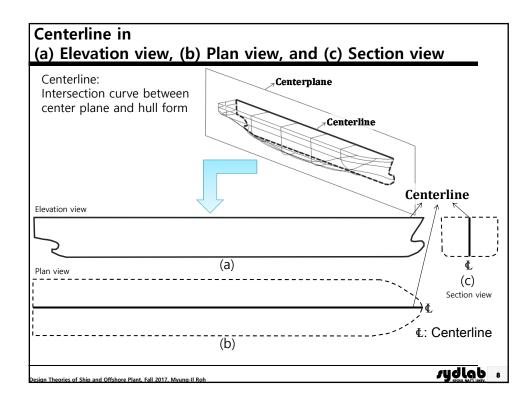
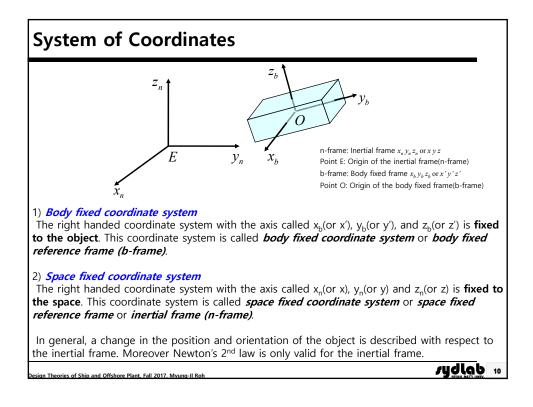
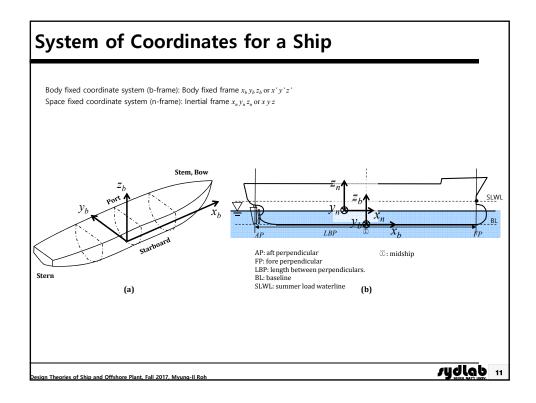
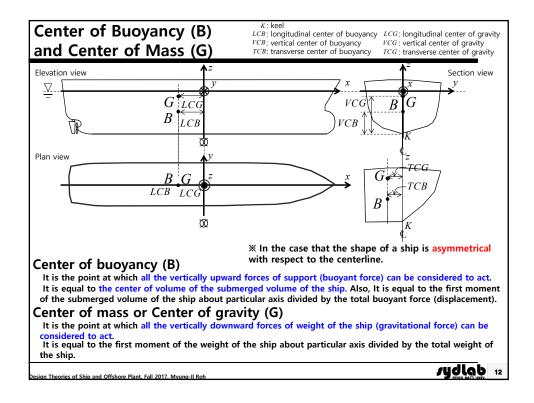

Contents	
☑ Ch. 1 Introduction to Ship Design	
Image: Ch. 2 Offshore Plant Design	
Image: Ch. 3 Hull Form Design	
Image: Ch. 4 General Arrangement Design	
☑ Ch. 5 Naval Architectural Calculation	
Ch. 6 Structural Design	
Ch. 7 Outfitting Design	
Design Theories of Ship and Offshore Plant. Fall 2017. Myung-Il Roh	JUST AT LET 2

