ In reality

▪ The kernel is a passive entity consisting of

kernel functions and interrupt service routines

▪ It’s like a library

II. Process Scheduling

20

1. Entering and Leaving the Kernel (3)

❖ In reality (cont’d)

▪ A collection of functions running in kernel space

II. Process Scheduling

Processes

Kernel Functions, ISR

Kernel (Supervisor) Space

User Space

21

1. Entering and Leaving the Kernel (4)

❖ Kernel space (mode)

▪ Has elevated system state compared to normal user

applications

• Protected memory space

• Full access to the hardware

▪ Elevated system state + unrestricted memory access

❖ User space (mode)

▪ Has restricted system state compared to the kernel

• A subset of the machine’s available resources

• Limited privilege

– Unable to perform certain system functions

▪ Restricted system state + restricted memory access

II. Process Scheduling

22

1. Entering and Leaving the Kernel (5)

❖ Execution modes in protected MMU machine

II. Process Scheduling

Processor Status Word (PSW)

Mode bit = 0: kernel mode

1: user mode

Processes

Kernel Functions, ISR

Kernel (Supervisor) Mode

User Mode

23

1. Entering and Leaving the Kernel (6)

❖ Dispatcher is a kernel function after all

❖ Control returns to OS on

▪ Traps: events internal to user processes

• System calls

• Errors (illegal instructions, address error, etc)

• Page faults

▪ Interrupts: events external from user processes

• Character typed at a terminal

• Completion of a disk transfer

• Timer to make sure OS eventually gets control

II. Process Scheduling

24

1. Entering and Leaving the Kernel (7)

❖Mode change of a process

II. Process Scheduling

•

•

•

read()
•

•

•

fork()
•

•

•

Process

read()

syscall

fork()

syscall

User Mode

Execution

Kernel Mode

Execution

25

1. Entering and Leaving the Kernel (8)

❖ System call vs. function call

▪ Common properties

• Transfer control to another routine

• Maintain the context of the process

▪ Differences

• Syscall incurs mode change but function call doesn’t

• Syscall is more expensive than function call

II. Process Scheduling

26

2. Scheduling Policy (1)

❖ Once the dispatcher gets control,

how to decide who’s next?

▪ Possibilities

• Scan process table for first runnable process:

– Might spend much time searching

– Results in weird priorities: Small PIDs better

– Question: How do you know a process is runnable?

• Link together the runnable processes into a queue

– Dispatcher takes from the head of the queue

– Runnable processes are inserted at back of queue

– Called “ready list” or “run queue”

• Assign priorities to processes

– Keep the queue sorted by priority

– Separate queue per priority

II. Process Scheduling

27

2. Scheduling Policy (2)

❖Who decides priorities and how are priorities chosen?

▪ Who?

• Separate part of OS: the scheduler

▪ Question: Why not by the dispatcher?

• Concept: Separation of policy and mechanism

▪ How? Subject of the next topic

II. Process Scheduling

III. Context Switching

29

Context Switching (1)

❖ How does the dispatcher save and restore state?

▪ Mechanism: “context switch”

❖What must get saved?

▪ Everything that next process could or will damage:

• Program counter

• Processor status word (condition codes, etc.)

• General purpose registers, floating-point registers

• All of memory?

– Swapping

• Memory could be large so saving it could be expensive

III. Context Switching

30

Context Switching (2)

❖What must get saved? (cont’d)

▪ Possibilities:

1. Don’t save memory at all

– No dynamic memory management

• Memory is allocated to entire batch

– Old batch processing system: multiprogrammed batch monitor

– Context switching in multithreaded process

III. Context Switching

Operating

System

Job 1

Job 2

Job 3

Job 4

31

Context Switching (3)

❖What must get saved? (cont’d)

▪ Possibilities: (cont’d)

2. Save all memory to disk (roll-in/roll-out swapping)

– Bringing in each process entirely, running it and then putting it back

on the disk, so that another program may be loaded into that space

– Early personal computer/workstation: DOS

– Effective but very slow

III. Context Switching

User

Program

Operating

System

Device

Drivers
ROM

ROM

32

Context Switching (4)

❖What must get saved? (cont’d)

▪ Possibilities: (cont’d)

3. Save some part memory to disk (swapping)

– Moving memory blocks of process between RAM and disk

• Swap file, swap device

– Implemented with memory complex management mechanisms

– Used in most of the modern OSes

• Unix or Unix-like systems: Linux, OS X

III. Context Switching

33

Implementation

❖Machine dependent

▪ Different for MIPS, SPARC, x86, etc.

