

The effects of nitrogen & oxygen on pure vanadium

Min-Gu Jo

Jin-Yoo Suh^a, Heung Nam Han^b

^aKorea Institute of Science and Technology ^bSeoul National University

Contents

1. Introduction

2. Experimental methods

3. Results

4. Summary

1. Introduction

- Hydrogen Energy
- Metallic Hydrogen Membrane
- Pd-based Hydrogen Membrane
- V-based Hydrogen Membrane
- Motivation

Introduction : Hydrogen Energy

Table 1. Hydrogen Production Processes[1]

Feed source	H ₂ in feed [%]
Steam reforming	$64 \sim 96$
Ethylene off-gas	$35 \sim 98$
Catalytic reformer off-gas	$75\!\sim\!90$
Chlorine off-gas	98
Dissociated ammonia	75
H ₂ CO cold box	$94 \sim 99.5$
EB-styrene off-gas	$80 \sim 85$
Methanol loop purge	$68 {\sim} 84$
Butadiene off-gas	79
Ammonia loop purge	60
Toluene HDA H ₂ purge	57
Cyclohexane H ₂ purge	42
LPG dehydrogenation	58
Coal gasification	35

 Table 2. Comparison Hydrogen Purification Processes[1]

	Cryogenic Distillation	Getter	Pd-based Membrane
Method	Adsorption at ultra-low temperature	Adsorption impurities using Getter	Hydrogen permeation
Material	Liquid nitrogen, Activated carbon	Zirconium-based catalyst	Pd-based membrane
Operation temperature [°C	-196	200	$300 \sim 500$
Recovery ratio [%]	95	99	95
Pressure drop [atm]	Very low	Very low	2~10 (Pressurization)
Capacity [Nm3/h]	$50 \sim 500$	$0.1 \sim 100$	0.1~30
Strong points	Easy for maintenance, Large capacity oriented	Simplicity, High recovery ratio	Low capital and maintenance cost, High selectivity
Week points	Not suitable for small capacity	High demand of Getter cost	High pressure drop

Shin-Kun Ryi, The study of Pd-Cu-Ni ternary alloyed hydrogen membranes deposited on porous nickel supports, Thesis for the degree of doctor, Korea University (2007)

Introduction : Metallic Hydrogen Membrane

- Crystalline or amorphous metallic membrane
- Non porous
- Lattice diffusion of atomic hydrogen
- Good selectivity, continuously operating
- **Easley operating**

- 1) Diffusion of hydrogen to the metal surface
- 2) Adsorption of hydrogen on the surface
- 3) Splitting of hydrogen molecules and incorporation into the metal
- 4) Diffusion of atoms in the lattice
- 5) Regeneration of hydrogen molecules on the permeated side surface
- 6) Desorption of the hydrogen molecules
- 7) Diffusion of the hydrogen molecules from the surface
 - Fick's first law Sievert's law $J = -D\frac{\Delta C}{t}$

$$C = Ks \cdot P^{0.5}$$

- D : Diffusion coefficient
- K_c: Solubility
- Permeability

$$Q = Ks \cdot D$$

Introduction : Pd-based Hydrogen Membrane

- 1956, Hunter commercialized Pd membrane
- Pd-based alloy : Pd-Cu, Pd-Ag
- High permeability ~ 10^{-8} mol H₂ m⁻¹ s⁻¹ Pa^{-0.5}
- High cost ~ \$ 19020/kg

S. Uemiya, Topics in Catal., 29, 79 (2004).

 $Q = Ks \cdot D$

Introduction : V-based Hydrogen Membrane

- Optimization V-Ni alloy
- \$ 14.41/kg (more than 1000times)
- Ni contents \uparrow \rightarrow permeability \downarrow , embrittlement resistance \uparrow

- V-Ni cladding
- Ni electroplating
- Ni electroless plating

Introduction : Motivation

		(•••••••••)
	0	Ν
As-rolled	512	3
As-annealed(Non-P)	2438	4156
As-annealed(P-Ti)	523	1
As-annealed(P-Al ₂ O ₃)	2387	1

The effects of oxygen and nitrogen on mechanical property of vanadium

The effects of initial oxygen and nitrogen level on vanadium with hydrogen

(wnnm)

✤ V-N phase diagram

✤ V-O phase diagram

Solubility (approx)					
T(°C)	Nitrogen (wt%, at%)	Oxygen (wt%, at%)			
RT	0.28, 1	1.13, 3.5			
650 or 700	0.93, 3.3 (700)	1.97, 6 (650)			
1200	2.03, 7	3.01, 9			

2. Experimental methods

- Processing

- Characterization

Experimental methods : Processing

➢ Wire cutting

: Small size rectangular dog-bone shape decreased at the same ratio from ASTM subsize rectangular tension test specimens

