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Collision Avoidance of Two General Robot 
Manipulators by Minimum Delay Time 

Cheol Chang, Myung Jin Chung, and Bum Hee Lee 

Abstract-A simple time delay method for avoiding collisions between 
two general robot arms is proposed. Links of the robots are approximated 
by polyhedra and the danger of collision between two robots is expressed 
by distance functions defined between the robots. The collision map 
scheme, which can describe collisions between two robots effectively, is 
adopted. The minimum delay time value needed for collision avoidance 
is obtained by a simple procedure of following the boundary contour of 
collision region on collision map. To demonstrate the effectiveness of the 
proposed time delay method, a computer simulation study is shown where 
a collision is likely to occur realistically. 

I. INTRODUCTION 

Industrial robots have made a significant contribution toward 
automating the manufacturing processes. The efficient use of robots 
shows productivity increase, production cost reduction, and product 
quality improvement. However, most robots currently in use perform 
simple repetitive jobs, such as pick-and-place, machine loading and 
unloading, spray painting, and spot welding. 

Only one robot in a common work space limits the classes of 
tasks that can be performed. Two or more robots in a work space 
can improve potential application area of robots. Multiple robots can 
be used to accomplish a task where each performs its own subtask 
in parallel, and to save the production time. Also, multiple robots 
can accomplish complex tasks that can not be performed by a single 
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robot such as transporting an object beyond the payload capability of 
a single robot. Among the previous applications of multiple robots, 
the parallel tasking feature is only an example especially in industry 
aiming to mass production. However, at present, the parallel tasking 
is not fully utilized since there is no practical methodology that can 
make several robots operate safely in a common workspace. In the 
case that more than one robot operate simultaneously in a common 
workspace, the problem of avoiding potential collisions between the 
robots should be considered very carefully. 

To solve the collision avoidance problem, zone-blocking methods 
have been proposed. In these methods only one robot operates at a 
time. So, this semaphore mechanism is not efficient because of not 
providing the parallel tasking feature. Besides zone-blocking methods 
some collision avoidance methods [ 11-[5] have been proposed for 
multiple robots. These methods can be divided into two categories: 
1) time adjusting methods while maintaining the given geometric 
path and 2)  trajectory modification methods which modifies given 
geometric path. The former adjusts the time evolution representing 
the moving speed of robots while the geometrical paths of the robots 
are fixed. The robot path, which guarantees a robot not to collide with 
stationary obstacles, can be obtained using some existing methods 
[6]-[lo]. One of the major features of time adjusting approaches is 
that the number of variables to be considered for collision avoidance 
does not exceed the number of robots because one variable, usually 
the time, is enough to express the moving speed for each robot. For 
instance, in the case of two robots, at most two variables are needed 
for solving the collision avoidance problem. This fact suggests that a 
collision avoidance problem in multiple robots can be easily solved 
comparing with a collision avoidance problem for a single robot and 
stationary obstacles which requires at least three variables in a three 
dimensional work space. 

Lee et al. [2] presented several time adjusting methods for two 
robots using a collision map. In their paper, only a wrist of each robot 
is treated as a possible collision obstacle and modeled by a sphere. 
A collision map is used to describe potential collisions between two 
robots efficiently under the condition that given geometrical paths for 
two robots are fixed. However, the collisions in three-dimensional 
work space are transformed into collision region(s) in the map and 
this transformation usually requires an excessive computational effort. 
Furthermore, the collision region@) in the map is approximated by 
box(es) to determine the departure time of one robot. Therefore, this 
approximation of collision region(s) results in unnecessary extra time 
delay. 

This paper proposes an effective collision avoidance method for 
two general robot manipulators which are approximated by polyhedra 
as an extension of Lee et al. The proposed method determines the 
minimum time delay needed for avoiding collisions between two 
general robot manipulators using distance functions. 

Basically the computational scheme for obtaining the delay time 
adopts the concept of the collision map which represents the re- 
gion corresponding to collisions between two robots. To obtain 
the collision-free minimum delay time, a scheme which follows 
the boundary contour of the collision region in a collision map is 
proposed. This scheme only checks a part of the boundary contour of 
the collision region and the TLVST (traveling length versus sampling 
time) curve conceptually. Due to the computational simplicity, the 
overall procedure is very simple. Also, this method of avoiding 
collisions through time delay is relatively easy to implement, because 
the geometrical paths and time evolution of two robot manipulators 
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linkz 

Fig. 1. A PUMA-560 robot approximated by polyhedra. 

are not altered at all. Above all, this simple computation characteristic 
is preserved in any types of robots and modeling schemes. 