❖ Tricky

▪ OS must execute code to save state

without changing the process’ state

❖ Requires some special hardware support

▪ Example: “Save PC and PSR on trap or interrupt”

III. Context Switching

34

Mechanism (1)

III. Context Switching

StkPtr

OS-PCB

HIMEM

OSPCBCur

CPU’s SP

Stack frames during a context Switch (80186/80188 Small)

PSW

SEG task

OFF task
INT call

StkPtr

OS-PCB

HIMEM

INT call

PSW

SEG task

OFF task

PUSHA instruction

LOMEM

AX

CX

DX

BX

SP

BP

SI

DI

ES

POPA instruction

LOMEM

AX

CX

DX

BX

SP

BP

SI

DI

ES

35

Mechanism (2)

III. Context Switching

StkPtr

void * data

SEG task

OFF task

PSW

SEG task

OFF task

AX

CX

DX

BX

SP

BP

SI

DI

ES

OS-PCB
HIMEM

Simulation of call to ‘far’ function with an argument

PSW = 0x0200 (Interrupt enabled)

INT call

PUSHA instruction

LOMEM

Stack frame when procs are created

(80186/80188 Small)

IV. Process Creation and Termination

37

Process Creation (1)

❖ Creating new processes in a full-fledged OS

▪ Build one from scratch (Ex: Unix Process 0)

▪ Clone an existing one (Ex: Unix fork() syscall)

IV: Process Creation and Termination

38

Process Creation (2)

❖ From scratch

1. Load code and data into memory

2. Create (empty) call stack

3. Create and initialize a process control block

4. Put the process on ready list

▪ Intuitive and natural – This is what Windows OS does

IV: Process Creation and Termination

39

Process Creation (3)

❖ Cloning

1. Stop the current process and save its state

2. Create a new one by making a copy of

code, data, stack, and PCB

3. Put the new process on ready list

▪ Not quite right – What’s missing?

• Process creation in Unix with fork() and exec()

IV: Process Creation and Termination

40

Process Creation (4)

❖ Process life cycle in Unix

IV: Process Creation and Termination

fork()

exec() exit()

wait()
parent

child

resumes

41

Process Creation (5)

❖ In Unix

IV: Process Creation and Termination

Swapper (Process 0)

Pagedaemon (Process 2)Init (Process 1)

/etc/rc /etc/ttys

getty

login

sh

42

Process Creation (6)

❖ Shell example

IV: Process Creation and Termination

for(;;) {

cmd = readcmd();

pid = fork();

if(pid < 0){

perror("fork failed");

exit(-1);

} else if(pid == 0) {

// Child – Setup environment

if(exec(cmd) < 0) perror(“exec failed”);

exit(-1); // Exit on exec failure

} else {

// Parent – Wait for command to finish

wait(pid);

}

}

43

Process Creation (7)

❖ Questions surrounding the fork() mechanism

1. What were the drawbacks of the original fork()?

2. Why did early Unix adopt it after all?

3. Why is it still used in Linux?

IV: Process Creation and Termination

44

Process Creation (8)

1. What were the drawbacks of the original fork()?

▪ Deep copy-based cloning was simply too expensive

IV: Process Creation and Termination

Deep Copy

PCB

Parent Process

Code

Data

Stack

Heap

PCB

Child Process

Code

Data

Stack

Heap

45

Process Creation (9)

