
TRANSACTIONS ON SYSTEMS, MAN. AND CYBERNETICS, VOL. 24, NO

G. L. Ritter, H. B. Woodruff, S. R. Lowry, and T. L. Isenhour, “An
algorithm for a selective nearest neighbor decision Rule,” IEEE Trans.
Information Theory, vol. IT-21, no. 6, pp. 665469, Nov. 1975.
I. Tomek, “Two modifications of CNN,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-6, no. 11, pp. 769-772, Nov. 1976.
M. Ichino. “A nonparametric multiclass pattem classifier,” IEEE Trans.
Syst., Man, Cybem., vol. SMC-9, no. 6, pp. 345-352, June 1979.
K. C. Gowda and G. Krishna, “The condensed nearest neighbor rule
using the concept of mutual nearest neighborhood,” IEEE Trans. Infor-
mation Theory, vol. IT-25, no. 4, pp. 488490, July 1979.
K. Fukunaga and J. M. Mantock, “Nonparametric data reduction,” IEEE
Trans. Pattem Analysis and Machine Intelligence, vol. PAMI-6, no. 1,
pp. 115-118, Jan. 1984.
Y. T. Chien, Interactive Pattern Recognition. New York: Marcel
Dekker, Inc., pp. 223-230, 1978.
B. V. Dasarathy and E. B. Holder, “Image characterizations based on
joint gray level-run length distributions,” Pattem Recog. Lett., vol. 12,
no. 8, pp. 497-502, Aug. 1991.
F. Rhodes, “Some characterizations of the chessboard metric and the
city block metric,” Pattem Recog. Lett., vol. 11, no. 10, pp. 669-675,
Oct. 1990.
B. V. Dasarathy, “Fuzzy learning under and about an unfamiliar
fuzzy teacher,” in NAFIPS’92, Proc. North American Fuzzy Information
Processing Society Conf, pp. 368-377, Dec. 1992.

Collision Avoidance of Two General Robot
Manipulators by Minimum Delay Time

Cheol Chang, Myung Jin Chung, and Bum Hee Lee

Abstract-A simple time delay method for avoiding collisions between
two general robot arms is proposed. Links of the robots are approximated
by polyhedra and the danger of collision between two robots is expressed
by distance functions defined between the robots. The collision map
scheme, which can describe collisions between two robots effectively, is
adopted. The minimum delay time value needed for collision avoidance
is obtained by a simple procedure of following the boundary contour of
collision region on collision map. To demonstrate the effectiveness of the
proposed time delay method, a computer simulation study is shown where
a collision is likely to occur realistically.

I. INTRODUCTION

Industrial robots have made a significant contribution toward
automating the manufacturing processes. The efficient use of robots
shows productivity increase, production cost reduction, and product
quality improvement. However, most robots currently in use perform
simple repetitive jobs, such as pick-and-place, machine loading and
unloading, spray painting, and spot welding.

Only one robot in a common work space limits the classes of
tasks that can be performed. Two or more robots in a work space
can improve potential application area of robots. Multiple robots can
be used to accomplish a task where each performs its own subtask
in parallel, and to save the production time. Also, multiple robots
can accomplish complex tasks that can not be performed by a single

Manuscript received January 9, 1992; revised April 6, 1993.
C. Chang is with the Samsung Advanced Institute of Technology, Suwon,

M. J. Chung is with the Department of Electrical Engineering, Korea

B. H. Lee is with the Department of Control and Instrumentation Engineer-

IEEE Log Number 9214588.

Kyung Ki-do, Korea.

Advanced Institute of Science and Technology, Taejon 305-701, Korea.

ing, Seoul National University, Seoul, Korea.

3. MARCH 1994 517

robot such as transporting an object beyond the payload capability of
a single robot. Among the previous applications of multiple robots,
the parallel tasking feature is only an example especially in industry
aiming to mass production. However, at present, the parallel tasking
is not fully utilized since there is no practical methodology that can
make several robots operate safely in a common workspace. In the
case that more than one robot operate simultaneously in a common
workspace, the problem of avoiding potential collisions between the
robots should be considered very carefully.