The structure of this paper is as follows. Section I1 describes 
the collision detection between two robots mathematically. For this 
objective the modeling and its use in the representation of danger of 
collision between 2-6 degrees-of-freedom PUMA arms are discussed. 
In section III a boundary contour following method, which provides 
the minimum delay time for collision avoidance between two robots 
is presented. A simulation study considering a realistic situation is 
presented in Section JY to show the effectiveness of the proposed 
method. Section V draws some conclusions. 

n. COLLISION DETECTION AND AVOIDANCE 

A. Distance Measure 
In order to detect collision between two robots, the distance among 

links must be computed and compared every instance of time. To 
do this, the robot manipulators must be properly modeled. There 
are many representation schemes for robot arms. Here, we should 
consider the accuracy of the model as well as the computational 
burden simultaneously. To compromise these requirements, a convex 
polyhedra is selected as a model primitive. Each link of a robot is 
approximated by a convex polyhedron. The gripper is a little more 
complicated, but it is also approximated by a set of polyhedra. If the 
robot(s) picks up an object the model of the gripper must be properly 
changed using the above scheme. As an example, a PUMA 560 
robot arm, an articulated manipulator with six degrees of freedom, is 
modeled by seven convex polyhedra as shown in Fig. 1. 

Collision detection between two polyhedra can be done by com- 
puting the distance between the polyhedra. Given two objects A and 
B in Cmesian space, they can be represented by convex polyhedra 
K A  and K B ,  respectively. And, the space occupied by the objects A 
and B is discussed by sets of points in K A  and K B  respectively. The 
distance ~ ( K A ,  K B )  between K A  and KB is defined by the closest 
two points in K A  and K B  as follows: 

A 
~ ( K A ,  K B )  = min(lz1 - 2 2 1  : 2 1  E K A , Z Z  E KB} (1) 

Several algorithms have been proposed to compute the distance 
~ ( K A ,  K B )  in (1). Among them, a fast algorithm by Gilbert et al. 
[ll] is adopted to detect collision between two robots in this paper. 

traveling length 

/ 

8, Bunpling time 

Fig. 2. A collision map and its rectangular approximation. 

We assume that there are no collisions between the base 
links and other links, since it is very rare to place two robots 
in a workspace so close as collisions may occur. Accord- 
ingly the following 25 distance measures d(linkil), link?)), 
d(Zinkl l ) ,  Zinkp)), . . , d(Zinkp), l inkp))  are used to detect 
collisions between two 6 dof robot arms. In the expression of 
Zinklk), the superscript k indicates the number of robot arms. For 
convenience, the distance d(Zin!~!~),  link:’)) is denoted by d,, . Then, 
the distance d(R1, Rz)  between two robots R1 and RZ is defined by 

If the distance d(R1, R z )  is less than zero, there are collisions 
between two robots [lo]. Otherwise, no collision occurs. 

B. Collision Map and Collision Detection 
A collision avoidance scheme for two robot arms depends on not 

only the path information but the trajectory information of the robots. 
In order to incorporate the location and the corresponding time in- 
formation of the robots into a two-dimensional space simultaneously, 
a collision map concept is appropriate for our purpose. If a robot 
R1 adheres to its original trajectory, the other robot Rz must change 
appropriately its original trajectory for collision avoidance. Then a 
curve which relates the traveled length with the corresponding time 
instant of robot RZ can be drawn. Two robot arms have a potential 
collision under the original trajectory information, if there is a range 
of collision lengths where the path of robot RZ is within the colliding 
range of a point on the path of robot R1. Then the union of these 
collision lengths at the collection of time instants can be drawn as a 
connected region. The detailed construction procedure of the collision 
map is presented in [2].  