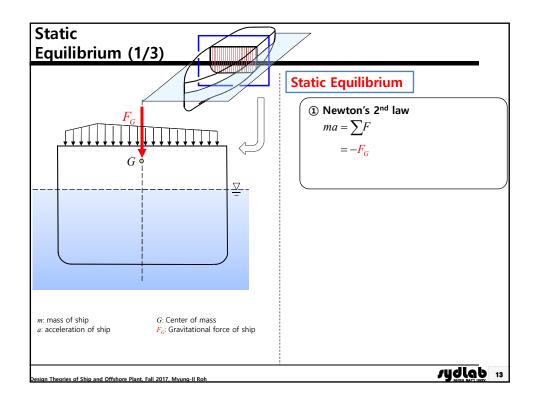


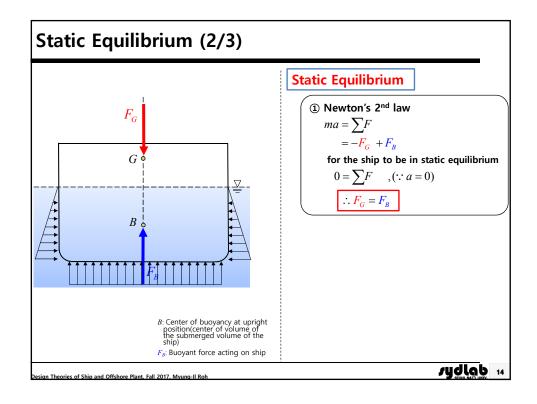


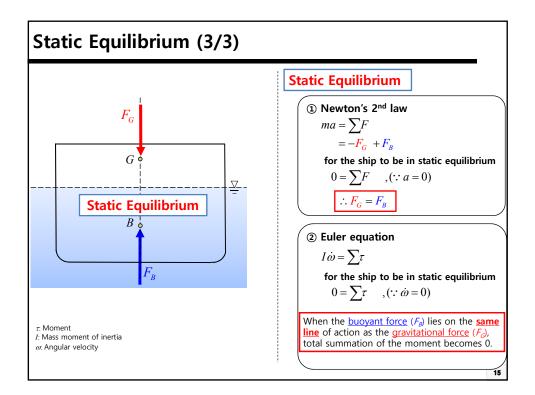


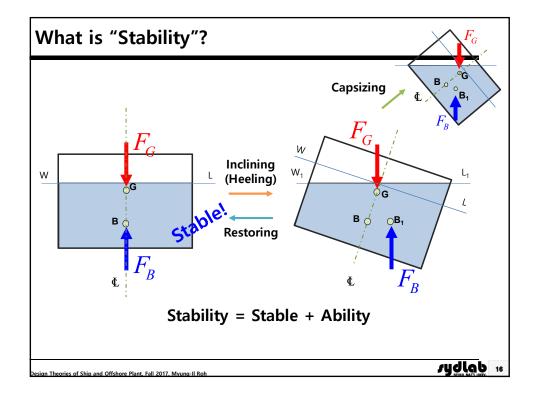


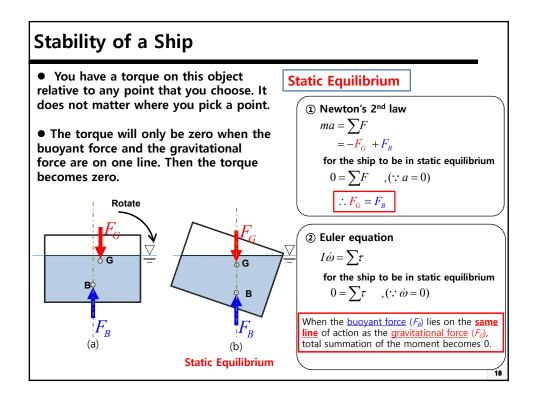


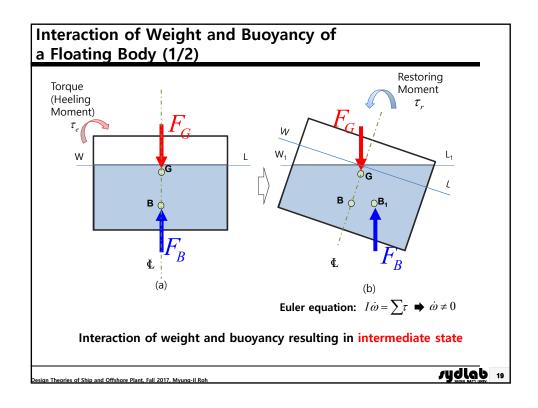


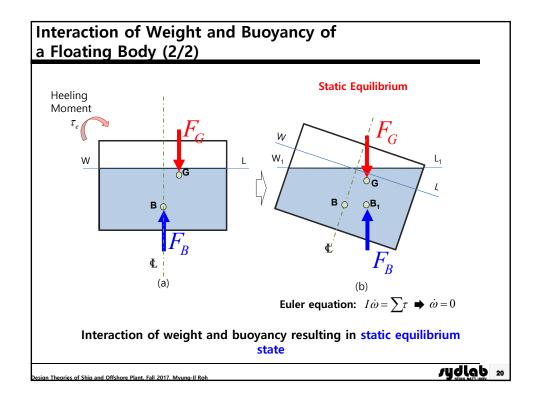


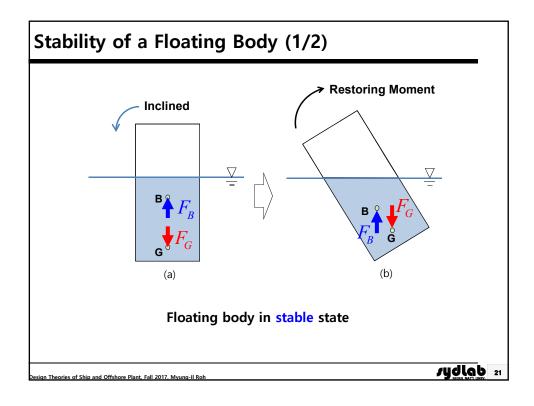


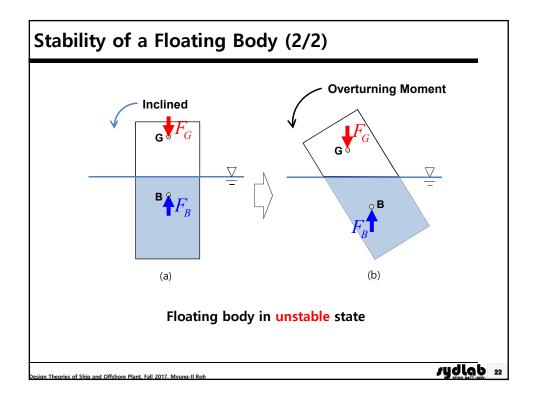


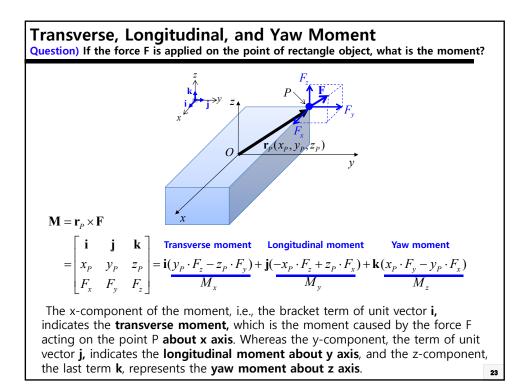


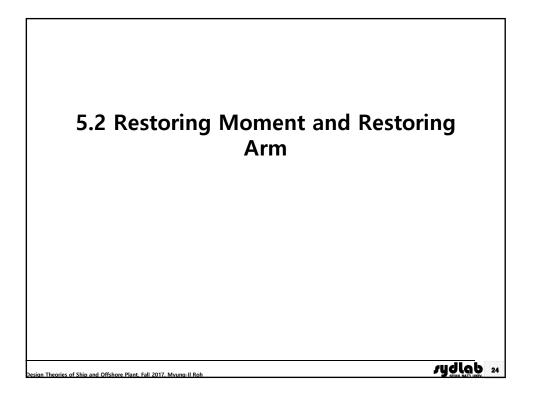


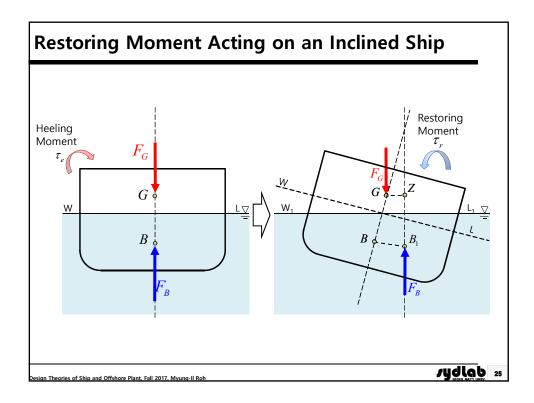


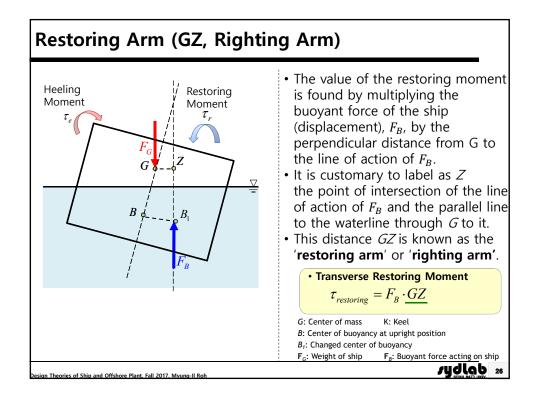


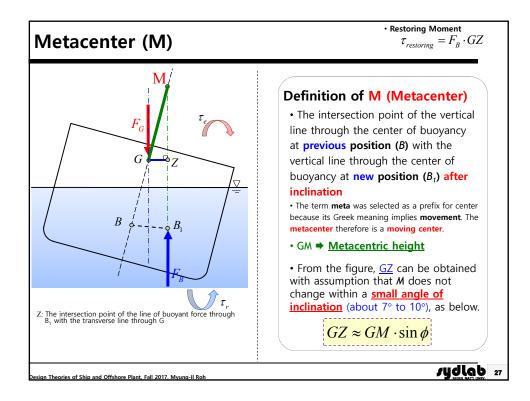


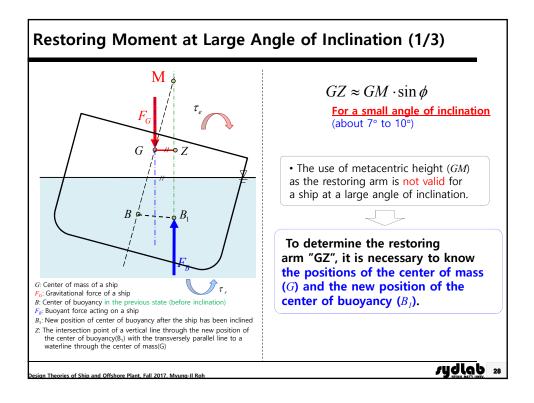


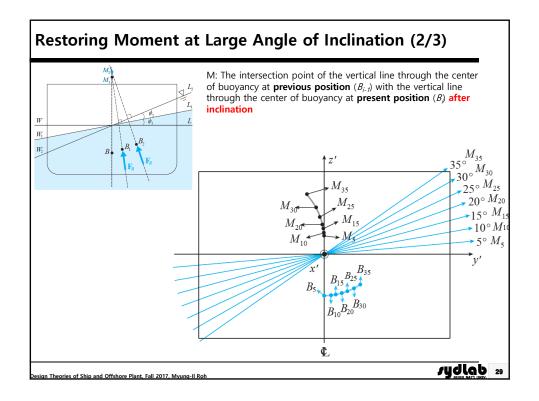


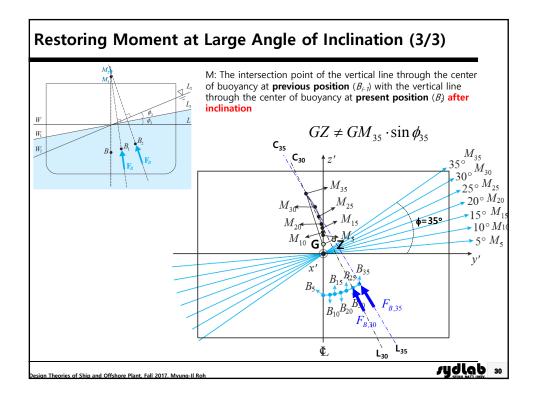


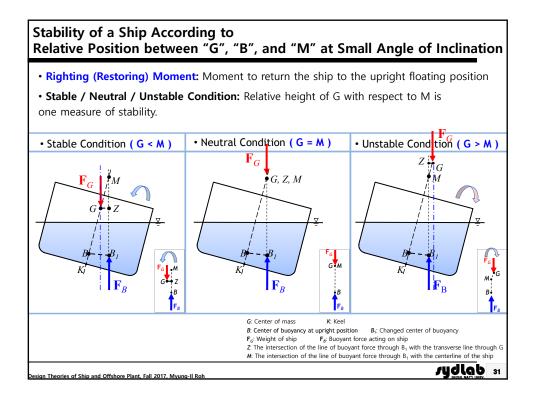


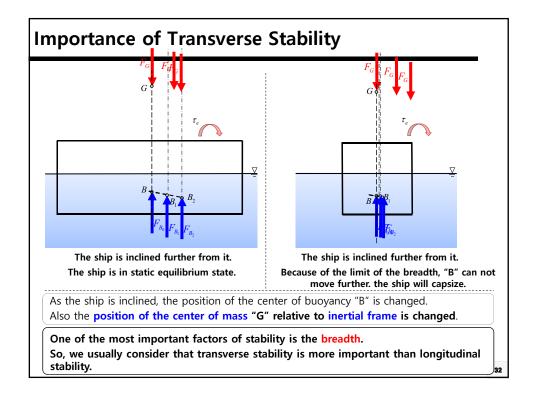


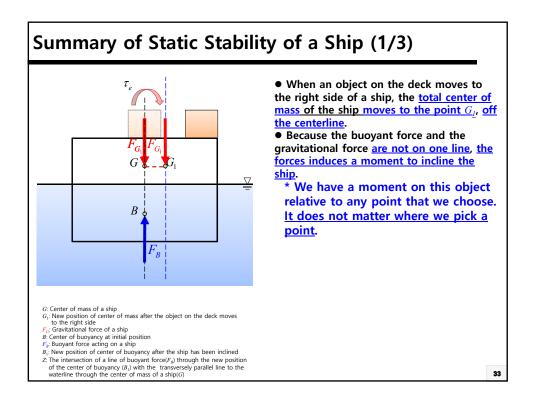


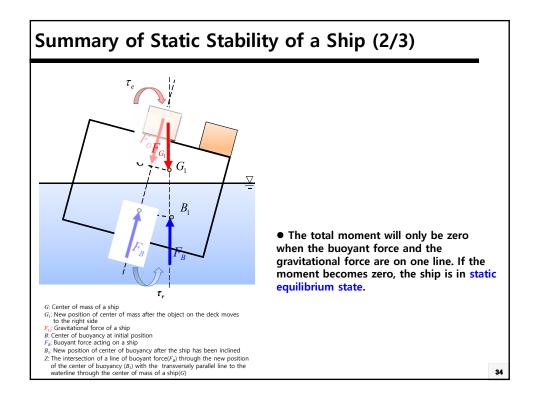


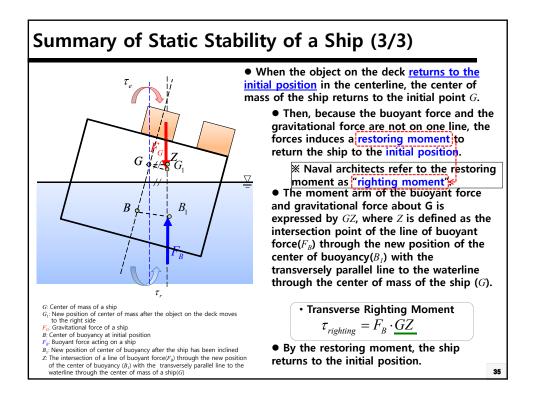


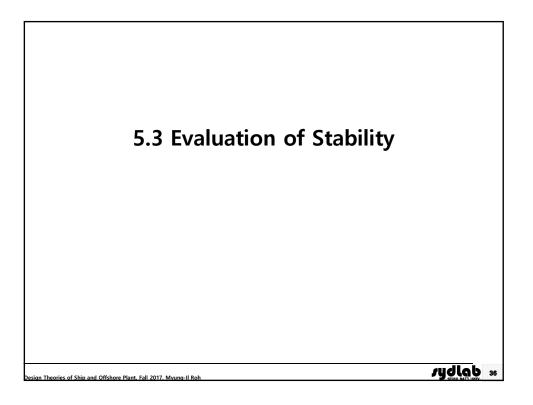


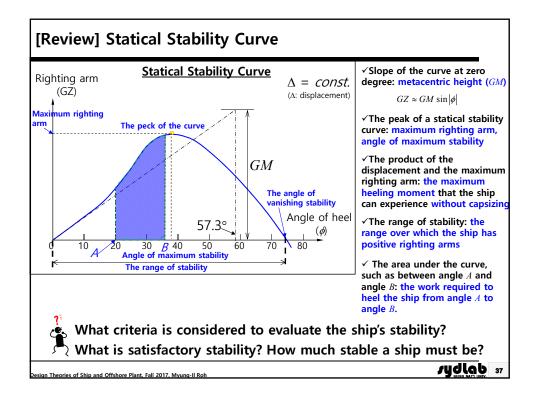


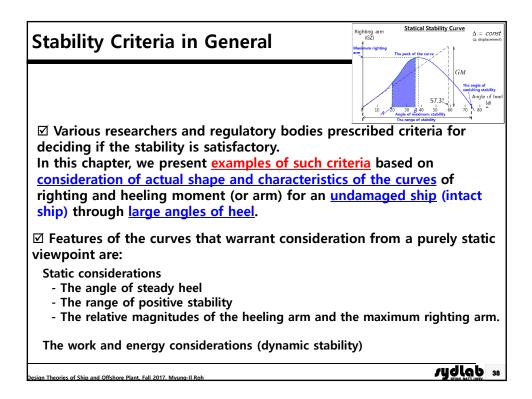


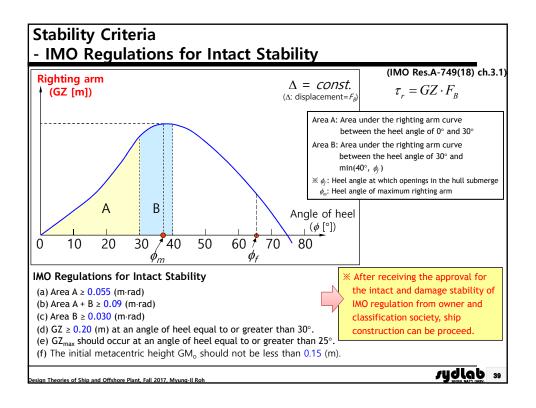


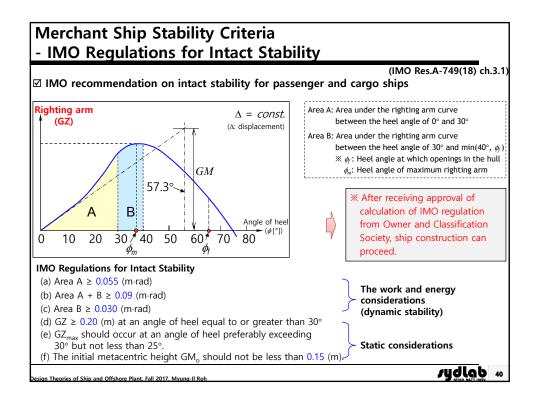


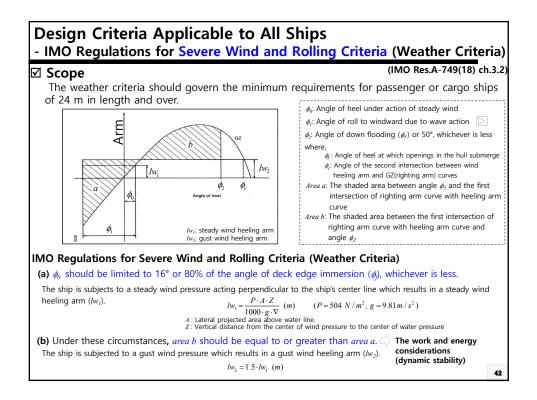


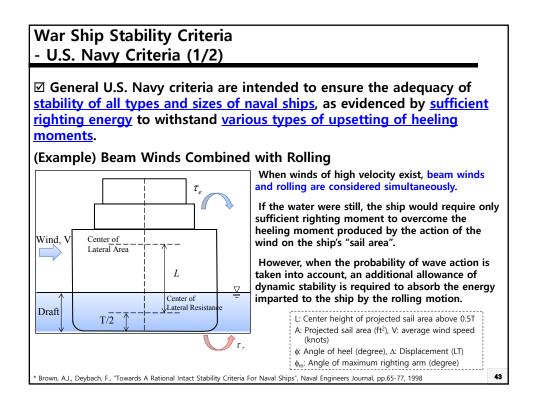


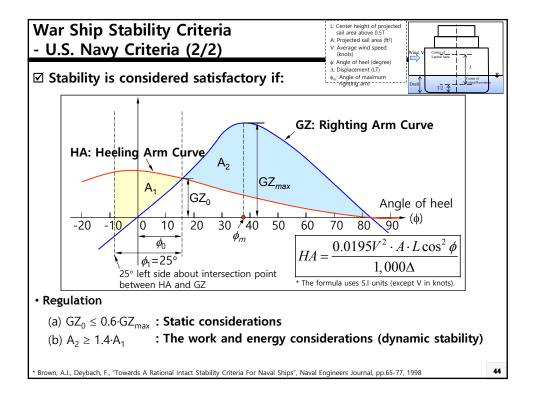


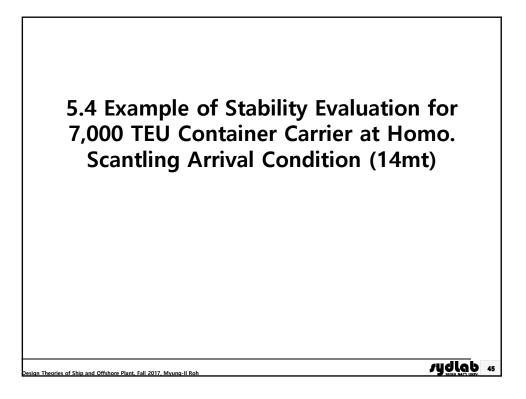


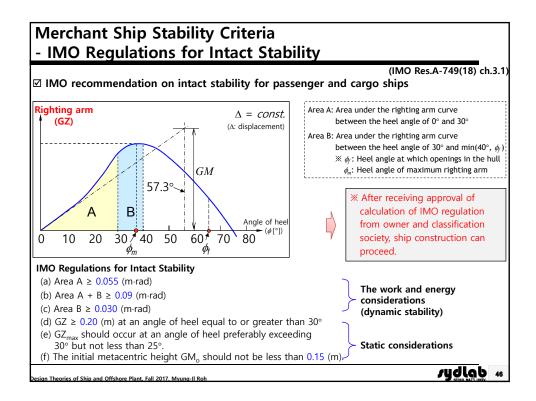


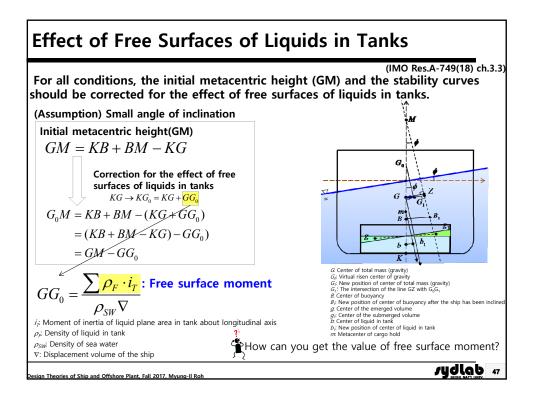


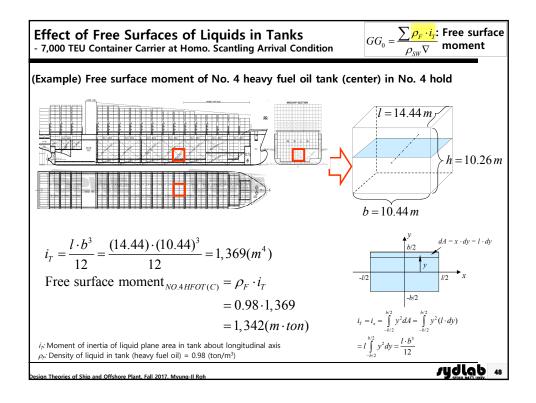


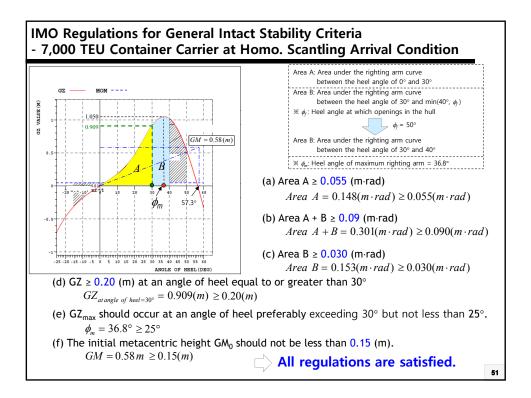


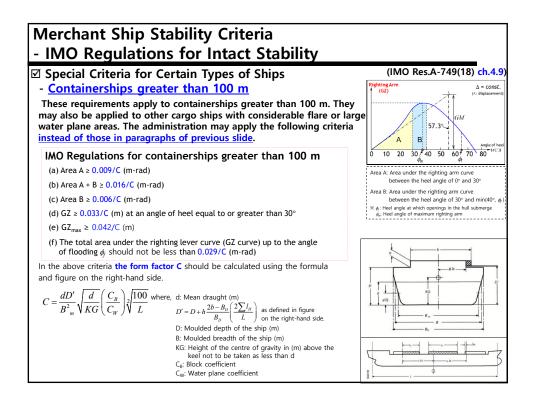


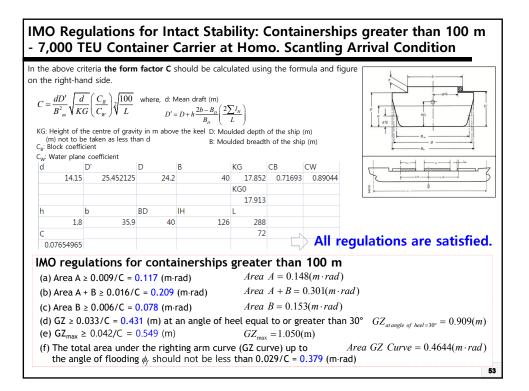


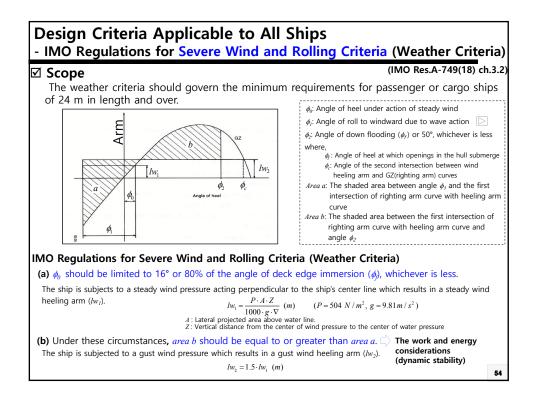

21

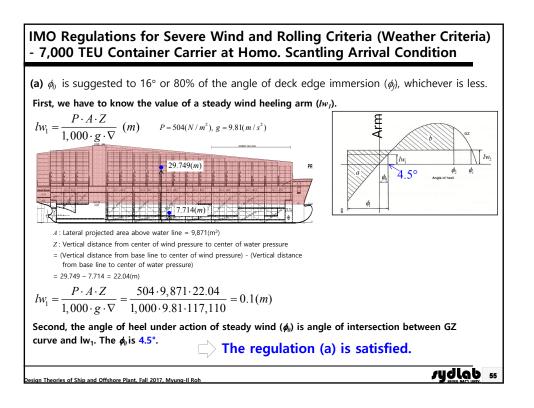


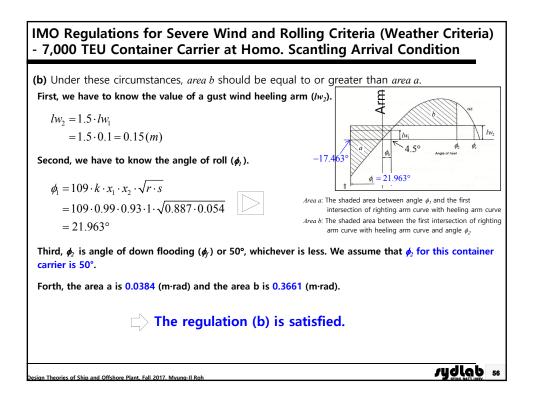


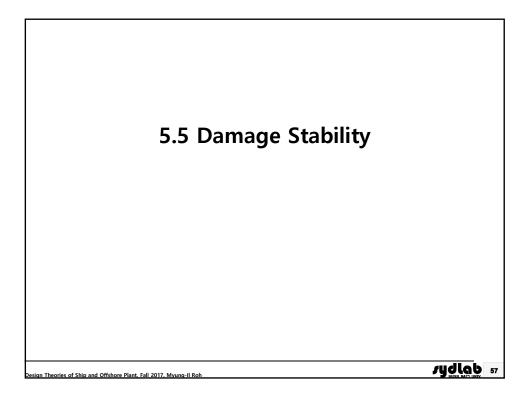


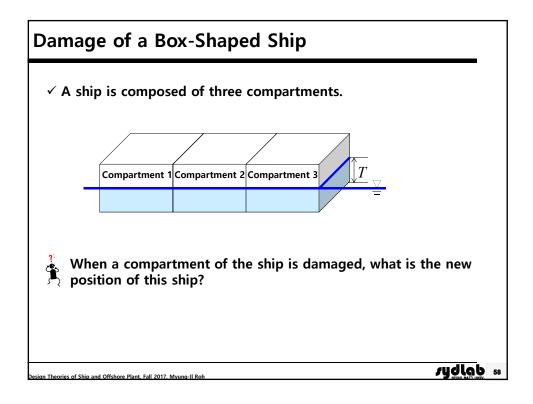


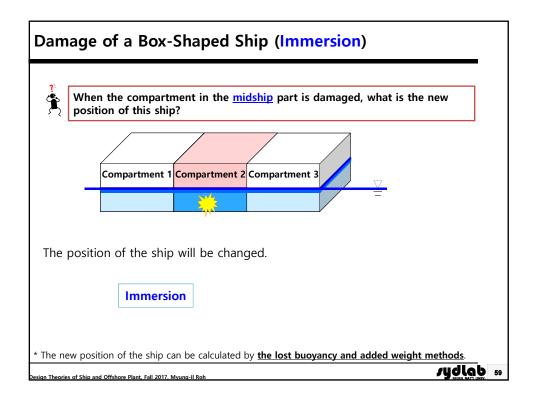

moments of all heavy fuel oil tanks ITEMS FILL. S.G WEIGHT L.C.G V.C.G F.B.H POT (C) 0.00 0.9800 0.0 179.625 7.184 1341.8 POT (C) 0.00 0.9800 0.0 179.625 7.870 1822.2 POT (S) 0.00 0.9800 0.0 179.625 7.870 1822.2 REP HFOT (P) 0.00 0.9800 0.0 129.975 11.297 299.4 SEP HFOT (S) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT (S) 0.000 0.9800 0.0 101.075 11.297 299.4 SEP HFOT (S) 0.000 0.9800 222.1 72.100 7.931 296.0 SEP HFOT (S) 54.06 0.9800 222.1 72.100 7.931 296.0 SEP HFOT (S) 54.06 0.9800 89.0 69.900 17.500 83.4 SO SETT.TK 98.00 0.9800 89.0<
ITEMS FILL. S.G WEIGHT L.C.G V.C.G F.B.M. 70T (C) 0.00 0.9800 0.0 179.625 7.184 1341.8 70T (C) 0.00 0.9800 0.0 179.625 7.870 1822.2 70T (S) 0.00 0.9800 0.0 179.625 7.870 1822.2 2507 (S) 0.00 0.9800 0.0 129.975 11.297 299.4 25P HFOT (F) 0.00 0.9800 0.0 129.975 11.297 299.4 25P HFOT (S) 0.00 0.9800 0.0 101.075 11.297 299.4 25P HFOT (S) 0.00 0.9800 0.0 101.075 11.297 299.4 25P HFOT (S) 0.00 0.9800 222.1 72.100 7.931 296.0 25P HFOT (S) 54.06 0.9800 292.1 72.100 7.931 296.0 70 SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4
Vertice 0.00 0.9800 0.0 179.625 7.184 Vertice POT(P) 0.00 0.9800 0.0 179.625 7.184 1341.8 POT(P) 0.00 0.9800 0.0 179.625 7.870 1822.2 SEP HFOT(P) 0.00 0.9800 0.0 179.625 7.870 1822.2 SEP HFOT(P) 0.00 0.9800 0.0 129.975 11.297 299.4 SEP HFOT(P) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT(S) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT(P) 54.06 0.9800 222.1 72.100 7.931 296.0 SEP HFOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 FO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SEEV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