To solve the collision avoidance problem, zone-blocking methods
have been proposed. In these methods only one robot operates at a
time. So, this semaphore mechanism is not efficient because of not
providing the parallel tasking feature. Besides zone-blocking methods
some collision avoidance methods [11-[5] have been proposed for
multiple robots. These methods can be divided into two categories:
1) time adjusting methods while maintaining the given geometric
path and 2) trajectory modification methods which modifies given
geometric path. The former adjusts the time evolution representing
the moving speed of robots while the geometrical paths of the robots
are fixed. The robot path, which guarantees a robot not to collide with
stationary obstacles, can be obtained using some existing methods
[6]-[lo]. One of the major features of time adjusting approaches is
that the number of variables to be considered for collision avoidance
does not exceed the number of robots because one variable, usually
the time, is enough to express the moving speed for each robot. For
instance, in the case of two robots, at most two variables are needed
for solving the collision avoidance problem. This fact suggests that a
collision avoidance problem in multiple robots can be easily solved
comparing with a collision avoidance problem for a single robot and
stationary obstacles which requires at least three variables in a three
dimensional work space.

Lee et al. [2] presented several time adjusting methods for two
robots using a collision map. In their paper, only a wrist of each robot
is treated as a possible collision obstacle and modeled by a sphere.
A collision map is used to describe potential collisions between two
robots efficiently under the condition that given geometrical paths for
two robots are fixed. However, the collisions in three-dimensional
work space are transformed into collision region(s) in the map and
this transformation usually requires an excessive computational effort.
Furthermore, the collision region@) in the map is approximated by
box(es) to determine the departure time of one robot. Therefore, this
approximation of collision region(s) results in unnecessary extra time
delay.

This paper proposes an effective collision avoidance method for
two general robot manipulators which are approximated by polyhedra
as an extension of Lee et al. The proposed method determines the
minimum time delay needed for avoiding collisions between two
general robot manipulators using distance functions.

Basically the computational scheme for obtaining the delay time
adopts the concept of the collision map which represents the re-
gion corresponding to collisions between two robots. To obtain
the collision-free minimum delay time, a scheme which follows
the boundary contour of the collision region in a collision map is
proposed. This scheme only checks a part of the boundary contour of
the collision region and the TLVST (traveling length versus sampling
time) curve conceptually. Due to the computational simplicity, the
overall procedure is very simple. Also, this method of avoiding
collisions through time delay is relatively easy to implement, because
the geometrical paths and time evolution of two robot manipulators

0018-9472/94$04.00 0 1994 IEEE

518 IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. 24, NO. 3, MARCH 1994

linkz

Fig. 1. A PUMA-560 robot approximated by polyhedra.

are not altered at all. Above all, this simple computation characteristic
is preserved in any types of robots and modeling schemes.

The structure of this paper is as follows. Section I1 describes
the collision detection between two robots mathematically. For this
objective the modeling and its use in the representation of danger of
collision between 2-6 degrees-of-freedom PUMA arms are discussed.
In section III a boundary contour following method, which provides
the minimum delay time for collision avoidance between two robots
is presented. A simulation study considering a realistic situation is
presented in Section JY to show the effectiveness of the proposed
method. Section V draws some conclusions.

n. COLLISION DETECTION AND AVOIDANCE

A. Distance Measure
In order to detect collision between two robots, the distance among

links must be computed and compared every instance of time. To
do this, the robot manipulators must be properly modeled. There
are many representation schemes for robot arms. Here, we should
consider the accuracy of the model as well as the computational
burden simultaneously. To compromise these requirements, a convex
polyhedra is selected as a model primitive. Each link of a robot is
approximated by a convex polyhedron. The gripper is a little more
complicated, but it is also approximated by a set of polyhedra. If the
robot(s) picks up an object the model of the gripper must be properly
changed using the above scheme. As an example, a PUMA 560
robot arm, an articulated manipulator with six degrees of freedom, is
modeled by seven convex polyhedra as shown in Fig. 1.

Collision detection between two polyhedra can be done by com-
puting the distance between the polyhedra. Given two objects A and
B in Cmesian space, they can be represented by convex polyhedra
K A and K B , respectively. And, the space occupied by the objects A
and B is discussed by sets of points in K A and K B respectively. The
distance ~ (K A , K B) between K A and KB is defined by the closest
two points in K A and K B as follows:

A
~ (K A , K B) = min(lz1 - 2 2 1 : 2 1 E K A , Z Z E KB} (1)

Several algorithms have been proposed to compute the distance
~ (K A , K B) in (1). Among them, a fast algorithm by Gilbert et al.
[ll] is adopted to detect collision between two robots in this paper.

traveling length

/

8, Bunpling time

Fig. 2. A collision map and its rectangular approximation.