2. Why did early Unix adopt fork() after all?

▪ Due to the lack of inter-process communication mechanisms

IV: Process Creation and Termination

ipc_proc()

{

fd = open("./fifo_pipe", O_RDWR);

pid = fork();

if(pid > 0){

// Parent – write data to the pipe

write(fd, data, size);

} else if(pid == 0) {

// Child – read data from the pipe

read(fd, data, size);

}

}

46

Process Creation (10)

3. Why is it still used in Linux?

▪ Thanks to shallow copy and copy-on-write (COW)

IV: Process Creation and Termination

PCB

Parent Process

Code

Data

Stack

Heap

PCB

Child Process

Shallow Copy

47

Process Termination

❖ Process executes last statement and asks the OS to
decide it (exit())

▪ Outputs data from child to parent (via wait())

▪ Deallocates process’ resources

❖ Parent may terminate execution of children
processes (abort())

▪ Child has exceeded allocated resources

▪ Task assigned to child is no longer required

▪ Parent is exiting

• OS does not allow child to continue if its parent terminates

• Cascading termination

IV: Process Creation and Termination

V. Multithreading

49

Traditional Process Model

❖ Two characteristics in one process

▪ Unit of resource ownership

• Assigned virtual address space to hold the process image

• Has the control of some resources (files, I/O devices, ...)

▪ Unit of dispatching

• Has a thread of control

• Has execution state and dispatching priority

– Process execution may be interleaved with other processes

❖ How about separating the two?

V. Multithreading

50

Multithreaded Process Model

❖Most modern OSes treat these two characteristics

independently

▪ Unit of resource ownership is usually referred to as

“process” or “task”

▪ Unit of dispatching is usually referred to as

“thread” or “lightweight process”

V. Multithreading

51

Multithreading: Basics (1)

❖ Characteristics of threads

▪ Has an execution state (running, ready, stopped)

• Saves thread context when not running

▪ Has a runtime stack for local variables

and some per-thread static memory

▪ Has access to the memory address space

and resources of its process

• All threads of a process share these

• When one thread alters a (non-private) memory item,

all other threads (of the process) see that

• A file opened by a thread is available to others

V. Multithreading

52

Multithreading: Basics (2)

❖ Single threading vs. multithreading

V. Multithreading

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

Thread
Control
Block

Thread

User
Stack

Kernel
Stack

Thread
Control
Block

Thread

User
Stack

Kernel
Stack

Thread
Control
Block

Thread

53

Multithreading: Basics (3)

❖ Various thread supports in OS

▪ MS-DOS

• Supports a single user process and a single thread

▪ Old Unix

• Supports multiple user processes

but only supports one thread per process

▪ Solaris

• Supports multiple user processes possessing multiple threads

V. Multithreading

54

Multithreading: Basics (4)

❖ State transition of threads

▪ Three key states

• Running, ready, blocked

▪ They have no suspended (i.e., swapped-out) state

• All threads of the same process share the same address space

• Suspending a single thread involves suspending all threads

in the same address space

▪ Termination of a process terminates all threads within the

process

V. Multithreading

55

Why Multithreading? (1)

❖ Effective concurrent programming (original goal)

▪ Straightforward mapping from threads onto multiprocessors

❖ Resource sharing

▪ Can pass data via shared memory

• No need for IPC

• Need to synchronize the activities of various threads

so that they do not obtain inconsistent views of the data

V. Multithreading

56

Why Multithreading? (2)

❖ Economy – cheap to implement

▪ Takes less time

• To create a new thread than a process

• To terminate a thread than a process

• To switch between two threads within the same process

▪ Uses very little resource

• Only stack and per-thread static memory

❖ Agility in responses (good for reactive systems)

▪ Concurrent server architecture for interactive applications

• A process has one server thread and multiple worker threads

– Even if one worker blocks, possibly on a read, others still continue

executing and produce outputs to users

V. Multithreading

57

Why Multithreading? (3)