POT (C) 0.00 0.9800 0.0 179.625 7.184 1341.8 POT (P) 0.00 0.9800 0.0 179.625 7.870 1822.2 POT (P) 0.00 0.9800 0.0 179.625 7.870 1822.2 EEP HFOT (P) 0.00 0.9800 0.0 179.625 7.870 1822.2 EEP HFOT (P) 0.00 0.9800 0.0 129.975 11.297 299.4 EEP HFOT (P) 0.00 0.9800 0.0 101.075 11.297 299.4 EEP HFOT (P) 0.00 0.9800 0.0 101.075 11.297 299.4 EEP HFOT (P) 0.00 0.9800 2.0 101.075 11.297 299.4 EEP HFOT (P) 54.06 0.9800 222.1 72.100 7.931 296.0 CO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 CO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
POT (P) 0.00 0.9800 0.0 179.625 7.870 1822.2 POT (S) 0.00 0.9800 0.0 179.625 7.870 1822.2 POT (S) 0.00 0.9800 0.0 129.975 11.297 299.4 SEP HFOT (F) 0.00 0.9800 0.0 129.975 11.297 299.4 SEP HFOT (F) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT (F) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT (F) 0.00 0.9800 22.1 72.100 7.931 296.0 SEP HFOT (S) 54.06 0.9800 222.1 72.100 7.931 296.0 70 SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 70 SEEV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 70 SEEV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
EEP HFOT(P) 0.00 0.9800 0.0 129.975 11.297 299.4 EEP HFOT(S) 0.00 0.9800 0.0 129.975 11.297 299.4 EEP HFOT(S) 0.00 0.9800 0.0 129.975 11.297 299.4 EEP HFOT(S) 0.00 0.9800 0.0 101.075 11.297 299.4 EEP HFOT(S) 0.00 0.9800 0.0 101.075 11.297 299.4 EEP HFOT(S) 54.06 0.9800 22.1 72.100 7.931 296.0 SEP HFOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 FO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
SEP HFOT(S) 0.00 0.9800 0.0 129.975 11.297 299.4 SEP HFOT(F) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT(F) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT(F) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT(S) 0.00 0.9800 222.1 72.100 7.931 296.0 SEP HFOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 SEP SET.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
EEP HFOT(P) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT(S) 0.00 0.9800 0.0 101.075 11.297 299.4 SEP HFOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 SEP HFOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 SEP HFOT(S) 54.06 0.9800 89.0 69.900 17.500 83.4 FO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SETV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
EEP HFOT(S) 0.00 0.9800 0.0 101.075 11.297 299.4 EEP HFOT(P) 54.06 0.9800 222.1 72.100 7.931 296.0 EEP HFOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 70 SETT.TK 98.00 0.9800 29.0 69.900 17.500 83.4 70 SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 70 SETV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 70 SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 70 SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 70 SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
SEP HFOT(P) 54.06 0.9800 222.1 72.100 7.931 296.0 SEP HFOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 SEP HFOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 SC SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
SEP HPOT(S) 54.06 0.9800 222.1 72.100 7.931 296.0 PO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
PO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SETV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 PO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
FO SETT.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 FO SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
70 SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 70 SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4 93.4
70 SERV.TK 98.00 0.9800 89.0 69.900 17.500 83.4
Free surface moment $T_{T,t}$ upor = 7,109.2 (<i>m</i> · ton)
Total HFOI (III VIII)
Free surface moment $_{Total \ HFOT} = 7,109.2 (m \cdot ton)$

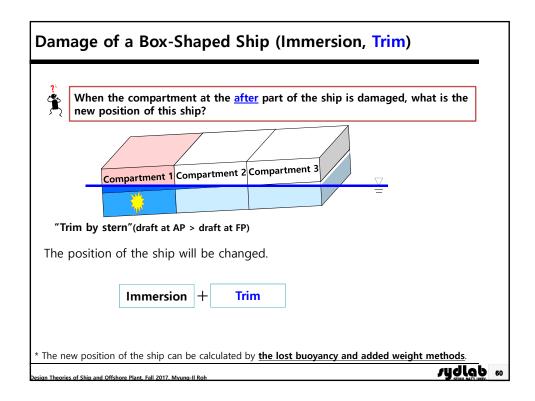

