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Until now…

❖ You have heard about processes

▪ Process implementation

▪ Process dispatching

I. Basic Concepts
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Resource Scheduling in General (1)

❖ From now on, you’ll hear a lot about resources

▪ Resources are things used or operated upon by processes

▪ Example: CPU time, disk space, network channel time

❖ Resources fall into two classes

→ Distinction is a little arbitrary, like (non-)breakable, though

▪ Preemptible

• Can take resource away, use it for something else, then give it 

back later

• Examples: Processor or disk

▪ Non-preemptible

• Once given, it can’t be reused until process gives it back

• Examples: File space, terminal

I. Basic Concepts
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Resource Scheduling in General (2)

❖ OS makes two related kinds of decisions about 

resources

▪ Who gets it next?

▪ How long can they keep it?

❖ Resource #1 to examine:

▪ The processor

I. Basic Concepts
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Entities Involved in Scheduling

❖Multiprogramming

▪ OS allows more than one process to be loaded into memory

▪ Such processes share CPU thru time-multiplexing

I. Basic Concepts
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CPU Burst (1)

❖ In multiprogramming, OS alternates code execution 

and I/O operations to maximize CPU utilization

▪ CPU-I/O burst cycle

• Process execution consists of a cycle of CPU execution

and I/O wait

• CPU burst distribution varies significantly

❖ “CPU burst” is the entity participating in CPU 

scheduling in most modern operating systems

I. Basic Concepts
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CPU Burst (2)

❖ Alternating CPU and I/O bursts

I. Basic Concepts

·
·
·

load store

add store

read from file

store increment

index

write to file

load store

add store

read from file

wait for I/O

·
·

CPU Burst

I/O Burst

CPU Burst

CPU Burst

wait for CPU Preemption

wait for I/O I/O Burst

wait for CPU Preemption

wait for I/O I/O Burst



10

CPU Burst (3)

❖ Histogram of CPU burst times

I. Basic Concepts
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CPU Scheduler (1)

❖ Selects one among the processes in memory that are 

ready to execute and allocates the CPU to the 

selected one

❖ CPU scheduling decisions may take place when a 

process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

▪ Scheduling under  the 1st and 4th is nonpreemptive

▪ All other scheduling is preemptive

I. Basic Concepts
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CPU Scheduler (2)

❖ Processes may be in any of three scheduling states

▪ Running

• Has the CPU

▪ Ready

• Wants the CPU

▪ Waiting (Blocked)

• Waiting for some event (disk I/O, message, semaphore, etc.)

I. Basic Concepts
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CPU Scheduler (3)

❖ Process scheduling = Process state transition

I. Basic Concepts
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Dispatcher

❖ Dispatcher module gives control of the CPU to the 

process selected by the short-term scheduler; this 

involves

▪ Switching context

▪ Switching to user mode

▪ Jumping to the proper location in the user program to restart 

that program

❖ Dispatch latency

▪ Time it takes for the dispatcher to stop one process and start 

another running

I. Basic Concepts
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Scheduling Objectives

❖Maximize resource utilization

▪ Keep the CPU and I/O devices as busy as possible

❖Minimize overhead

❖Minimize context switches

❖ Distribute CPU cycles equitably

II. Scheduling Policies
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Optimization Metrics

❖ Throughput 

▪ # of processes that complete their execution per time unit

❖ Turnaround time

▪ Amount of time to execute a particular process

❖Waiting time

▪ Amount of time a process has been waiting in the ready 

queue

❖ Response time

▪ Amount of time it takes from when a request was submitted 

until the first response is produced, not output (for time 

sharing environment)

II. Scheduling Policies



18

Scheduling Policies

❖ Policies used by the CPU scheduler

❖ Scheduling disciplines

▪ FIFO (FCFS), RR, SJF, MLFQ (EQ), etc.

II. Scheduling Policies
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1. First In First Out (1)

❖ Key ideas

▪ Let the first one run until finish

▪ Also called First Come Fist Served (FCFS)

▪ In the simplest case, this means uniprogramming

▪ Usually, “finished” means “blocked”

• One process can use CPU while another waits on a semaphore

• Go to the back of run queue when ready

▪ Problem

• One process can monopolize CPU

▪ Solution

• Limit maximum amount of time that a process can run without a 

context switch

• This time is called a “time slice”

II. Scheduling Policies
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1. First In First Out (2)

❖ Suppose processes arrive in the order: P1 , P2 , P3

▪ Gantt Chart for the schedule is:

▪ Waiting time for P1 = 0; P2 = 24; P3 = 27

▪ Average waiting time:  (0 + 24 + 27) / 3 = 17

II. Scheduling Policies
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1. First In First Out (3)

❖ Suppose processes arrive in the order: P2 , P3 , P1 

▪ Gantt Chart for the schedule is:

▪ Waiting time for P1 = 6; P2 = 0; P3 = 3

▪ Average waiting time:   (6 + 0 + 3) / 3 = 3

▪ Much better than previous case

▪ Convoy effect: short process behind long process

II. Scheduling Policies

3 6 300

P1P2 P3
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2. Shortest Job First (1)