We assume that there are no collisions between the base
links and other links, since it is very rare to place two robots
in a workspace so close as collisions may occur. Accord-
ingly the following 25 distance measures d(linkil), link?)),
d(Zinkl l) , Zinkp)), . . , d(Zinkp), l inkp)) are used to detect
collisions between two 6 dof robot arms. In the expression of
Zinklk), the superscript k indicates the number of robot arms. For
convenience, the distance d(Zin!~!~), link:’)) is denoted by d,, . Then,
the distance d(R1, Rz) between two robots R1 and RZ is defined by

If the distance d(R1, R z) is less than zero, there are collisions
between two robots [lo]. Otherwise, no collision occurs.

B. Collision Map and Collision Detection
A collision avoidance scheme for two robot arms depends on not

only the path information but the trajectory information of the robots.
In order to incorporate the location and the corresponding time in-
formation of the robots into a two-dimensional space simultaneously,
a collision map concept is appropriate for our purpose. If a robot
R1 adheres to its original trajectory, the other robot Rz must change
appropriately its original trajectory for collision avoidance. Then a
curve which relates the traveled length with the corresponding time
instant of robot RZ can be drawn. Two robot arms have a potential
collision under the original trajectory information, if there is a range
of collision lengths where the path of robot RZ is within the colliding
range of a point on the path of robot R1. Then the union of these
collision lengths at the collection of time instants can be drawn as a
connected region. The detailed construction procedure of the collision
map is presented in [2].

As mentioned earlier, the construction procedure requires complex
computation and unnecessary approximation for obtaining the colli-
sion map. To simplify this procedure we propose a boundary contour
following method which is conceptually following the boundary
of the collision region until the departure point is determined. A
discretized collision map describing the collision between two robot
arms R1 and Rz is shown in Fig. 2. In the map, st on the horizontal
axis is the sampling index for time and si on the vertical axis is the
Cartesian traveling length of the gripper of RZ at the sampling instant.
The real time t corresponding to st is the sampling time interval At
times str and the real traveling length Z of RZ is the sampling length
interval AZ times 51. The TLVST curve represents the traveling length
of the gripper of RZ along the time and it corresponds to the trajectory
of Rz . If the TLVST curve is changed, the trajectory of RZ is also
changed. But the trajectory of R1 is not changed at all. That is, any
change on the TLVST curve does not affect the trajectory of R1 .

IEEE TRANSACTIONS ON SYSTEMS, MAN. AND CYBERNETICS, VOL. 24, NO. 3, MARCH 1994 519

A collision between RI and Rz occurs at the position in Cartesian
space corresponding to any points (s t , SI) in the collision region of
the collision map. If the TLVST curve passes through the collision
region, there are collisions between R 1 and Rz.

The possibility of a collision at a point (s t , SI) in the collision map
can be examined by computing the distance d (R 1 , Rz) between R 1

and Rz at the point in Cartesian space. Here, we note that the collision
map is discretized. Therefore, if the distance at the point (s t , sf) is
larger than zero, the distance d (R 1 , R:!) in the following region must
be also larger than zero for collision avoidance. For this purpose, the
area of each link can be replaced by the area where the link sweeps
out when the corresponding joint moves within its allowable range
in the intervals [st - 0 . 5 , ~ ~ + 0.51 and [SI - 0.5,sf + 0.51 for R1
and RZ respectively.

(~ t - 0.5) . At <t < (~ t + 0.5) . At
(Sf - 0.5) . AI 51 5 (Sf + 0.5) . A1 (3)

However, instead of computing the exact swept volume, which is
very hard to compute, we use a simple approximation method. First,
it is required to compute the upper bound on the largest displacement
of any point on the kth link in response to the joint displacement
within the allowable angle E k for one sampling interval At. Denote
this bound 6 k . The allowable angle, & k , can be estimated through
the maximum joint angular velocity of the kth link. Let W k be
the maximum angular velocity of the kth link; then the following
inequality equation holds:

E k 5 At ' W k (4)

Therefore, the upper bound of allowable angle can be approximated
by At . ~ k . This procedure is applied to both robot arms. If the kth
link is expanded by the corresponding upper bound 6 k r (3) holds
always in the swept area.