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lating free surface mon	nent of other	tank at	homo. sca	ntling arri	val condi	tion(14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WEIGHT ITEMS		8.G				F.S.I (MT-M)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO2 DB WBT(P)						0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO2 DB WBT(S)	100.00	1.0250	560.1	228.280	2.640	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO3 DB WBT(P)						0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO3 DE WET(S) NO3 WWET(P)						0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO3 WWBI(F)						0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO4 DB WBT(P)	100.00	1.0250	1266.8	173.078	1.923	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO4 DB WBT(S)						0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO5 DB WBT(P) NO5 DB WBT(S)						0.
$ \begin{split} & \sum_{n=1}^{100,00} \sum_{n=1}^{100,00}$	NOS DE WEI(E) NOS WWBT(P)						24.
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	NO5 WWBT(S)						24.
$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	NO6 DB WBT(P)						0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IO6 DE WET(S) IO7 DE WET(P)						0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107 DB WBT(S)						ο.
$\sum_{D=1}^{12} \frac{\rho_F \cdot i_T}{\rho_{SW} \nabla} = \frac{7,253.3}{120,038} = 0.06(m)$ Extend of free surface of liquid in tanks is as follows: $M = GM - GG_0 +$ Initial metacentric height (GM) at this loading condition = 0.64(m)	TOTAL WATER BALLAST			16271.3	156.848	4.463	48.
$\sum_{D=1}^{12} \frac{\rho_F \cdot i_T}{\rho_{SW} \nabla} = \frac{7,253.3}{120,038} = 0.06(m)$ Extend of free surface of liquid in tanks is as follows: $M = GM - GG_0 +$ Initial metacentric height (GM) at this loading condition = 0.64(m)				42.6	45 600	10 757	
$\sum_{j=1}^{\text{IEBEL OIL}} \frac{1000}{\rho_{SW}} = \frac{7,253.3}{120,038} = 0.06(m)$ $M = GM - GG_0 + \text{Initial metacentric height (GM) at this loading condition = 0.64(m)}$	HEAVY FUEL OIL						7109.
EADWEIGHT CONSTANT PADWEIGHT CONSTANT PADWEIGHT PAD	DIESEL OIL			40.0	66.300		60.
EXAMPLE THE CONTACT C	UBRICATING OIL			47.4	66.318	7.861	14.
$\rho = \frac{\sum \rho_F \cdot i_T}{\rho_{SW} \nabla} = \frac{7,253.3}{120,038} = 0.06(m)$ Cition for effect of free surface of liquid in tanks is as follows: $M = GM - GG_0 \bullet $ Initial metacentric height (GM) at this loading condition = 0.64(m)	DEADWEIGHT CONSTANT			900.0		24.200	o.,
$\int_{0}^{120TL} \underbrace{\frac{327210}{120038}}_{130.649} \underbrace{122.656}_{130.649} \underbrace{16.000}_{17.852} \underbrace{122.53}_{7253}$ $\int_{0}^{120TL} \underbrace{\frac{5}{120}}_{\rho_{SW}} \nabla = \frac{7,253.3}{120,038} = 0.06(m)$ Extion for effect of free surface of liquid in tanks is as follows: $M = GM - GG_{0} \bullet \text{ Initial metacentric height (GM) at this loading condition = 0.64(m)}$				92328		19.409	
$\rho_{0} = \frac{\sum \rho_{F} \cdot i_{T}}{\rho_{SW} \nabla} = \frac{7,253.3}{120,038} = 0.06(m)$ Section for effect of free surface of liquid in tanks is as follows: $M = GM - GG_{0} + \text{Initial metacentric height (GM) at this loading condition = 0.64(m)}$	LIGHT SHIP						
Stion for effect of free surface of liquid in tanks is as follows: $M = GM - GG_0 \leftarrow$ Initial metacentric height (GM) at this loading condition = 0.64(m)	TOTAL DISPLACEMENT			120038	138.649	17.852	7253.
$M = GM - GG_0$ + Initial metacentric height (GM) at this loading condition = 0.64(m)							
0		•					
	$A = GM - GG_0 = Initial metal$	tacentric height (G	ivi) at this lo	bading conditi	on = $0.64(m)$		
	= 0.64 - 0.06 = 0.58 (m)	、 、					