Mechanical polishing & Annealing
 Sand paper 2000 grade & 1200°C, 1hr, flowing gettered Ar, with Ti granules to prevent oxidation

Absorption heat treatment

: Quartz sealing with gas, Temperature & time calculated by various diffusion coefficients

• Arc Suction melting caster

• After rolling

• Heat treatment system

• Gettering furnace

• After heat treatment

• Stack and protect

As-rolled 4 EA tensile test specimens Ti granules(99.99%)_Alfa Aesar Alumina crucible, plate

Non-protect

Experimental methods : Characterization

1. Tensile Test

Gatan Microtest 300 1.0mm/min (2.115 X 10⁻³s⁻¹)

2. ON analysis

ELTRA ON-900 Burn at 3000°C, Oxygen&Nitrogen contents measurement

3. Vickers hardness Test

Mitutoyo HM-122 Diamond indenter, 0.1 kgf load

4. EBSD

SEM Hitachi S-4300SE, EBSD Bruker e-Flash Electro-polishing 10%Perchliric acid+90%methanol, -30°C, 22V, 15 flow rate, 30s

5. XRD

Bruker D8 advance 2-Theta : 40~100degree, 40kv, 40mV, step size 0.02, time 2s, rotation 30rpm, fluo configuration

6. CS analysis

LECO CS600 Carbon&Sulfur contents measurement

7. Nano-SIMS CAMECA Nano-SIMS 50 Cs+ gun, Impact Energy 19keV, Current 0.4pA

8. FIB & TEM

FIB : FEI Nova 600 NanoLab
5~30kV, 1.1nm image resolution(15kV)
TEM : FEI Talos F200X (super X-EDS)
200kV, 0.16nm > image resolution, with
unparalleled advances in EDS signal detection and
3D chemical characterization with compositional
mapping

3. Results

- Composition
- Tensile test
- Microstructure
- Micro-Vickers hardness
- XRD
- Nano-SIMS
- TEM

Results : Tensile test

- Nitrogen treatment : 700°C, 11day(264hr) +WQ \rightarrow 450 μ m
- Oxygen treatment : 650° C, 6day(144hr) +WQ \rightarrow 350μ m

Results : Tensile test

- Nitrogen : above 0.10 wt% N brittle fracture
- Oxygen : above 0.27 wt% O brittle fracture

Results : Tensile test

(mm)

Fig. 1. Tensile specimen of vanadium and V-Mo alloys.

- 200 wppm O, 65 wppm N, 80 wppm C
 - Crosshead speed : 0.017mm/s (2.1 X 10⁻³s⁻¹)
 - 7.88mm gauge-length
 - 270 wppm C •

Results : Microstructure

- Nitrogen treatment : 700°C, 11day(264hr) +WQ \rightarrow 400 μ m
- Oxygen treatment : 650° C, 6day(144hr) +WQ \rightarrow 400μ m

During nitrogen and oxygen treatment, grain grew ($150\mu m \rightarrow 400\mu m$) Even grain grow, strength increase (effective solid-solution > Hall-petch)

Results : micro-Vickers hardness

• Tensile and hardness results show nitrogen is more effective for solid-solution hardening than oxygen.

Results : X-ray diffraction

• For nitrogen

For oxygen

• Increasing contents, XRD peaks shift to the left

Results : TEM

EDS mapping : High N

4. Summary

- Vanadium, BCC metal, yield point phenomenon
- Both nitrogen and oxygen concentration increase \rightarrow YS and flow stress , %EL
- Nitrogen is more effective for solid-solution hardening than oxygen
- Both nitrogen and oxygen do not be segregated in grain boundary
- S is segregated in grain boundary

Reference

[1] Shin-Kun Ryi, The study of Pd-Cu-Ni ternary alloyed hydrogen membranes deposited on porous nickel supports, Thesis for the degree of doctor, Korea University (2007)
[2] S. Uemiya, Topics in Catal., 29, 79 (2004).
[3] Kainuma, "EFFECTS OF OXYGEN, NITROGEN AND CARBON ADDITIONS ON THE MECHANICAL PROPERTIES OF VANADIUM AND V/MO ALLOYS", Journal of Nuclear Materials, 80 (1979) 339-347
[4] Robert W. Thompson and O. N. Carlson, "THE EFFECT OF NITROGEN ON THE STRAIN AGING AND BRITTLEDUCTILE TRANSITION OF VANADIUM", Metals, Ceramics and Materials (UC -25), (1964)
[5] Samuel Arthur Bradford, "The effect of oxygen on physical and mechanical properties of vanadium", PhD thesis, Iowa State University (1961)