As mentioned earlier, the construction procedure requires complex 
computation and unnecessary approximation for obtaining the colli- 
sion map. To simplify this procedure we propose a boundary contour 
following method which is conceptually following the boundary 
of the collision region until the departure point is determined. A 
discretized collision map describing the collision between two robot 
arms R1 and Rz is shown in Fig. 2. In the map, st on the horizontal 
axis is the sampling index for time and si on the vertical axis is the 
Cartesian traveling length of the gripper of RZ at the sampling instant. 
The real time t corresponding to st is the sampling time interval At 
times str and the real traveling length Z of RZ is the sampling length 
interval AZ times 51. The TLVST curve represents the traveling length 
of the gripper of RZ along the time and it corresponds to the trajectory 
of Rz .  If the TLVST curve is changed, the trajectory of RZ is also 
changed. But the trajectory of R1 is not changed at all. That is, any 
change on the TLVST curve does not affect the trajectory of R1 . 
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A collision between RI and Rz occurs at the position in Cartesian 
space corresponding to any points ( s t ,  SI) in the collision region of 
the collision map. If the TLVST curve passes through the collision 
region, there are collisions between R 1  and Rz. 

The possibility of a collision at a point ( s t ,  SI)  in the collision map 
can be examined by computing the distance d ( R 1 ,  Rz) between R 1  

and Rz at the point in Cartesian space. Here, we note that the collision 
map is discretized. Therefore, if the distance at the point ( s t ,  sf) is 
larger than zero, the distance d ( R 1 ,  R:!) in the following region must 
be also larger than zero for collision avoidance. For this purpose, the 
area of each link can be replaced by the area where the link sweeps 
out when the corresponding joint moves within its allowable range 
in the intervals [st - 0 . 5 , ~ ~  + 0.51 and [SI - 0.5,sf + 0.51 for R1 
and RZ respectively. 

( ~ t  - 0.5) . At <t < ( ~ t  + 0.5) . At 
(Sf - 0.5) . AI 51 5 (Sf + 0.5) . A1 (3) 

However, instead of computing the exact swept volume, which is 
very hard to compute, we use a simple approximation method. First, 
it is required to compute the upper bound on the largest displacement 
of any point on the kth link in response to the joint displacement 
within the allowable angle E k  for one sampling interval At. Denote 
this bound 6 k .  The allowable angle, & k ,  can be estimated through 
the maximum joint angular velocity of the kth link. Let W k  be 
the maximum angular velocity of the kth link; then the following 
inequality equation holds: 

E k  5 At ' W k  (4) 

Therefore, the upper bound of allowable angle can be approximated 
by At . ~ k .  This procedure is applied to both robot arms. If the kth 
link is expanded by the corresponding upper bound 6 k r  (3) holds 
always in the swept area. 

Since the motion of each joint affects the displacement of all sub- 
sequent links, the maximum displacement for each link in Cartesian 
space depends on both the maximum total distance from a point on 
the link to the base joint and the maximum angular displacement of 
all the links. In the case of a planar revolute manipulator the angular 
displacement of the kth link is the sum of the angular displacements 
of all the previous joints. Given distance d and angle %, the magnitude 
of the displacement is d Jm-. 

be the allowable range for the ith joint and r z  be the 
maximum distance of a point on the ith link from the ith joint; and 
let 1, be the distance from the j th  joint to the ( j  + 1)th joint. Then, 
the value of 6 k  of the k link is 

Let 

Sk = [ (g I t )  + rk] . \ 2 ( 1  - C O S ( & E j ) )  ( 5 )  

However, in the case of a 3-dimensional articulated robot such as a 
PUMA arm, the computation of the bound 6 k  slightly different from 
the planar robot case. In what follows, denote d k  as the distance of 
the end-point on the kth link from the origin of the base coordinates 
when the robot stretches out. The procedure for approximated 6 k  for 
a PUMA arm is as follows: 

j = 1  

The upper bound 61 of the first link is 

61 = d l J 2 ( 1  - c o s . 1 ) .  (6) 

Since the rotational axis of joint 2 is perpendicular to that of joint 
1, the displacement of any point on link 2 is also perpendicular to 
that of link 1. Therefore, Sa is 

62 = dd:(l  - c o s ~ 1 )  + d i ( l  - c o s ~ z )  (7) 

= dzJZ( (1  - C O S E 1 )  + (1 - C O S E 2 ) )  

"3" I 

st 

Fig. 3. Four directions of the automaton M .  

the final location of R2 1 
(b) the collision-free minimum 

timedelayed TLVST 

TLVST 

Fig. 4. Simplified description of computing a minimum delay time. (a) The 
original TLVST. (b) The collision-free minimum time-delayed TLVST. 