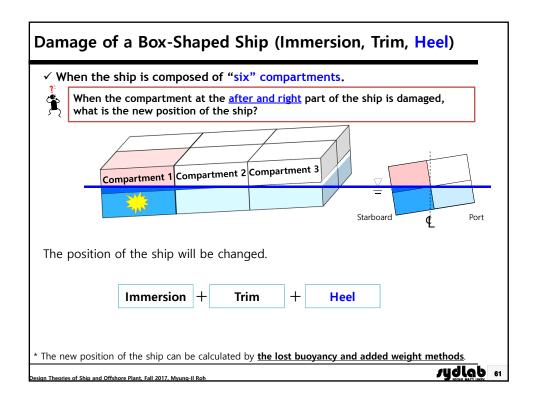


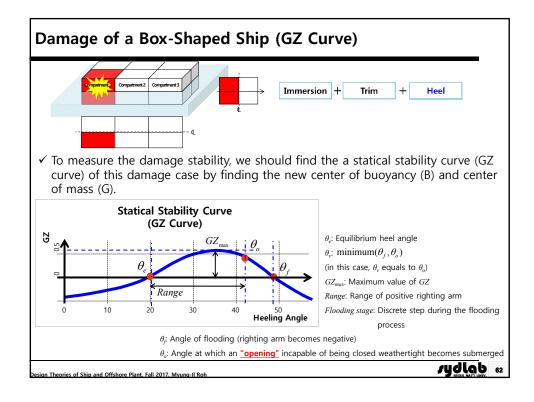


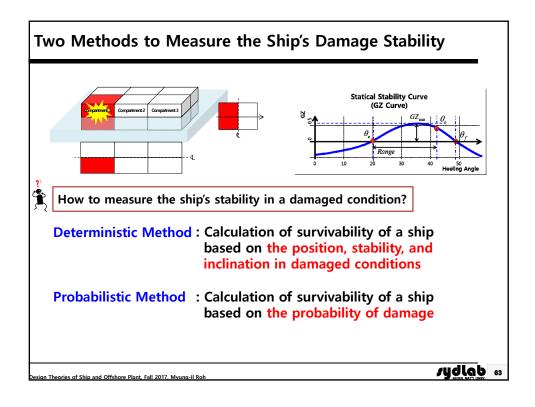


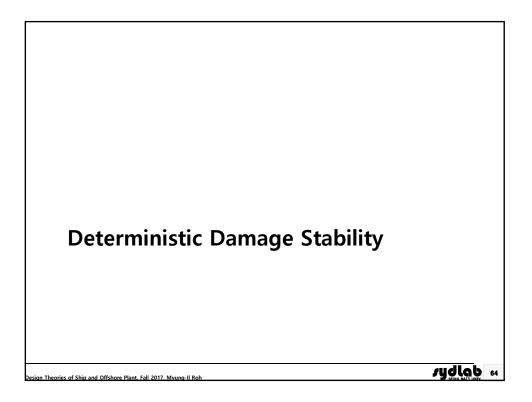


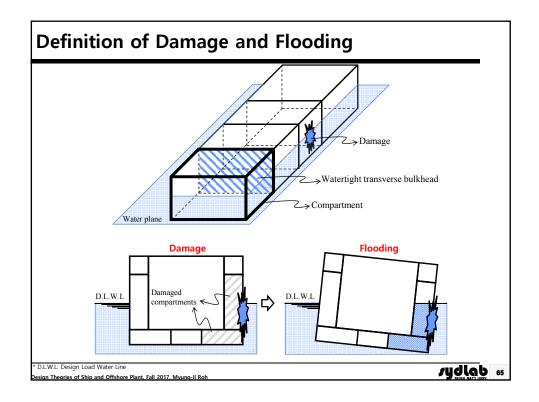


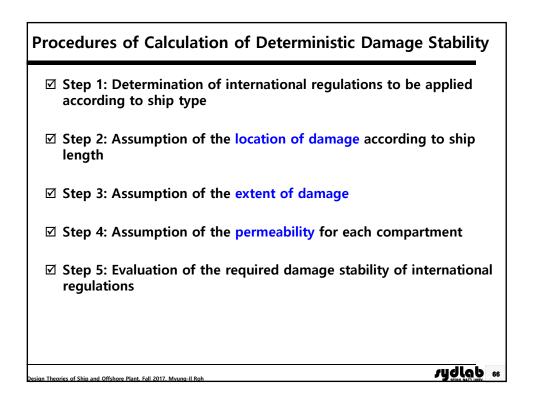


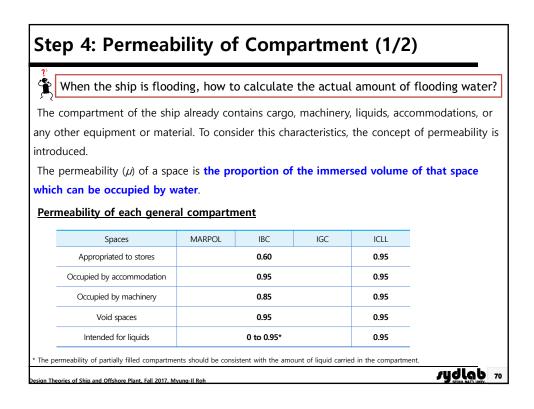


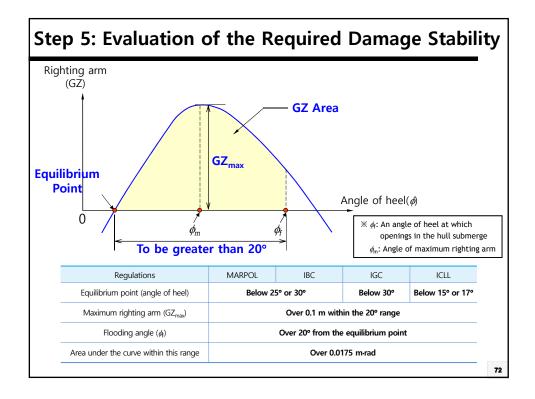


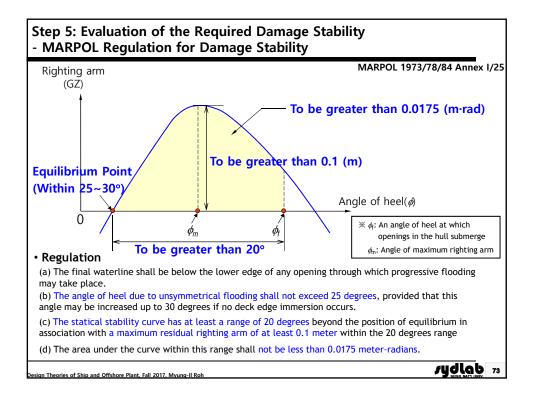


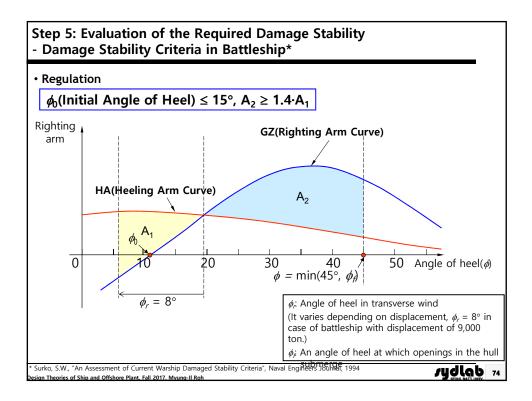


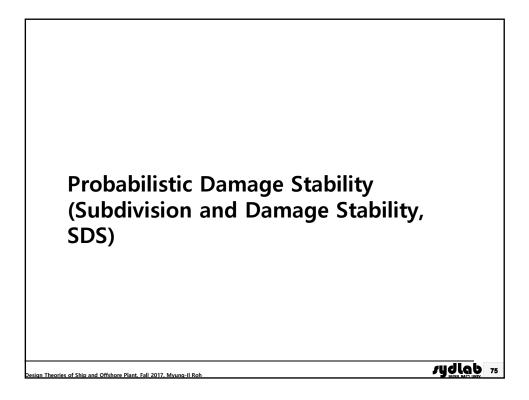




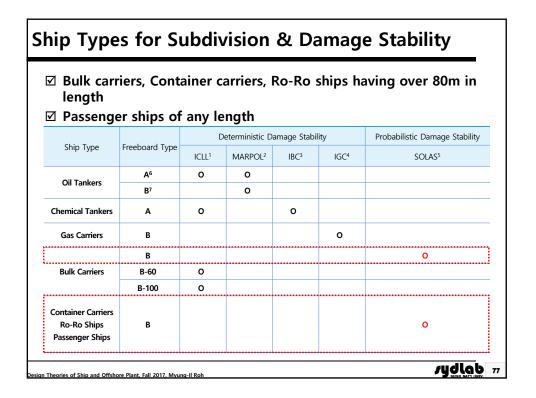

Ship Type		ſ	Deterministic Da	amage Stabi	lity	Probabilistic Damage Stability
	Freeboard Type	ICLL ¹	MARPOL ²	IBC ³	IGC ⁴	SOLAS ⁵
Oil Tankers	A ⁶	0	0			
	B ⁷		0			
Chemical Tankers	А	ο		0		
Gas Carriers	В				o	
Bulk Carriers	В					0
	B-60	ο				
	B-100	0				
Container Carriers						
Ro-Ro Ships Passenger Ships	В					0
national Convention	on Load Lines		tion from Ships		ļ	

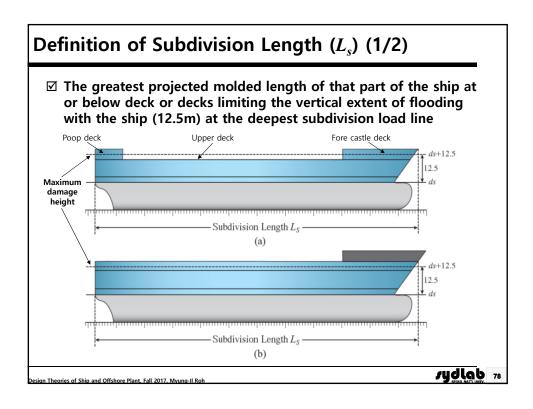

IGC sser ser
ser
sser
0 or 5.0m, never is the lesser
ser
er
5 or 2m, never is the lesser
er hull ⁴⁾

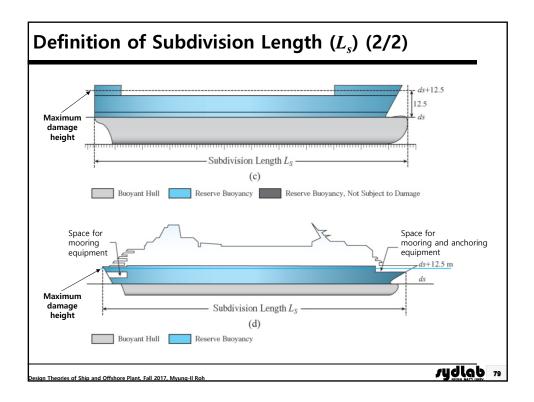

LOCA	tion of d	amage	
		Regulation	ICLL
		Draft	Summer load line
	n of damage in Ingthwise	Anywhere (Engine room: 1 compartment)	L ₂ >150m Ship type A: 1 compartment / B-60: 1 compartment / B-100: 2 compartments 100m cL ₂ =150m
	-	Anywhere (Engine room: exception)	Ship type B-60: 1 compartment / B-100: 2 compartments
Exter	nt of dan	nage	
		Regulation	ICLL
Extent	Side Damage	Longitudinal Extent	Type A: 1 compartment Type B-60: 1 compartment Type B-100: 2 compartments
Damage	side bainage	Transverse Extent	1/5 or 11.5m, whichever is the lesser
		Vertical Extent	No limit
he ve vithou The tra esser	it limit. ansverse e of breadth f the sum	nt of damage in all cases xtent of damage is equal	is assumed to be from the base line upwards to one-fifth (1/5) or 11.5 m, whichever is the the ship perpendicularly to the center line at

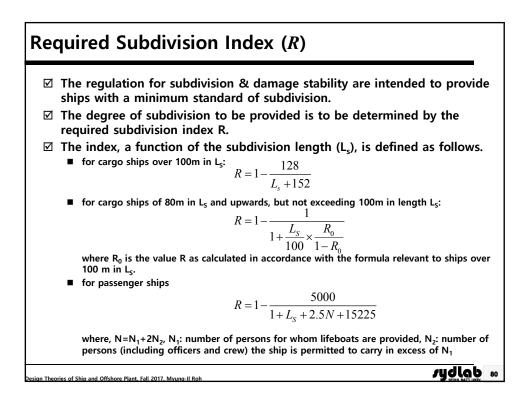


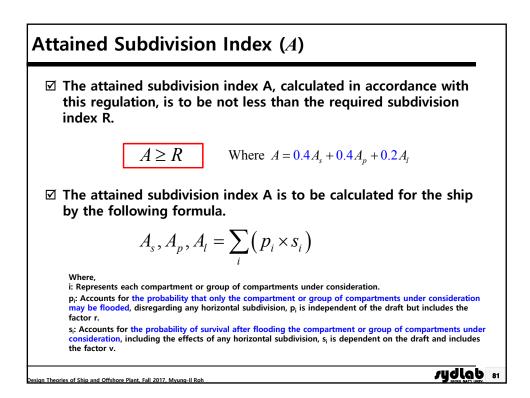
	argo compartment		
Spaces	Permeability at draft d_s	Permeability at draft d _p	Permeability at draft d _l
Dry cargo spaces	0.70	0.80	0.95
Container cargo spaces	0.70	0.80	0.95
Ro-Ro spaces	0.90	0.90	0.95
Cargo liquids	0.70	0.80	0.95
Timber cargo in holds	0.35	0.70	0.95
ated tankage, inclu sion. Passenger ship subdivision draft (a draft and the dea	uding, however, such os should include the fu d _p): the light service d epest subdivision draft	esponding to the light ballast as may be ne Il complement of passer raft plus <u>60% of the c</u>	ecessary for stability ngers and crew on boa l <mark>ifference between t</mark> h