Since the motion of each joint affects the displacement of all sub-
sequent links, the maximum displacement for each link in Cartesian
space depends on both the maximum total distance from a point on
the link to the base joint and the maximum angular displacement of
all the links. In the case of a planar revolute manipulator the angular
displacement of the kth link is the sum of the angular displacements
of all the previous joints. Given distance d and angle %, the magnitude
of the displacement is d Jm-.

be the allowable range for the ith joint and r z be the
maximum distance of a point on the ith link from the ith joint; and
let 1, be the distance from the j th joint to the (j + 1)th joint. Then,
the value of 6 k of the k link is

Let

Sk = [(g I t) + rk] . \ 2 (1 - C O S (& E j)) (5)

However, in the case of a 3-dimensional articulated robot such as a
PUMA arm, the computation of the bound 6 k slightly different from
the planar robot case. In what follows, denote d k as the distance of
the end-point on the kth link from the origin of the base coordinates
when the robot stretches out. The procedure for approximated 6 k for
a PUMA arm is as follows:

j = 1

The upper bound 61 of the first link is

61 = d l J 2 (1 - c o s . 1) . (6)

Since the rotational axis of joint 2 is perpendicular to that of joint
1, the displacement of any point on link 2 is also perpendicular to
that of link 1. Therefore, Sa is

62 = dd:(l - c o s ~ 1) + d i (l - c o s ~ z) (7)

= dzJZ((1 - C O S E 1) + (1 - C O S E 2))

"3" I

st

Fig. 3. Four directions of the automaton M .

the final location of R2 1
(b) the collision-free minimum

timedelayed TLVST

TLVST

Fig. 4. Simplified description of computing a minimum delay time. (a) The
original TLVST. (b) The collision-free minimum time-delayed TLVST.

Similarly, 63, 64, and 65 are given by

63 = d3 Jz((1 - cos ~ 1) + (1 - COS(&:! + E 3))

64 = d4J2((1 - C O S & 1) + (1 - COS(&:! + E 3))

6s = d5J2((1 - C O S & l) + (1 - COS(&* + E3 + a)).

(8)

(9)
(10)

In (lo), the distance ds includes the length of the gripper as well

Considering the expanded links, the following inequality equation
as link 5.

must hold in order that there is no collision between RI and Rz:

where 6:') indicates the upper bound 6, of the ith link of robot R I .

III. COLLISION AVOIDANCE
In [2] , the collision region between the end effectors of two

robots is computed under the assumption that each robot follows
a straight line trajectory. Then, the collision region is approximated
by a box as shown in Fig. 2. However, as mentioned in Section I, in
more general type robots and trajectories, it is not easy to compute
the whole collision region generally because there is no analytical
method to compute the collision region. In extreme case, we must

520 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 3, MARCH 1994

(a) (b)

Fig. 5. Workcell consisting of two robots, R1 and Rz, and its given task. (a) Workcell. (b) The given task.

1.7

.8

0

-.8

-1.7

I .7

.8

0

-.E

I .7

-2.6 1 I 1.6

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 1.9 1

[=I
0 3 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 1.9

[=I
(b)

Fig. 6. (a) Initial joint trajectories of R1. (b) Initial joint trajectories of Rz.

examine the collision at every point to obtain the whole collision
region in the collision map. This task is tedious and requires too
expensive computational cost. Also, the rectangle approximation for
the obtained collision region may raise extra delay time more than
needed.

In this section, we introduce a boundary contour following method
for computing the minimum delay time of R2 for collision avoid-
ance between RI and R2, which is applicable to various robots
approximated by a set of polyhedron. It is basically assumed that a
trajectory for each robot is given and that the given trajectory meets
the dynamical constraints and any robot does not collide with any
stationary obstacles in work space.

Suppose that there is an automaton M which moves one of
four directions as shown in Fig. 3 in the collision map. When the
automaton M is moving along the boundary contour of the collision
region, all directions are allowed. The directions themselves have no
physical meaning but these directions are needed for computing the
minimum delay time, i.e., the direction “ 0 makes a point at (s t , SI)
toward (st + At, SI). Similarly the direction “1” makes the point at
(s t , SI) toward (s t , SI +Al), For constructing a collision-free TLVST

curve the directions must be either “0” or “I” because the traveling
length and time are not retrogressive. However, “2” and “3” must be
considered when M follows the boundary contour of the collision
region.