❖ Key operations

▪ Associate with each process the length of its next CPU burst

▪ Use these lengths to schedule the process with the shortest 

time

❖ SJF is optimal

▪ Gives the minimum average waiting time for a given set of 

processes

II. Scheduling Policies
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2. Shortest Job First (2)

❖ Two variations

▪ Nonpreemptive

• Once CPU is given to a process, it cannot be preempted until it 

completes its CPU burst

▪ Preemptive

• If a new process arrives with CPU burst length less than 

remaining time of current executing process, preempt it

• This scheme is know as the Shortest Remaining Time First 

(SRTF) or Shortest Time to Completion First (STCF)

II. Scheduling Policies
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2. Shortest Job First (3)

❖ SJF (nonpreemptive)

❖ Average waiting time = (0 + 6 + 3 + 7) / 4 = 4

II. Scheduling Policies
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2. Shortest Job First (4)

❖ SJF (preemptive)

❖ Average waiting time = (9 + 1 + 0 + 2) / 4 = 3

II. Scheduling Policies
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2. Shortest Job First (5)

❖ Challenge: Predicting the next CPU burst size

▪ One can only estimate the length

• Done by using the length of previous CPU bursts via 

exponential smoothing using exponential moving average

▪ Exponential smoothing

• First suggested by Robert Goodell Brown in 1956

▪ Exponential moving average

• Define 𝜏𝑛+1 = 𝛼𝑡𝑛 + (1 − 𝛼)𝜏𝑛 where

– 𝜏𝑛+1 = predicted value for the next CPU burst

– 𝑡𝑛 = actual length of 𝑛𝑡ℎ CPU burst

– 𝛼, 0 ≤ 𝛼 ≤ 1: called “smoothing factor”

II. Scheduling Policies
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2. Shortest Job First (6)

▪ Exponential moving average (cont’d)

•  = 0

– 𝑛+1 =  𝑛

– Recent history does not count

•  = 1

–  𝑛+1 = 𝑡 𝑛

– Only the actual last CPU burst counts

• If we expand the formula, we get

𝑛+1 =  𝑡 𝑛+(1 - )  𝑡 𝑛-1 + …

+(1 -  )j  𝑡 n-𝑗 + …

+(1 -  )n 𝑡0

• Since both  and (1 - ) are less than or equal to 1, each 

successive term has less weight than its predecessor

II. Scheduling Policies
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2. Shortest Job First (7)

▪ Exponential moving average (cont’d)

II. Scheduling Policies
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3. Round Robin (1)

❖ Key ideas

▪ Run a process for one time slice

▪ Then move it to the back of the runqueue

▪ Each process gets equal share of the CPU

▪ Most systems use some variant of this

❖ Often implemented with priorities

▪ Run highest-priority processes first

▪ Round robin among processes of equal priority

▪ Re-insert process into the runqueue

behind all processes of greater or equal priority

II. Scheduling Policies
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3. Round Robin (2)

❖ Key question

▪ What happens if the time slice isn’t chosen carefully?

• Too long:

– A process can monopolize the CPU

• Too short:

– Too much context switch overhead

❖ Time slice selection

▪ Originally, Unix had 1 second time slices

• Too long

▪ Current systems have time slices of around 1~10 ms

II. Scheduling Policies
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3. Round Robin (3)

❖ Comparing RR with FIFO

▪ Gantt chart with FIFO

• Waiting time for P1 = 0; P2 = 10 (average waiting time = 5)

▪ Gantt chart with RR

• Waiting time for P1 = 1; P2 = 1 (average waiting time = 1)

II. Scheduling Policies
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3. Round Robin (4)

❖ Comparing RR with FIFO

▪ Gantt chart with FIFO

• Waiting time for P1 = 0; P2 = 5 (average waiting time = 2.5)

▪ Gantt chart with RR

• Waiting time for P1 = 4; P2 = 5 (average waiting time = 4.5)

II. Scheduling Policies
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3. Round Robin (5)

❖ Question: “Is FIFO distinct from RR?”

▪ Answer: NO

▪ We can unify FIFO with RR

II. Scheduling Policies
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3. Round Robin (6)

❖ Can we find the right size for the time slice?

▪ Consider two processes

• P1: runs for 1 ms then waits for I/O for 10 ms

– Represents I/O-intensive workload

• P2: no waiting, runs continuously

– Represents CPU-intensive workload

▪ Consider two execution scenarios

1. Round robin with a 100 ms time slice

2. Round robin with a 1 ms time slice

II. Scheduling Policies
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3. Round Robin (7)

❖ Scenario 1

▪ Round robin with a 100 ms time slice

• 𝑈𝐶𝑃𝑈 = 100%

• 𝑈𝐼𝑂 = 10/101 ≈ 10%

II. Scheduling Policies

time 
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3. Round Robin (8)

❖ Scenario 2

▪ Round robin with a 1 ms time slice

• 𝑈𝐶𝑃𝑈 = 100%

• 𝑈𝐼𝑂 = 10/11 ≈ 91%

II. Scheduling Policies
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3. Round Robin (9)

❖ Analyzing the two execution scenarios

1. Round robin with a 100 ms time slice

• I/O process runs at 1/10th speed

• I/O devices are only 10% utilized

2. Round robin with a 1 ms time slice

• I/O process runs at full speed

• CPU process suffers from 9 unwanted interrupts out of 10

❖ Revisit the question

▪ Can we find the right size for the time slice?