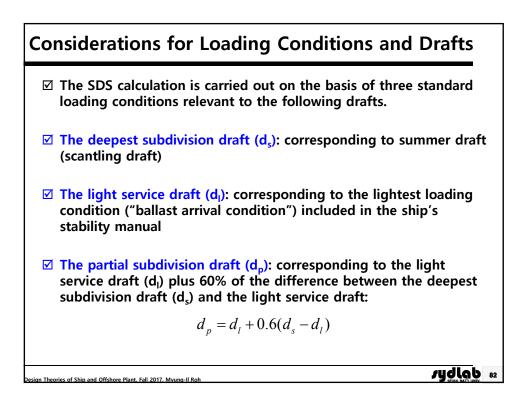


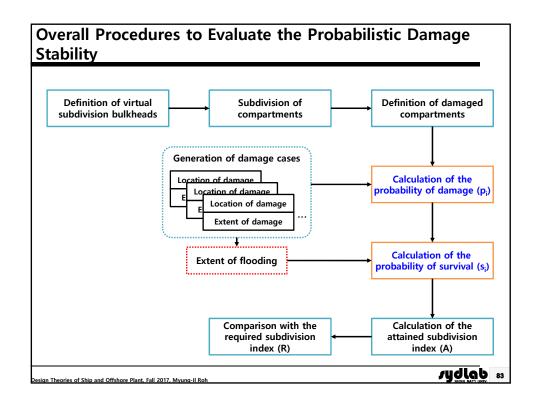


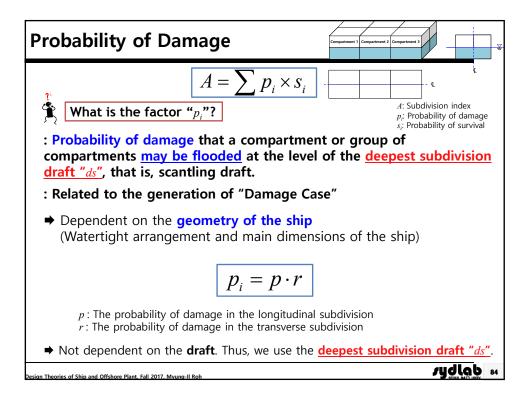


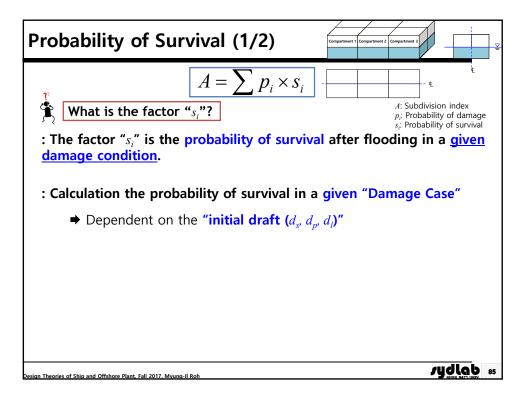


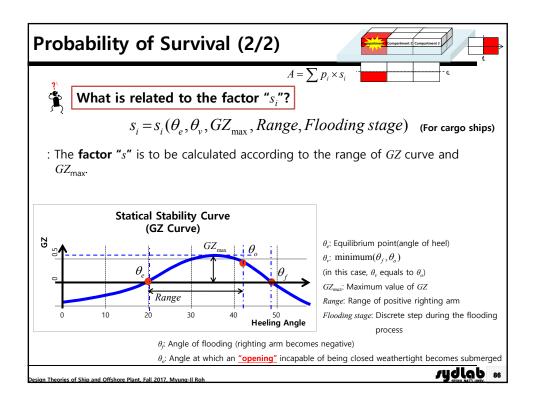

Overview of Probabilistic Method - Subdivision & Damage Stability (SDS) **Probabilistic Method** The probability of damage " p_i " that a compartment or group of compartments may be flooded at the level of the deepest subdivision draft (scantling draft) The probability of survival "s_i" after flooding in a given damage condition. The attained subdivision index "A" is the summation of the probability of all damage cases. $A = p_1 \times s_1 + p_2 \times s_2 + p_3 \times s_3 + \cdots + p_i \times s_i$ $=\sum p_i \times s_i$ The required subdivision index "*R*" is the requirement of a minimum value of index "*A*" for a particular ship. $R = 1 - \frac{128}{L_s + 152}$ where, " L_s " is called subdivision length and related with the ship's length. $A \ge R$ sydlab 76 n Theories of Ship and Offshore Plant, Fall 2017, Myung-Il Ro

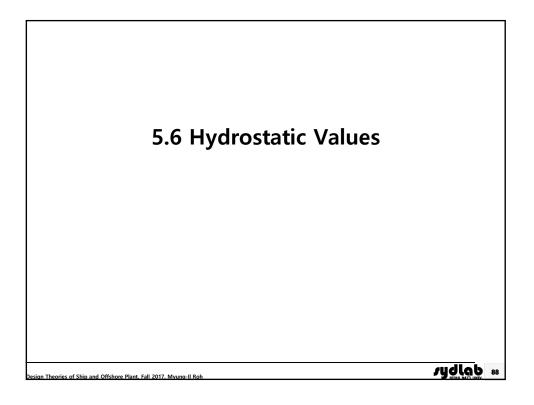




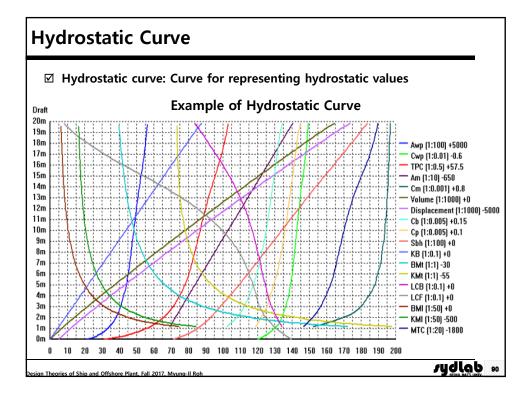


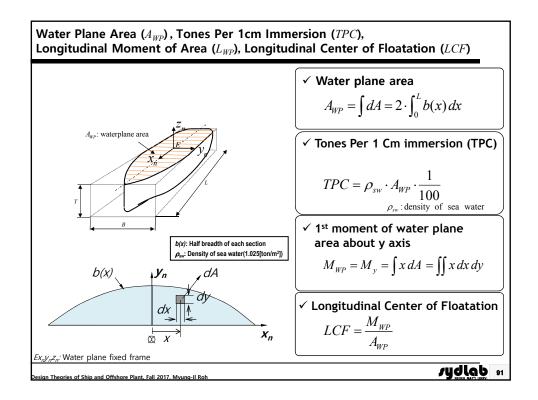


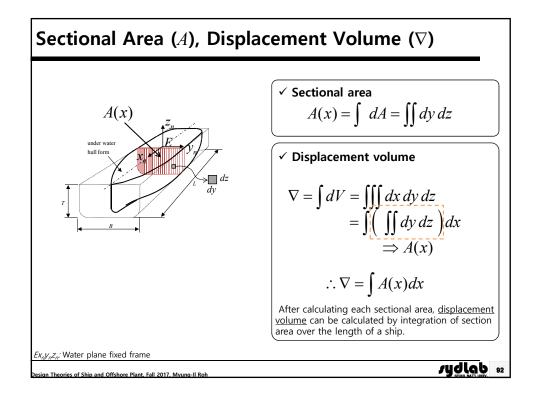


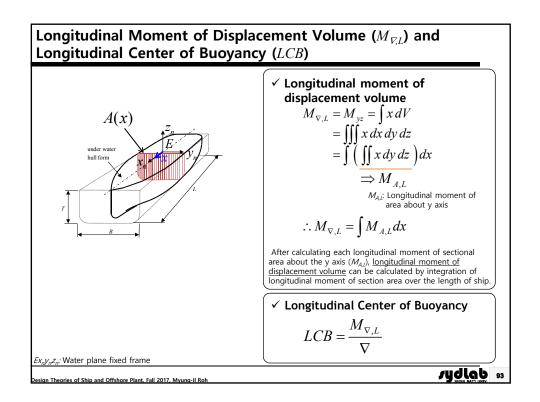


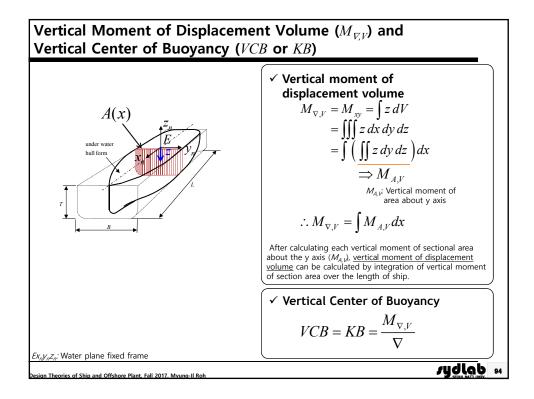
	Deterministic I	Damage Stability	Probabilistic Damage Stability			
Items	ICLL ¹	MARPOL ²	SOLAS			
Ships	Oil tankers, Chemical tanke	ers	Bulk carriers, Container carriers, Ro-Ro ship s, Passenger ships			
Definition of damaged compartments	Define the compartments compartments	as same with actual	Define virtual damage compartments after subdividing the compartments by using vir tual subdivision bulkheads			
Assumption of extent of damage	Assume the extent of dam compartments as a basis	age with actual	Assume the extent of damage with the virtual damage compartments as a basis			
Generation of damage cases	Generate a damage case per two compartments	Generate a damage case per one or two compart ments	Generate a damage case for each extent or damage			
Draft under consideration	The deepest subdivision draft (d _s)	All drafts to be applied in the intact stability calculation	The deepest subdivision draft (d _s), the part al subdivision draft (d _p), the light service d aft (d _i)			
Evaluation of damage stability	All damage cases should s regulation of damage stab	atisfy each criterion for the illity.	The attained subdivision index should satisfy the regulation of damage stability $(A \ge R)$			

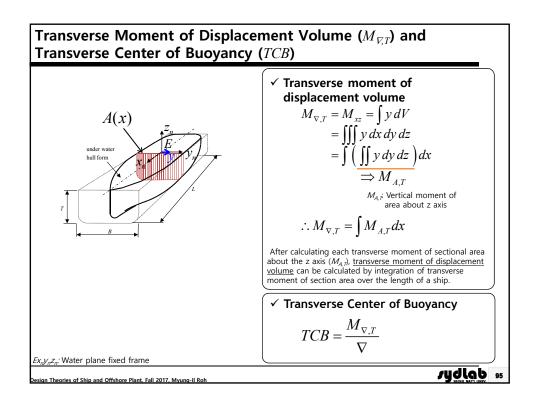


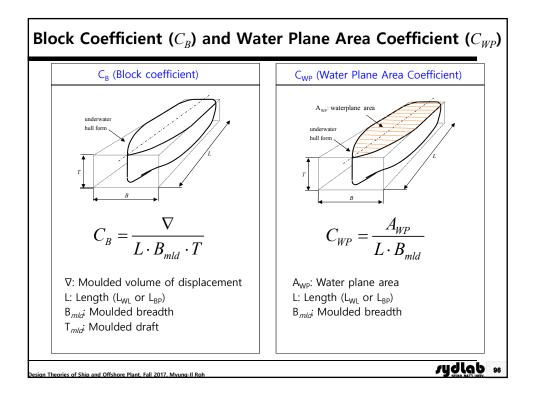

ydlab »