A moving direction of M is determined in the following way.
As a candidate for the moving direction, “0” direction is selected.
If there is a collision at that direction, the very next direction in
clockwise with respect to the previous direction of M is selected.
This procedure continues until a collision-free direction is found.
The key problem in the computation of delay time is to determine a
departure point. A condition to be a departure point on the boundary
is that its corresponding direction is either “0” or “1”. When a point
satisfies this condition, the automaton M moves along the delayed
TLVST curve until it arrives at the final point or a new collisions is
detected. The departure point denoted by “dp” in Fig. 4 is a point on
the boundary of the collision region where 1M is allowed to proceed to
the final desired point along the time-delayed TLVST curve without
any collision. If two or more points satisfy the condition while M
travels to the final point from the initial point, the last departure
point is a real one.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 3, MARCH 1994 52 1

.a5

6

.45

3

.I5

0.0

-.I5

-.3 I I J
0 .2S .5 .75 1.0 135 1.5 1.75 2.0 235 2 5

[=I

Fig. 7. Distance trajectory between R1 and Rz .

1

RI and Rt start
simultaneously

3

4

5

6

Fig. 8. Graphic simulation of collision situation.

When M moves along a time-delayed TLVST curve, M may be
wandering in some area depending on the shape of collision regions.
This wandering problem can be resolved by moving M along the
time-delayed TLVST curve when a new candidate for a departure
point, which is not listed before, is found. Although the current point
satisfies the condition, if it is the one that has found before, M moves
along the boundary contour of the collision region because the point

75

62 -
50 -
37 -
25 -
12 -

0 I5 30 45 60 75 90 105 120 135 150

b,I

Fig. 9. The minimum delay time and departure point (dp).

is not a true departure point. The delay time is computed using the
difference kp - k l in st between the original and the collision-free
minimum time-delayed TLVST curves as shown in Fig. 4.

Although it is rare, there is a possibility that more than one collision
regions may exist in the collision map. In this case, it is required to
reexamine the collisions from the new initial point in the delayed
TLVST curve to the departure point. If any collision is detected
between the new initial point and the departure point, the boundary
following procedure is repeated until there is no collision between
the initial point and the departure point.

The procedure of computing the minimum value of the delay time
is summarized as follows: Step I : In the collision map, the automaton
M proceeds with examining a collision using the distance measure
from the origin of the map along the original TLVST curve until any
collision is detected. Step 2: If a collision is detected, AI proceeds to
the departure point using an automaton. Step 3: If the departure point
is found, M proceeds with examining a collision along a time-delayed
TLVST curve until any collision is detected or until !If arrives at the
point corresponding to the final location of RP. If the time-delayed
TLVST curve arrives the final location of Rz, this curve becomes the
collision-free time-delayed TLVST. Otherwise go to Step 2. Step 4:
Compute the minimum delay time T D by (IC2 - ki) At.

Iv . SIMULATION STUDY ON THE TIME DELAY METHOD

In this section, we will show the effectiveness of the proposed
collision avoidance scheme based on time delay and discuss the
simulation results. Assume that the workcell consists of two PUMA-
type robots, R1 and RZ, and a worktable as shown in Fig. S(a).

In Fig. 5, W , T t) , and Tg' are the world coordinates and the
base coordinates of R1 and R2 with respect to the world coordinates
respectively. Let T g) and T g) be given by

r-1 o o 0.65[m]l

L o 0 0 1 J 10 0 0

A task for simulation is shown in Fig. 5(b). The description of the
task is as follows: 1) Initially the end-effector of Ri is located at
P!". 2) It approaches G(') and grasps an object. 3) It moves to A!("
along straight lines through via points P!i) and PiZ'. 4) It releases the
object on the table. 5) It moves to Pi" along straight lines via Pi".

The joint trajectories for robots corresponding to this task are
shown in Fig. 6, and these trajectories are assumed to meet the
physical constraints. The dotted line in Fig. 7 shows the distance

522 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 3, MARCH 1994

R1 starts

6

Fig. 10. Graphic simulation of collision avoidance by minimum delay time.

trajectory between R1 and RZ along time from 0 sec to 1.92 sec. It
is shown that the distance between the time interval [0.76, 1.161 is less
than zero. Here, the negative distance represents the estimated degree
of the collision between R1 and RZ [l l] . Consequently, collisions
occurs between RI and R2 as shown in Fig. 8.