Appendix

Experimental methods : Processing

• Arc melting suction casting

Bought from Alfa Aesar, 99.7% vanadium pieces With Ti getter After suction, 10x40x4mm(width X length X thickness)

• Cold rolling

About 91.25% reduction (4mm \rightarrow 0.35mm)

• Specimen making

Decrease same ratio from subsize ASTM dog-bone shape

Recrystallization treatment

Pre-polishing surface (use only 2000grade) 1200°C, 1hr, in flowing gettered Ar(99.9999% Ar +gas purifying), with Ti granules to prevent +Furnace

cooling (4 specimens)

• Nitrogenating

Quartz sealing without or with various pressure of nitrogen. (before filling and sealing, over 3 times 99.9999% Ar purging were done), filling 99.9999% N₂ 700°C, 11day(264hr) +WQ (4 specimens)

• Oxygenating

Quartz sealing withour or with various pressure of oxygen. (before filling and sealing, over 3 times 99.9999% Ar purging were done), filling 99.9999% O₂ 650°C, 6day(144hr) +WQ (4 specimens)

Appendix : Tensile specimen dimension

Rectangle specimen	G	W	R	А	В	С	L	Т
Subsize specimen(mm)	7.88	1.97	1.89	10.08	9.45	3.15	31.5	0.315(0.31~0.32)

TEM (Talos F200X) 투과전자현미경

Talos[™] F200X is a 200 kV FEG Scanning Transmission Electron Microscope (S/TEM), which is designed for fast, precise and quantitative characterization of nano-materials. It accelerates nano-analysis of materials based on higher data quality, faster acquisition, and simplified, easy and automated operation. Talos is a system which can be operated completely remotely and which has enhanced environmental immunity. It combines outstanding quality in high-resolution STEM and TEM imaging with unparalleled advances in EDS signal detection and 3D chemical characterization with compositional mapping.

Model

FEI (Talos F200 X)

Specifications

- Accelerating voltage : 80 ~ 200 kV
- Image resolution : < 0.16 nm
- Magnification : 25 ~ 1,500,000 X
- Tomography holder : ± 75°

Location L5117A Tel.02-958-4940

Applications

- BF/DF/STEM/SADP/HAADF/DPC
- High resolution structure analysis
- High brightness and high stability source X-FEG with Super-X EDS

Electron 3D Tomography

Appendix : Diffusion coefficient

\checkmark	Nitrogen Thickness : 0.0315					
	Diffusion coefficient (D, cm²/sec)	The activation energy (Q)	R value	Temperature (K)	Time (hr)	Ref
	$0.0417 \exp(\frac{-35459}{RT})$	35.459 kcal/mole	1.9872041 cal/K mole	973	152.2534	[1]
	$0.076 \exp(\frac{-1.504}{RT})$	1.504 eV/atom	0.0000816154 eV/K atom	973	280.3113	[2]
	$0.018 \exp(\frac{-35100}{RT})$	35.1 kcal/mole	1.9872041 cal/K mole	973	292.9513	[3]
	$0.05021 \exp(\frac{-151040}{RT})$	151.04 kJ/mole	8.3144621 J/K mole	973	176.0997	[4]
- [:	1] J. Less-common metals. 2	26 (1972) 325-326				

[2] Appl. Phys. A 34, 49-56 (1984)

[3] Stanley, J. T. and Wert, C. A. Acta Met. 3: 107. 1955.

[4] F.A. Schmidt and J.C. Warner, J. Less Common Metals, v. 13, pp. 493-500, 1967.

264 hrs (11days) Using [3], 0.03 cm → 312 hrs (13days)

Oxygen

Diffusion coefficient (D, cm²/sec)	The activation energy (Q)	R value	Temperature (K)	Time (hr)	Ref
$0.0246\exp(\frac{-29495}{RT})$	29.495 kcal/mole	1.9872041 cal/K mole	923	26.9818	[1]
$0.003 \exp(\frac{-28200}{RT})$	28.2 kcal/mole	1.9872041 cal/K mole	923	109.209	[2]
$0.019 \exp(\frac{-29300}{RT})$	29.3 kcal/mole	1.9872041 cal/K mole	923	31.411	[3]
$0.02661 \exp(\frac{-124710}{RT})$	124.71 kJ/mole	8.3144621 J/K mole	923	29.5594	[4]
[1] J. Less-common metals, 26 (1972) 325-326 144 [2] Stanley, J. T. and Wert, C. A. Acta Met. 3: 107. 1955. Usin [3] Powers, R. W. Acta Met. 2: 604. 1954. -> 12 [4] R.W. Powers, Acta Met., v. 2, pp. 605-607, 1953. -> 12					rs (6days) ; [2], 0.035cm <mark>0 hrs (5days)</mark>