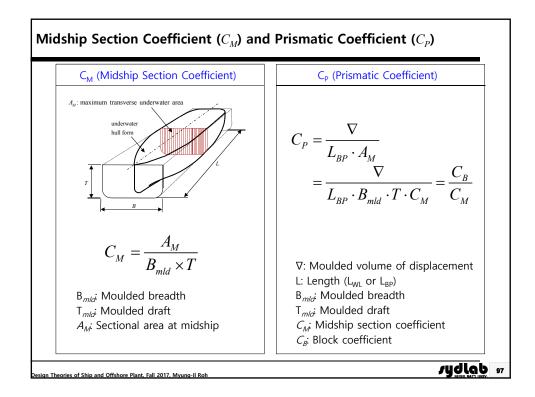

Hydrostatic Values

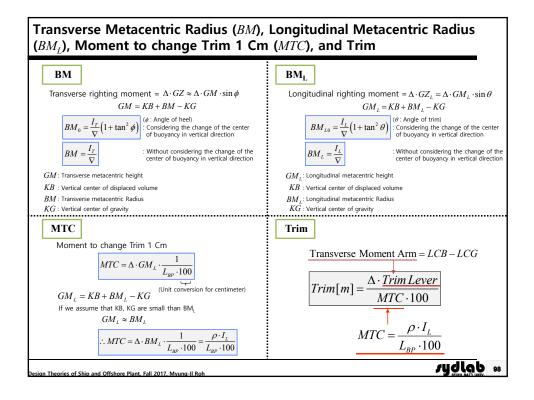

- ☑ Draft_{Mld}, Draft_{Scant}: Draft from base line, moulded / scantling (m)
- \square Volume_{Mld}(∇), Volume_{Ext}: Displacement volume, moulded / extreme (m³)
- $\label{eq:constraint} \ensuremath{\overline{\texttt{D}}} \ensuremath{\texttt{D}} \ensuremath{\texttt{D}} \ensuremath{\texttt{I}} \en$
- ☑ LCB: Longitudinal center of buoyancy from midship (Sign: Aft / + Forward)
- ☑ LCF: Longitudinal center of floatation from midship (Sign: Aft / + Forward)
- \square VCB: <u>V</u>ertical <u>c</u>enter of <u>b</u>uoyancy above base line (m)
- \square TCB: <u>Transverse center of buoyancy from center line</u> (m)
- **M** KM_T: Transverse metacenter height above base line (m)
- \blacksquare KM_L: Longitudinal metacenter height above base line (m)
- ☑ MTC: <u>Moment to change trim one centimeter</u> (ton-m)
- ☑ TPC: Increase in Displacement_{Mld} (ton) per one centimeter immersion
- ☑ WSA: <u>W</u>etted <u>surface</u> <u>a</u>rea (m²)
- ☑ C_B: <u>B</u>lock coefficient
- \square C_{wp}: <u>W</u>ater <u>p</u>lane area coefficient
- \square C_M: <u>M</u>idship section area coefficient
- \square C_P: <u>P</u>rismatic coefficient
- ☑ Trim: Trim(= after draft forward draft) (m)

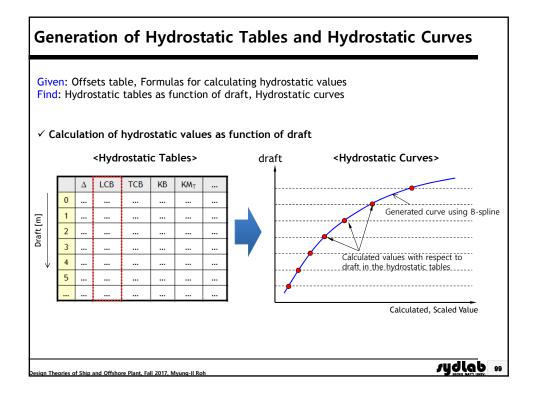

sign Theories of Ship and Offshore Plant, Fall 2017, Myung-II Roh

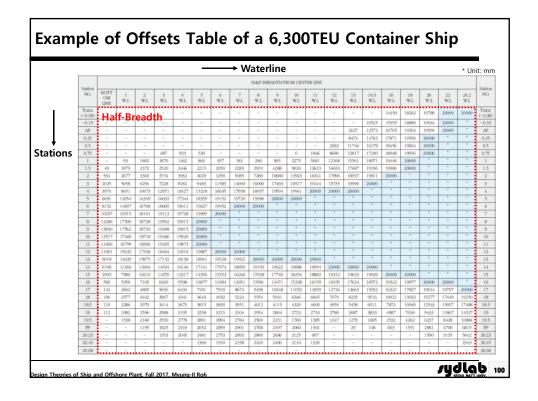


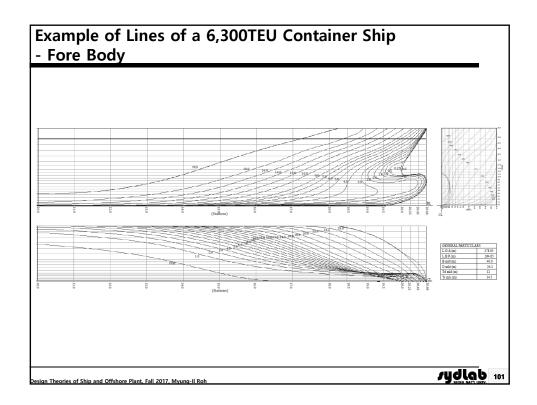


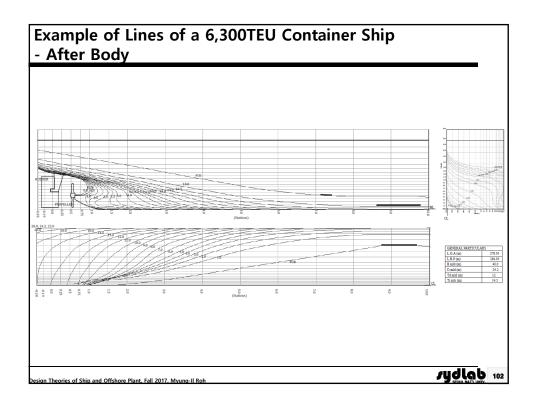


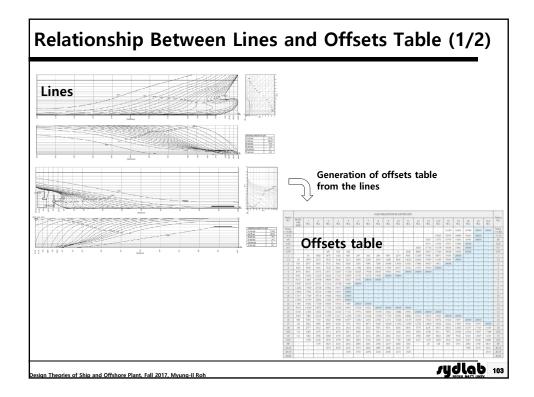


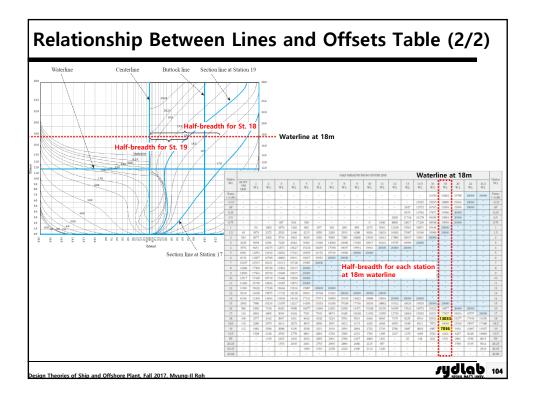


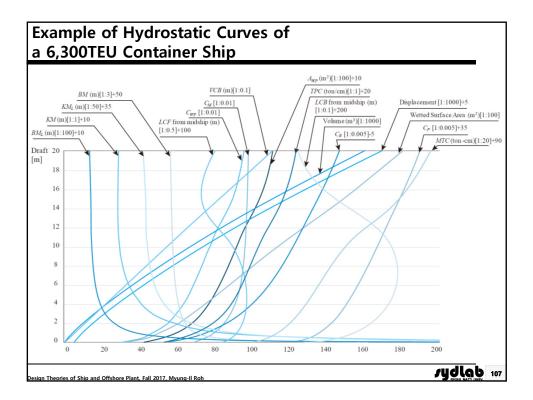


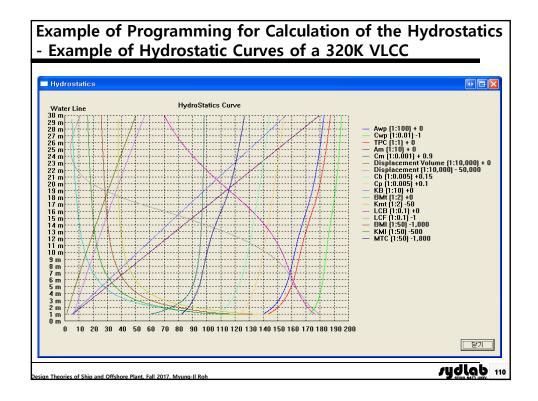









51


													_	
DRAFT (M)	DISP MLD(M ³)	DISP EXT(Ton)	VCB (M)	LCB (M)	LCF (M)	<i>KM</i> (M)	<i>KM</i> _{<i>L</i>} (M)	<i>MTC</i> (T-M)	TPC (Ton)	WSA (M ²)	C_B	C_{W}	C_P	C_M
4.000	22054.0	22720.3	2,171	-2.732	-1.546	31.537	926,651	795.5	68.5	7474.0	0.5248	0.6332	0.5769	0.9097
4.050	22389.1	23064.3	2.199	-2.714	-1.535	31.314	916,847	798.9	68.7	7507.8	0.5261	0.6349	0.5777	0.9107
4.100	22726,2	23410.3	2,226	-2.697	-1.523	31.098	907,266	802.4	68.9	7541.5	0.5275	0.6367	0.5786	0.9118
4.150	23053.3	23756.4	2.253	-2.680	-1.511	30.889	897.964	805.9	69.1	7575.3	0.5288	0.6384	0.5794	0.9128
4,200	23400.4	24102,4	2,281	-2.663	-1.500	30.686	888.93	809.3	69.3	7609.1	0.5302	0.6402	0,5802	0.9138
4.250	23737.5	24448,5	2.308	-2,646	-1.488	30.490	880,152	812,8	69.5	7642.9	0.5314	0.6420	0,5810	0.9147
4.300	24077.3	24797.2	2.336	-2.630	-1.476	30.300	871,537	816.3	69.7	7676.7	0.5327	0.6437	0,5818	0.9157
4.350	24419.0	25148.0	2.363	-2.614	-1.465	30.115	863.102	819.8	69.9	7710.5	0.5341	0.6454	0.5826	0.9166
4,400	24760.7	25498.8	2.391	-2.598	-1.453	29.936	854.9	823.3	70,1	7744.3	0.5354	0.6472	0.5835	0.9176
4.450	25102,4	25849.6	2,418	-2.582	-1,441	29,762	846,921	826.7	70.3	7778,1	0.5366	0.6489	0.5843	0.9185
7,500	47233.9	48564.4	4,087	-2,084	-2,217	21,918	560,803	1023.9	78,2	9736.7	0.5979	0,7224	0.6283	0.9517
7.550	47615.8	48956.4	4,115	-2.086	-2.257	21,852	558,143	1027.2	78.3	9768.7	0.5988	0.7235	0.6290	0.9520
7,600	47999.0	49349.6	4,142	-2.088	-2.302	21,785	555.428	1030.3	78,4	9800.7	0.5996	0.7246	0.6296	0.9523
7.650	48382.1	49742.8	4,170	-2.090	-2.348	21,722	552.756	1033.4	78.6	9832.7	0.6004	0.7256	0.6303	0.9527
7,700	48765.2	50136.0	4.197	-2.092	-2.393	21.659	550.126	1036.6	78.7	9864.6	0.6013	0.7267	0.6309	0.9530
7.750	49148,4	50529.3	4.224	-2.094	-2.438	21,598	547.537	1039.7	78.8	9896.6	0.6021	0.7277	0.6316	0.9533
7,800	49533.1	50924.1	4.252	-2.097	-2.483	21.538	544.992	1042.9	78.9	9928.6	0.6029	0.7288	0.6322	0.9536
7,850	49919.1	51320.2	4.279	-2,100	-2.527	21,481	542,488	1046.1	79.0	9960.7	0.6037	0.7298	0.6329	0.9539
7.900	50305.0	51716.3	4.307	-2,104	-2.571	21,424	540.023	1049.2	79.1	9992.8	0.6045	0.7309	0.6335	0.9542
7.950	50690.9	52112.3	4.334	-2.107	-2.615	21.369	537.595	1052.4	79.2	10024,8	0.6053	0.7319	0.6342	0.9544