Similarly, 63, 64, and 65 are given by 

63 = d3 Jz((1 - cos ~ 1 )  + (1 - COS(&:! + E 3 ) )  

64 = d4J2((1 - C O S & 1 )  + (1 - COS(&:! + E 3 ) )  

6s = d5J2((1 - C O S & l )  + (1 - COS(&* + E3 + a)). 

(8) 

(9) 
(10) 

In (lo), the distance ds includes the length of the gripper as well 

Considering the expanded links, the following inequality equation 
as link 5. 

must hold in order that there is no collision between RI and Rz: 

where 6:') indicates the upper bound 6, of the ith link of robot R I .  

III. COLLISION AVOIDANCE 
In [2 ] ,  the collision region between the end effectors of two 

robots is computed under the assumption that each robot follows 
a straight line trajectory. Then, the collision region is approximated 
by a box as shown in Fig. 2. However, as mentioned in Section I, in 
more general type robots and trajectories, it is not easy to compute 
the whole collision region generally because there is no analytical 
method to compute the collision region. In extreme case, we must 
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(a) (b) 

Fig. 5.  Workcell consisting of two robots, R1 and Rz, and its given task. (a) Workcell. (b) The given task. 

1.7 

.8 

0 

-.8 

-1.7 

I .7 

.8 

0 

-.E 

I .7 

-2.6 1 I 1.6 

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 1.9 1 

[=I 
0 3 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 1.9 

[=I 
(b) 

Fig. 6. (a) Initial joint trajectories of R1. (b) Initial joint trajectories of Rz. 

examine the collision at every point to obtain the whole collision 
region in the collision map. This task is tedious and requires too 
expensive computational cost. Also, the rectangle approximation for 
the obtained collision region may raise extra delay time more than 
needed. 

In this section, we introduce a boundary contour following method 
for computing the minimum delay time of R2 for collision avoid- 
ance between RI and R2, which is applicable to various robots 
approximated by a set of polyhedron. It is basically assumed that a 
trajectory for each robot is given and that the given trajectory meets 
the dynamical constraints and any robot does not collide with any 
stationary obstacles in work space. 

Suppose that there is an automaton M which moves one of 
four directions as shown in Fig. 3 in the collision map. When the 
automaton M is moving along the boundary contour of the collision 
region, all directions are allowed. The directions themselves have no 
physical meaning but these directions are needed for computing the 
minimum delay time, i.e., the direction “ 0  makes a point at ( s t ,  SI) 
toward (st + At, SI). Similarly the direction “1” makes the point at 
(s t ,  SI) toward ( s t ,  SI +Al),  For constructing a collision-free TLVST 

curve the directions must be either “0” or “I” because the traveling 
length and time are not retrogressive. However, “2” and “3” must be 
considered when M follows the boundary contour of the collision 
region. 

A moving direction of M is determined in the following way. 
As a candidate for the moving direction, “0” direction is selected. 
If there is a collision at that direction, the very next direction in 
clockwise with respect to the previous direction of M is selected. 
This procedure continues until a collision-free direction is found. 
The key problem in the computation of delay time is to determine a 
departure point. A condition to be a departure point on the boundary 
is that its corresponding direction is either “0” or “1”. When a point 
satisfies this condition, the automaton M moves along the delayed 
TLVST curve until it arrives at the final point or a new collisions is 
detected. The departure point denoted by “dp” in Fig. 4 is a point on 
the boundary of the collision region where 1M is allowed to proceed to 
the final desired point along the time-delayed TLVST curve without 
any collision. If two or more points satisfy the condition while M 
travels to the final point from the initial point, the last departure 
point is a real one. 
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Fig. 7. Distance trajectory between R1 and Rz .  
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Fig. 8. Graphic simulation of collision situation. 

When M moves along a time-delayed TLVST curve, M may be 
wandering in some area depending on the shape of collision regions. 
This wandering problem can be resolved by moving M along the 
time-delayed TLVST curve when a new candidate for a departure 
point, which is not listed before, is found. Although the current point 
satisfies the condition, if it is the one that has found before, M moves 
along the boundary contour of the collision region because the point 

75 
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Fig. 9. The minimum delay time and departure point (dp). 

is not a true departure point. The delay time is computed using the 
difference kp - k l  in st between the original and the collision-free 
minimum time-delayed TLVST curves as shown in Fig. 4. 

