Topics in Ship Structures

05 Introduction of Fracture Mechanics

Reference : Lecture Note of Eindhoven University of Technology Fracture Mechanics by T.L. Anderson 2017, 10

by Jang, Beom Seon

OPen INteractive Structural Lab

Fracture

 When material damage like micro-cracks and voids grow become localized, discontinuities must be taken into account. This localization results in macroscopic crack, resulting in global failure.

Main Interests

- Will crack grow under the given load?
- When a crack grows, What is its speed and direction?
- Will crack growth stop?
- What is residual strength of a construction part as a function of the (initial) crack length and the load?
- What is proper inspection frequency?

Fracture

Comparison of the fracture mechanics approach to design with the traditional strength of materials approach: (a) the strength of materials approach and (b) the fracture mechanics approach.

Fracture

♦THE ENERGY CRITERION

- The energy approach states that crack extension (i.e., fracture) occurs when the energy available for crack growth is sufficient to overcome the resistance of the material.
- The material resistance may include the surface energy, plastic work, or other types of energy dissipation associated with a propagating crack.

Types of material behavior

Strain-time and stress-time curves

- Elastic : reversible, time-independent
- Visco-elastic : reversible, time-dependent
- Elasto-plastic : irreversible, time-independent
- Visco-plastic : irreversible, time-dependent

Fracture mechanisms

- What is Fracture?
 - Fracture : separation of a body into pieces due to stress, at temperatures below the melting point.
 - Steps in fracture
 - ✓ Crack formation
 - ✓ Crack propagation
 - Depending on the ability of material to undergo plastic deformation before the fracture two fracture modes can be defined – ductile or brittle.

Fracture mechanisms

Shearing (Ductile fracture)

- The origin and growth of cracks is provoked by shear stresses.
- When a crystalline material is loaded, dislocations start to move through the lattice due to local shear stresses and the number of dislocations increases.
- The dislocations coalesce at grain boundaries and accumulate to make a void.
- The fracture surface has a 'dough-like' structure with dimples, the shape of which indicate the loading of the crack.
- Extensive plastic deformation takes place before fracture.

Dislocation movement and coalescence into grain boundary voids, resulting in dimples in the crack surface

✓ Nucleation : 핵형성, Coalescence : 합체 융합, dough : 밀가루, dimple: 보조개

OPen INteractive Structural Lab

Ductile Fracture

What is dislocation?

- Dislocation : a crystallographic(결정학상의) defect, or irregularity, within a crystal structure.
- A crystalline material : consists of a regular array of atoms, arranged into lattice planes.
- An edge dislocation : a defect where an extra half-plane of atoms is introduced mid way through the crystal, distorting nearby planes of atoms.
- A screw dislocation : Imagine cutting a crystal along a plane and slipping one half across the other.

Crystal lattice showing atoms and lattice planes

Screw dislocation

OPen INteractive Structural Lat

Brittle Fracture

♦ Brittle failure of the Liberty Ships.

- Low temperatures in winter can severely embrittle steels. The Liberty Ships, produced in great numbers during the WWII were the first allwlelded ships.
- Crack was arrested at rivet hole in the previous vessels
- A significant number of ships failed by catastrophic fracture.
- Fatigue cracks nucleated at the corners of square hatches and propagated rapidly by brittle fracture.
- Fracture toughness : the resistance to brittle fracture
- Chrapy V-notch test : measure fracture toughness

Brittle Fracture

Cleavage fracture (Brittle fracture)

- When plastic deformation at the crack tip is prohibited due to low temperature or high strain rate.
- The crack can travel through grains by splitting atom bonds in lattice planes.
- Trans-granular cleavage : cracks pass through grains. Fracture surface have faceted (깎은 면이 있는) textures because of different orientation of cleavage planes in grains. The crack surface has a 'shiny' appearance.
- Inter-granular cleavage : crack propagation is along weak or damaged grain boundaries
- No apparent plastic deformation takes place before fracture.