❖Multithreading fits for concurrent server architecture

V. Multithreading

Dispatcher Thread

Web Server Process

Worker Thread

Web Page Cache

Kernel

Network

Connection

User

Space

Kernel

Space

58

Why Multithreading? (4)

❖ Pseudocode for concurrent server architecture

V. Multithreading

while (TURE){

get_next_request(&buf);

dispatch_work(&buf);

}

Dispatcher Thread

while (TURE){

wait_for_work(&buf)

look_for_page_in_cache(&buf, &page);

if(page_not_in_cache(&page))

read_page_from_disk(&buf, &page);

return_page(&page);

}

Worker Thread

59

Why Multithreading? (5)

❖Multithreaded Web browser

V. Multithreading

Play video

Play ads (flash)

Process user inputs

Render images

(HTML/JavaScript)

Download files (FTP)

Kernel

Web Browser Process

60

Pthreads Programming Model (1)

❖ Pthreads: POSIX standard for threads

▪ Defines API for creating and manipulating threads

▪ Implementations of the API are available on

many Unix-like OSes such as Linux and Mac OS X

❖ Selected Pthreads functions

V. Multithreading

Pthreads API Description

pthread_create() Create a new thread

pthread_exit() Terminate the calling thread

pthread_join() Wait for a specific thread to exit

pthread_yield()
Release CPU to let another
thread run

61

Pthreads Programming Model (2)

❖ Thread life cycle

V. Multithreading

Process
runs
with
one

thread

Thread_1
running

Thread_2
running

Main
thread
running

End

Release
CPU

pthread_yield()

pthread_join()

pthread_exit()

Wait for
threads
to exit

pthread_exit()

pthread_create()

pthread_create()

62

Pthreads Programming Model (3)

V. Multithreading

#include <stdio.h>

#include <pthread.h>

#include <stdlib.h>

#include <assert.h>

#define NUM_THREADS 5

void *ThreadCode(void *argument)

{

int tid;

tid = *((int *)argument);

printf("Hello World! It's me, thread %d!\n", tid);

/* optionally: insert more useful stuff here */

return NULL;

} Source:

http://en.wikipedia.org/wiki/POSIX_Threads

63

Pthreads Programming Model (4)

V. Multithreading

int main(void)

{

pthread_t threads[NUM_THREADS];

int thread_args[NUM_THREADS];

int rc, i;

/* create all threads */

for (i=0; i<NUM_THREADS; ++i) {

thread_args[i] = i;

printf("In main: creating thread %d\n", i);

rc = pthread_create(&threads[i], NULL, ThreadCode, (void *)&thread_args[i]);

assert(0 == rc);

}

/* wait for all threads to complete */

for (i=0; i<NUM_THREADS; ++i) {

rc = pthread_join(threads[i], NULL);

assert(0 == rc);

}

exit(EXIT_SUCCESS);

}
Source:

http://en.wikipedia.org/wiki/POSIX_Threads

64

Pthreads Programming Model (5)

V. Multithreading

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

__thread int TLS_data;

int normal_data;

void *thread(void *param)

{

int *data;

data = (int *)param;

TLS_data = *data;

normal_data = *data;

if (*data == 0) usleep(100000);

printf("Thread %d, TLS_data %d, normal_data %d\n",

*data, TLS_data, normal_data);

}

65

Pthreads Programming Model (6)

V. Multithreading

int main()

{

pthread_t tcb[3];

int thread_args[3];

int i;

for (i = 0; i < 3; i++)

{

thread_args[i] = i;

pthread_create(&tcb[i], NULL, thread, (void *)&thread_args[i]);

}

for (i = 0; i < 3; i++)

{

pthread_join(tcb[i], NULL);

}

return 0;

}

66

Pthreads Programming Model (7)

V. Multithreading

sshong@ubuntu:~$ gcc tls.c -lpthread

sshong@ubuntu:~$ a.out

Thread 2, TLS_data 2, normal_data 2

Thread 1, TLS_data 1, normal_data 1

Thread 0, TLS_data 0, normal_data 1

67

Threads Implementation:

User-Level Threads (1)

❖ Key entities

▪ Thread:

• 100% use-level entity

• Kernel is not aware of the existence of threads

▪ Threads library

• User-level library linked to process code

• Contains code for

– Creating and destroying threads

– Scheduling thread execution

– Saving and restoring thread contexts

– Passing messages and data between threads

▪ Processor

• Allocation on a process basis

V. Multithreading

P

User

Space

Kernel

Space

Threads

Library

68

Threads Implementation:

User-Level Threads (2)

❖ Characteristics

▪ Application does all the thread management via threads

library

• Thread switching does not require kernel mode privileges

• Scheduling is application-specific

▪ Kernel activities

• Kernel is not aware of thread activity but still manages process

activity

• When a thread makes a blocking system call

– The whole process will be blocked

– For the thread library, that thread is still in the running state

• Implication:

– Thread states are independent of process states

V. Multithreading

69

Threads Implementation:

User-Level Thread (3)

❖ Pros and cons of ULT

V. Multithreading

Advantages

❑ Thread switching does not

involve the kernel - no mode

switching

❑ Scheduling can be

application specific - can

choose the best algorithm

❑ ULTs can run on any OS:

only needs a thread library

Inconveniences

❑ Most system calls are

blocking and the kernel

blocks the process: all

threads within the process

will be blocked

❑ Kernel can only assign

processes to processors:

two threads within the same

process cannot run

simultaneously on two

processors

70

Threads Implementation:

Kernel-Level Threads (1)

❖ Key entities

▪ Thread:

• Both user-level and kernel-level entity

– 1-to-1 mapping between user-level and kernel level thread

• The kernel is completely aware of the existence of threads

▪ System call API and kernel functions for thread facility

• Code for

– Maintaining context information

for processes and threads

– Switching between threads

– Scheduling threads

– Synchronization

▪ Processor

• Allocation on a thread basis

V. Multithreading

P

User

Space

Kernel

Space

71

Threads Implementation:

Kernel-Level Threads (2)

❖ Characteristics

▪ No thread library but API to the kernel thread facility

• Need kernel modification

▪ Scheduling on a thread basis

• Kernel-level threads are scheduling entities

▪ Ex: Windows NT and OS/2

V. Multithreading

72

Threads Implementation:

Kernel-Level Threads (3)

❖ Pros and cons of KLT

V. Multithreading

Advantages

❑ Kernel can simultaneously

schedule many threads of the

same process on many

processors

❑ Blocking is done on a thread

level

❑ Kernel routines can be

multithreaded

Inconveniences

❑ Thread switching within the

same process involves the

kernel: we have two mode

switches per thread switch

❑ This results in a significant

slowdown

73

Threads Implementation:

Combined UL/KL Threads (1)

❖ Key entities

▪ User-level thread

• The kernel is mostly unaware of the existence of threads

▪ Kernel-level thread

• Serves as virtual processor to user-level threads

• Schedulable entity

▪ Threads library

• Contains code for

– Creating/destroying user-level threads

– Scheduling thread execution

– Saving and restoring thread contexts

– Passing messages and data between threads

V. Multithreading

74

Threads Implementation:

Combined UL/KL Threads (2)

❖ Key entities (cont’d)

▪ System call API and kernel functions for thread facility

• Code for

– Creating/destroying kernel-level threads

– Mapping/unmapping between user-level and kernel level threads

– Maintaining context information for processes and threads

– Switching between threads

– Scheduling threads

▪ Processor

• Allocation on a thread basis

V. Multithreading

Threads

Library

User

Space

Kernel

Space

PP

75

Threads Implementation:

Combined UL/KL Threads (3)

❖ Characteristics

▪ Thread creation done in user space

▪ User-level scheduling for sharing kernel-level threads

▪ Kernel-level scheduling on a thread basis

▪ Synchronization of threads done in user space

▪ Programmer may adjust the number of KLTs

▪ May combine the best of both approaches

▪ Ex: Solaris

V. Multithreading