The collision region of the given task is shown in Fig. 9. Graphical
description of this collision region in the collision map is not required
to determine the minimum delay time. However, to explain the con-
cept and procedure, we obtained it through complex computation. The
sampling time is 20 ms, and the traveling length of Rz is uniformly
divided. The maximum angular velocity of joints is assumed to be
0.5 r d s e c . In this case, the maximum angular displacement of joints
within one sampling time is 0.01 rad. The distance parameters d of
links are

d l = 0.2, dz = 0.457, d3 = 0.85, d4 = 0.88, ds = 1.0.
(13)

61 = 0.2, 62 = 0.65, 63 = 1.9, 6 4 = 2.0, 65 = 3.0. (14)

Using (6)-(lo), 6, are

Also, Fig. 9 shows the delay time by the proposed scheme. In this
example, the delay time is 0.7 sec, and the computation for obtaining
the delay time requires about 90 sec on a SPARC workstation. The
distance trajectory between R1 and R2, when Rz is delayed by 0.7
sec, is shown as a solid line in Fig. 7. As shown in Fig. 7, the distance
is always greater than zero through the whole execution time interval
[O, 2.61. Fig. 10 shows the collision-free movements of two robot
arms graphically when a delay time is considered.

V. CONCLUSION
A simple and efficient time delay method for avoiding collisions

between two general robot manipulators was proposed. Each robot
was approximated by a set of convex polyhedra and the degree of
collision between robots was represented by distance between two
robots.

The proposed time delay method adopted the collision map scheme
and the minimum delay time was determined by following the
boundary contour of the collision region in the collision map. This
method only checks up collisions along a part of the boundary
contour of the collision region for a given TLVST curve. Due to the
simplicity, the overall computation procedure becomes very simple
and is applicable to any types of robots and modelings.

REFERENCES

[l] E. Freund and H. Hoyer, “Path finding in multi-robot systems including
obstacle avoidance,” Znt. J. Robotics Res., vol. 7, no. 1, pp. 42-70, Feb.
1988.

[2] B. H. Lee and C. 5. G. Lee, “Collision-free motion planning of two
robots,” IEEE Trans. Syst., Man, Cybem., vol. 17, no. I, pp. 21-32,
Jan.-Feb. 1987.

[3] C. Chang and M. 1. Chung, “A collision-free motion planning for two
articulated robot arms using minimum distance functions,” Robotica,

[4] B. H. Lee, “Constraint identification in time-varying obstacle avoidance
for mechanical manipulators,” ZEEE Trans. Syst, Man, Cybem., vol. 19,
no. 1, pp. 140-143, Jan.-Feb. 1989.

[SI Z. Bien and I. Lee, “A minimum-time trajectory planning method for
two robots,” ZEEE Trans. Robot., Automat., vol. 8, no. 1, pp. 414-118,
Jun. 1992.

[6] T. Lozano-Perez, “A simple motion-planning algorithm for general robot
manipulators,” ZEEE J. Robot., Automat., vol. 3, no. 3, Jun. 1987.

[7] W. E. Red and H. V. Truong-Cao, “Configuration maps for robot path
planning in two dimensions,” Trans. ASME, Dynamic Syst., Measur.,
Contr., vol. 107, pp. 292-298, Dec. 1985.

[8] V. I. Lumelsky, “Dynamic path planning for a planar articulated robot
arm moving amidst unknown obstacles,” ZEEE J. Robot., Automat., vol.

[9] 0. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Znt. J. Robotics Res., vol. 5, pp. 9C-98, 1986.

[lo] I. S. Singh and M.D. Wagh, “Robot path planning using intersecting
convex shapes : Analysis and Simulation,” ZEEE J. Robot. Automat,
vol. 3, no. 2, pp. 101-108, Apr. 1987.

[111 E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A Fast procedure for
computing the distance between complex objects in three-dimensional
space,” ZEEE J. Robot. Automat., vol. 4, no. 2, pp. 193-203, Apr. 1988.

V O ~ . 8, pp. 137-143, 1990.

1, pp. 21-30, Mar. 1985.