Although it is rare, there is a possibility that more than one collision 
regions may exist in the collision map. In this case, it is required to 
reexamine the collisions from the new initial point in  the delayed 
TLVST curve to the departure point. If any collision is detected 
between the new initial point and the departure point, the boundary 
following procedure is repeated until there is no collision between 
the initial point and the departure point. 

The procedure of computing the minimum value of the delay time 
is summarized as follows: Step I : In the collision map, the automaton 
M proceeds with examining a collision using the distance measure 
from the origin of the map along the original TLVST curve until any 
collision is detected. Step 2: If a collision is detected, AI proceeds to 
the departure point using an automaton. Step 3: If the departure point 
is found, M proceeds with examining a collision along a time-delayed 
TLVST curve until any collision is detected or until !If arrives at the 
point corresponding to the final location of RP.  If the time-delayed 
TLVST curve arrives the final location of Rz, this curve becomes the 
collision-free time-delayed TLVST. Otherwise go to Step 2. Step 4: 
Compute the minimum delay time T D  by (IC2 - ki) At.  

Iv .  SIMULATION STUDY ON THE TIME DELAY METHOD 

In this section, we will show the effectiveness of the proposed 
collision avoidance scheme based on time delay and discuss the 
simulation results. Assume that the workcell consists of two PUMA- 
type robots, R1 and RZ, and a worktable as shown in Fig. S(a). 

In Fig. 5,  W ,  T t ) ,  and Tg' are the world coordinates and the 
base coordinates of R1 and R2 with respect to the world coordinates 
respectively. Let T g )  and T g )  be given by 

r-1 o o 0.65[m]l 

L o 0 0  1 J  10 0 0 

A task for simulation is shown in Fig. 5(b). The description of the 
task is as follows: 1) Initially the end-effector of Ri is located at 
P!". 2) It approaches G(') and grasps an object. 3) It moves to A!(" 
along straight lines through via points P!i) and PiZ'. 4) It releases the 
object on the table. 5) It moves to Pi" along straight lines via Pi". 

The joint trajectories for robots corresponding to this task are 
shown in Fig. 6, and these trajectories are assumed to meet the 
physical constraints. The dotted line in Fig. 7 shows the distance 
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R1 starts 

6 

Fig. 10. Graphic simulation of collision avoidance by minimum delay time. 

trajectory between R1 and RZ along time from 0 sec to 1.92 sec. It 
is shown that the distance between the time interval [0.76, 1.161 is less 
than zero. Here, the negative distance represents the estimated degree 
of the collision between R1 and RZ [ l l ] .  Consequently, collisions 
occurs between RI and R2 as shown in Fig. 8. 

The collision region of the given task is shown in Fig. 9. Graphical 
description of this collision region in the collision map is not required 
to determine the minimum delay time. However, to explain the con- 
cept and procedure, we obtained it through complex computation. The 
sampling time is 20 ms, and the traveling length of Rz is uniformly 
divided. The maximum angular velocity of joints is assumed to be 
0.5 r d s e c .  In this case, the maximum angular displacement of joints 
within one sampling time is 0.01 rad. The distance parameters d of 
links are 

d l  = 0.2, dz  = 0.457, d3 = 0.85, d4 = 0.88, ds  = 1.0. 
(13) 

61 = 0.2, 62 = 0.65, 63 = 1.9, 6 4  = 2.0, 65 = 3.0. (14) 

Using (6)-(lo), 6, are 

Also, Fig. 9 shows the delay time by the proposed scheme. In this 
example, the delay time is 0.7 sec, and the computation for obtaining 
the delay time requires about 90 sec on a SPARC workstation. The 
distance trajectory between R1 and R2, when Rz is delayed by 0.7 
sec, is shown as a solid line in Fig. 7. As shown in Fig. 7, the distance 
is always greater than zero through the whole execution time interval 
[O, 2.61. Fig. 10 shows the collision-free movements of two robot 
arms graphically when a delay time is considered. 

V. CONCLUSION 
A simple and efficient time delay method for avoiding collisions 

between two general robot manipulators was proposed. Each robot 
was approximated by a set of convex polyhedra and the degree of 
collision between robots was represented by distance between two 
robots. 

The proposed time delay method adopted the collision map scheme 
and the minimum delay time was determined by following the 
boundary contour of the collision region in the collision map. This 
method only checks up collisions along a part of the boundary 
contour of the collision region for a given TLVST curve. Due to the 
simplicity, the overall computation procedure becomes very simple 
and is applicable to any types of robots and modelings. 
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