Brittle Fracture

Srittle Fracture (Limited Dislocation Mobility)

- No appreciable plastic deformation
- Crack propagation is very fast
- Crack propagates nearly perpendicular to the direction of the applied stress
- Crack often propagates by cleavage breaking of atomic bonds along specific crystallographic places cleavage planes)

Brittle fracture in a mild steel

Brittle Fracture vs. Ductile Fracture

	Brittle	Ductile
Macroscopic observation	Sudden	Slow
Energy dissipation	Little	substantial
Microscopic observation	Breaking of atomic bonds	Slip on slip planes and void coalescence

OPen INteractive Structural Lab

Brittle Fracture vs. Ductile Fracture

- Ductile fracture most metals (not too cold)
 - Extensive plastic deformation ahead of crack
 - Crack is "stable" : resists further extension unless applied stress is increased
- Brittle fracture ceramics, ice, cold metals
 - Relatively little plastic deformation
 - Crack is "unstable" : propagates rapidly without increase in applied stress

Ductile fracture is preferred in most applications

Lecture source: Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html MSE 2090: Introduction to Materials Science Chapter 8, Failure

Brittle Fracture vs. Ductile Fracture

- A. Very ductile : soft metals (e.g. Pb, Au) at room temperature, other metals, polymers, glasses at high temperature
- B. Moderately ductile fractures : typical for ductile metals
- C. Brittle fracture : cold metals, ceramics

- A. Ductile materials : extensive plastic deformation and energy absorption ("toughness") before fracture
- B. Brittle fracture : little plastic deformation and low energy absorption before fracture

Fatigue

✤Fatigue

- When crack is subjected to cyclic loading
- Crack tip travels very short distance in each loading cycle
- Clam shell patterns in the crack surface

Fracture mechanics approach

Fracture mechanics approach

- Determines material failure by energy criteria, possibly in conjunction with strength (or yield criteria)
- Considers failure to be propagating throughout the structure rather than simultaneous throughout the entire failure zone or surface

APPROACH BASED ON STRENTH OF MATERIALS

Theories of fracture mechanics

- Linear elastic fracture mechanics(LEFM)
 - Sharp cracks in elastic bodies
 - Small scale yielding
 - Brittle or quasi-brittle fracture
- Dynamic fracture mechanics(DFM)
 - Predict the speed and direction of its growth
- Non-linear fracture mechanics
 - Large plastic crack tip zone (large plastic zone)
 - Ductile fracture
 - Crack growth criteria can no longer be formulated with LEFM method

Fracture mechanics approach to design

Griffith Energy Criterion

- Crack extension occurs when the energy available for crack growth is sufficient to overcome the resistance of the material.
- Material resistance : Surface energy, plastic work, other types of energy dissipation associated with a propagating crack
- If Energy release rate exceeds critical energy release rate(measure of fracture toughness, crack growth is initiated
 Griffith's experiment

- π : Potential Energy
- W : External work
- U : Strain Energy
- S : Surface energy used for crack growth

- G : Energy release rate
- G_c: Critical Energy release rate

OPen INteractive Structural Lab

Fracture mechanics approach to design

Stress intensity approach

- Analyze stress field near crack-tip
- Fracture must occur at critical stress intensity K value (Another fracture toughness measurement)
- Crack is initiated when $K_{I} \ge K_{IC}$
- Three Crack loading modes are introduced
- Mode 1 : Opening mode
- Mode 2 : Sliding mode
- Mode 3 : Tearing mode

Fracture mechanics approach to design

Stress intensity approach

For the plate subjected to tensile stress

Fracture mechanics approach to design

Time dependent crack growth and damage tolerance

- Rate of cracking can be correlated with fracture mechanics parameter such as the stress-intensity factor
- Crack size for failure can be computed if the fracture toughness is known.
- Fatigue crack growth rate in metals.

Non-linear fracture mechanics

- Energy criterion and stress intensity factor is only valid for brittle fracture.
- At very high fracture toughness, LEFM is no longer valid
- Non-linear fracture mechanics bridges the gap between LEFM and collapse

TABLE 1.1 Typical Fracture Behavior of Selected Materialsª

^a Temperature is ambient unless otherwise specified.

^b T_g —Glass transition temperature.

Reference

- 1. Dr. P.J.G. Schreurs, Lecture note on fracture mechanics, Eindhoven University of Technology
- 2. Dr. Alan T. Zehnder, Lecture notes on fracture mechanics, Cornell University
- T.L. Anderson, Fracture mechanics fundamentals and applications, Taylor & Francis