5,30	OIEU	J Cor	ntai	ner	Ship) (2	/2)							
DRAFT (M)	DISP MLD(M ³)	DISP EXT(Ton)	VCB (M)	LCB (M)	LCF (M)	<i>KM</i> (M)	<i>KM</i> _{<i>L</i>} (M)	MTC (T-M)	TPC (Ton)	WSA (M ²)	C_{B}	C_{W}	C_P	См
11.750	81677.2	83912.8	6.431	-3.298	-8.607	18.919	430.346	1347.2	88,1	12595.4	0.6593	0.8134	0.6803	0.969
11,800	82107.4	84354.3	6.459	-3.326	-8,710	18,912	430.028	1353.1	88,2	12631.3	0.6600	0.8148	0.6809	0.969
11,850	82539.1	84797.3	6,487	-3.355	-8,816	18,905	429,787	1359.4	88,4	12667,6	0,6606	0,8162	0.6815	0.969
11.900	82970.8	85240.4	6.515	-3.384	-8.923	18,900	429.549	1365.5	88.5	12703.9	0.6613	0.8176	0.6820	0.969
11.950	83402.4	85683.4	6.543	-3.413	-9.030	18,894	429.313	1371.9	88.7	12740,2	0,6620	0.8190	0.6826	0.969
12,000	83634,1	86126,4	6.571	-3.442	-9.136	18,889	429,081	1378,1	88,8	12776,5	0,6626	0,8204	0.6832	0.969
12.050	84267.9	86571.6	6.599	-3.471	-9.233	18,879	428,885	1384.5	89.0	12812.5	0.6633	0.8218	0.6838	0.970
12,100	84703.3	87018.4	6.627	-3.501	-9.323	18,866	428,717	1391.0	89.1	12848.3	0.6639	0.8231	0.6844	0.970
12,150	85138.6	87465.1	6.655	-3.531	-9.413	18,853	428,551	1397.5	89.3	12884,0	0,6646	0.8245	0.6850	0.970
12,200	85573.9	87911.9	6.683	-3.561	-9.503	18,840	428,387	1404.0	89.4	12919.8	0.6652	0.8258	0.6856	0.970
12,250	86009.2	88358.7	6,711	-3.591	-9.593	18,826	428,224	1410.5	89.5	12955.6	0,6659	0.8271	0,6862	0.970
14.250	104062.4	106885.2	7.843	-4.937	-12,788	18,585	423.63	1683.1	95.4	14391.6	0.6924	0,8808	0.7105	0.974
14,300	104528.0	107363.1	7.872	-4.973	-12.837	18,604	423.328	1689.2	95.5	14426,2	0.6931	0.8819	0.7111	0.974
14.350	104995.0	107842.2	7.901	-5.008	-12,880	18,683	423.056	1695.6	95.6	14461.0	0.6938	0.8831	0.7117	0.974
14,400	105451.9	108321.3	7.929	-5.042	-12.940	18,683	422,786	1701.9	95.7	14495,8	0.6944	0.8843	0.7123	0.974
14.450	105928.8	108800.4	7.958	-5.077	-12.992	18,682	422.519	1708.2	95.9	14530.6	0.6951	0.8854	0.7129	0.975
14.500	106395.7	109279.6	7.986	-5.112	-13.043	18,682	422.255	1714.5	96.0	14565.4	0.6957	0.8866	0.7135	0.975
14.550	106864.4	109760.5	8.015	-5.147	-13.090	18,682	422.01	1720.9	96.1	14600.3	0.6964	0.8878	0.7141	0.975
14.600	107334.5	110242.8	8.043	-5,182	-13.133	18,681	421,779	1727.4	96,2	14635.1	0.6971	0.8889	0.7148	0.975
14.650	107804.5	110725.1	8,072	-5.217	-13.176	18,681	421.55	1733.9	96,4	14970.0	0.6977	0.8901	0.7154	0.975
14,700	108274,5	111207.4	8,101	-5,251	-13,219	18,681	421,323	1740.3	96.5	14704.9	0.6984	0.8912	0,7160	0.975

and the second	tatics Table									B
yurus	tatics rable									
Draft	Awp	Cwp	TPC	Am	Cm	Disp. Vol.	Dispacement	Cb	Cp	
1	13969.707634	0.727589	143, 189503	57.595373	0.959923	13274,704872	13606.572494	0.691391	0.720257	
2	14665, 449669	0.763826	150.320859	117.023844	0.975199	27625.670041	28316.311792	0.719418	0.737715	
3	15077.051700	0.785263	154.539780	176,973600	0.983187	42515.292743	43578, 175062	0.738113	0.750735	
4	15357.591332	0.799875	157.415311	236,973600	0.987390	57741, 104204	59184.631810	0.751837	0.761439	
5	15581.372337	0.811530	159,709066	296,973600	0.989912	73212.579375	75042.893859	0.762631	0.770403	
6	15749.689195	0.820296	161.434314	356,973600	0.991593	88884.693834	91106.811180	0.771569	0.778110	
7	15875.551257	0.826852	162.724400	416.973600	0.992794	104697.883311	107315.330393	0.779002	0.784656	
8	15995.591849	0.833104	163.954816	476,973600	0.993695	120634.354919	123650.213792	0.785380	0,790363	
9	16108.202427	0.838969	165, 109075	536,973600	0.994396	136685.843246	140102.989327	0.791006	0,795464	
10	16220, 139230	0.844799	166.256427	596,973600	0.994956	152848.654175	156669.870529	0.796087	0.800123	
11	16334.646305	0.850763	167,430125	656,973600	0.995415	169122.501317	173350.563850	0.800769	0.804458	
12	16456.300612	0.857099	168,677081	716,973600	0.995797	185509.431357	190147, 167141	0.805162	0.808561	
13	16586.144990	0.863862	170.007986	776.973600	0.996120	202010.815322	207061.085705	0.809338	0.812491	
14	16733.101975	0.871516	171.514295	836.973600	0.996397	218662.950551	224129.524315	0.813478	0.816420	
15	16880.258424	0.879180	173.022649	896.973600	0.996637	235526.994120	241415.168973	0.817802	0.820561	
16	17033.256489	0.887149	174.590879	956.973600	0.996848	252548.055106	258861.756483	0.822097	0.824696	
17	17190.202935	0.895323	176.199580	1016.973600	0.997033	269669.514686	276411.252553	0.826193	0.828652	
18	17330.470220	0.902629	177.637320	1076.973600	0.997198	286937.720924	294111.163948	0.830260	0.832593	
19	17450.827341	0.908897	178.870980	1136.973600	0.997345	304340.487982	311949.000181	0.834267	0.836487	
20	17554.763112	0.914311	179.936322	1196.973600	0.997478	321853.728657	329900.071874	0.838161	0.840280	1
21	17654.425395	0.919501	180.957860	1256.973600	0.997598	339467.205809	347953.885955	0.841933	0.843960	1
22	17745.043330	0.924221	181.886694	1316.973600	0.997707	357175.445606	366104.831746	0.845586	0.847529	1
23	17829.121813	0.928600	182.748499	1376.973600	0.997807	374971.328289	384345.611496	0.849120	0.850986	1
24	17906.567070	0.932634	183.542312	1436.973600	0.997898	392848.739497	402669.957984	0.852536	0.854332	1
25	17977.456424	0.936326	184.268928	1496.973600	0.997982	410799.466249	421069.452905	0.855832	0.857562	1
26	18042.453063	0.939711	184.935144	1556.973600	0.998060	428815.884445	439536.281557	0.859006	0.860676	1
27	18109.462826	0.943201	185.621994	1616.973600	0.998132	446896.925743	458069.348887	0.862070	0.863683	1
28	18169.982624	0.946353	186.242322	1676.973600	0.998199	465040.875432	476666.897318	0.865031	0.866592	1
29	18227.152414	0.949331	186.828312	1736.973600	0.998261	483242.386920	495323.446593	0.867892	0.869404	1
30	18281.613265	0.952167	187.386536	1796.973600	0.998319	501498.412094	514035.872397	0.870657	0.872123	1
<										>

ydrostatics Ta	ble							E
КВ	BMt	KMt	LCB	LCF	BMI	KMI	MTC	Wetted Surface Are
0.509932	249.279769	249.789701	17.634696	16.988722	5579.686819	5580.196750	2314.646744	14102.06714
1.025653	131.559866	132.585519	17.124977	16.375976	2962.881019	2963.906672	2557.861669	15079.44476
1.543595	89.894069	91.437664	16.785825	15.944990	2045.756860	2047.300456	2717.998493	15882.80787
2.060474	68.385545	70.446019	16.518405	15.612685	1570.949684	1573.010157	2834.636543	16618.77673
2.576277	55.320467	57.896744	16.287570	15.207640	1281.933552	1284.509829	2932.926936	17331.69735
3.092244	46.498881	49.591125	16.069941	14.941734	1081.449552	1084.541796	3003.884761	18026.08461
3.607174	40.131690	43.738864	15.890147	14.769625	932.964856	936.572030	3052.482676	18706.38787
4.121509	35.310328	39.431836	15.716638	14.383665	824.011114	828.132622	3106.376536	19367.84414
4.635703	31.535720	36.171423	15.530695	13.873811	739.817809	744.453512	3160.081909	20026.66120
5.150036	28.499889	33.649925	15.320611	13.206166	673.530311	678.680346	3217.131299	20688.39532
5.664717	26.007295	31.672012	15.078149	12.389904	620.434826	626.099544	3279.046555	21355.59466
6.179868	23.940218	30.120085	14.798156	11.426314	577.378964	583.558831	3347.163851	22031.34653
6.695516	22.197901	28.893417	14.478059	10.313393	542.171603	548.867119	3422.641486	22719.06906
7.213571	20.701056	27.914627	14.108800	8.961314	514.225484	521.439055	3513.814422	23436.1427
7.736683	19.395506	27.132189	13.686550	7.550015	490.042460	497.779143	3606.819609	24153.66624
8.261164	18.253453	26.514617	13.221739	6.036404	469.665833	477.926997	3706.662270	24885.58990
8.784388	17.250265	26.034653	12.711991	4.427362	452.305205	461.089592	3811.653906	25648.47341
9.309007	16.358312	25.667320	12.168722	3.027873	435.400427	444.709435	3904.150199	26390.81798
9.834664	15.558514	25.393178	11.610030	1.874104	418.610230	428.444894	3981.251301	27121.76772
10.360640	14.833239	25.193879	11.052104	0.949584	402.322606	412.683246	4046.532211	27828.17168
10.886729	14.168543	25.055272	10.508656	0.314228	387.475682	398.362411	4110.477717	28519.89207
11.412880	13.555606	24.968487	9.990360	-0.119337	373.550750	384.963631	4169.473618	29205.24936
11.939003	12.987957	24.926960	9.503047	-0.379617	360.593551	372.532554	4225.382593	29882.64161
12.465035	12.463030	24.928065	9.049601	-0.523423	348.430560	360.895595	4277.515818	30554.9716
12.990852	11.977942	24.968794	8.629644	-0.588068	336.938839	349.929691	4325.446727	31223.26467
13.516351	11.528007	25.044358	8.242049	-0.578749	326.080741	339.597092	4369.643798	31887.84018
14.041601	11.109971	25.151572	7.887679	-0.442092	316.247188	330.288788	4416.559250	32557.54053
14.566638	10.721379	25.288016	7.565974	-0.286588	306.814475	321.381113	4458.789754	33226.72538
15.091404	10.360160	25.451564	7.274229	-0.103187	297.903898	312.995302	4498.743464	33896.18381
15.615903	10.023641	25.639544	7.010481	0.115336	289.495842	305.111745	4536.928276	52901.39484
<								