• It depends on the type of process

II. Scheduling Policies
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4. Multi-level Feedback Queue (1)

❖ Idea development behind MLFQ

▪ STCF works quite nicely

▪ Unfortunately, STCF requires knowledge of the future

• Must use past behavior to predict future behavior

• Example:

– Long running process will probably take a long time more often

▪ Use the dispatcher’s priority mechanisms to disfavor long 

running processes

II. Scheduling Policies
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4. Multi-level Feedback Queue (2)

❖ Idea development behind MLFQ (cont’d)

▪ Classify I/O processes and CPU processes

▪ Assign higher priority to I/O processes

▪ Give longer time slices to CPU processes

II. Scheduling Policies
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4. Multi-level Feedback Queue (3)

❖Multi-level feedback queue scheduling

▪ AKA exponential queues scheduling

▪ Gives newly runnable processes a high priority

and a very short time slice

• Assumes new processes are I/O-intensive

▪ If a process uses up the time slice without blocking

• Decreases its priority by 1

• Doubles time slice for the next round

II. Scheduling Policies
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4. Multi-level Feedback Queue (4)

❖ Runqueue structure of MLFQ

II. Scheduling Policies

Time Slice

0 20 = 1

1 21 = 2

𝑛-1 2𝑛-1

Priority
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4. Multi-level Feedback Queue (5)

▪ Example: 

• P1 runs for 1 ms and blocks

• P2 runs for 1 ms and doesn’t block

– P2 gets priority 1, time slice 2

• P2 runs for 2 ms and doesn’t block

– P2 gets priority 2, time slice 4

• P2 runs for 4 ms and doesn’t block

– P2 gets priority 3, time slice 8

• P2 runs for 3 ms and gets preempted

• P1 runs for 1 ms and blocks

• P2 runs for 8 ms

• ……

• P1 runs for 1 ms and blocks

• P2 runs until P1 is ready and preempts it

II. Scheduling Policies
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4. Multi-level Feedback Queue (6)

▪ Techniques like this one are called adaptive

• Common in interactive systems.

▪ The CTSS system (MIT around 1962) was the first to use 

exponential queues

II. Scheduling Policies



44

5. Fair Share Scheduling

❖ Fair share scheduling (similar to what’s implemented 

in Unix)

▪ Keep history of recent CPU usage for each process

▪ Give highest priority to process that has used the least CPU 

time recently

• Highly interactive jobs, like editors, will use little CPU and get 

high priority

• CPU-bound jobs, like compilers, will get lower priority

▪ Can adjust priorities by changing “billing factors” for 

processes

• E.g., to make high-priority process, only use half its recent CPU 

usage in computing history

II. Scheduling Policies



III. Fair Share Scheduling of Linux
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What is Fair Share Scheduling?

The Simpsons

III. Fair Share Scheduling of Linux

Homer Simpson
(Task 1)

Weight: 4

Marge Simpson
(Task 2)

Weight: 2

Bart Simpson
(Task 3)

Weight: 1

Lisa Simpson
(Task 4)

Weight: 1
Pizza 16 pieces

(CPU time)
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Why Fair Share Scheduling?

❖Many application domains need fairness guarantees

III. Fair Share Scheduling of Linux

For Desktop Computing For Server/Cloud Computing For Real-Time Computing

Cause starvation and poor

I/O performance under high 

CPU load

Cause inaccurate CPU resource 
provisioning and poor quality-
of-service

Cause poor support for real-

time applications

- Deadline miss
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Formulation (1)

❖ Terminology

III. Fair Share Scheduling of Linux

𝑁 The number of tasks in the system

Φ Set of tasks Φ = {𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑁}

𝑊(𝜏𝑖)
Weight (share) of task τi

Numerical value which denotes a task τi’s relative importance

𝑆Φ Weight sum of tasks in Φ

𝑇τ𝑖
(𝑡1, 𝑡2) Time slice (=share) of task τi

Amount of CPU time for which task τi is allowed to occupy CPU in a given interval (t1, t2)

𝐶τ𝑖
(𝑡1, 𝑡2) The amount of CPU time received by task τi during the time interval (t1, t2)
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Formulation (2)

❖ Goal of fair share scheduling

▪ Given a set of tasks with associated weights, a fair share 

scheduler should allocate resources to each task in 

proportion to its respective weight

• Scheduler is perfectly fair if the following equation holds

III. Fair Share Scheduling of Linux

𝐶𝜏𝑖
(𝑡1, 𝑡2) =

𝑊 𝜏𝑖

𝑆Φ
× (𝑡2 − 𝑡1)

CPU time of i

Weight of i Total weight

Total CPU time

(1)
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1. Generalized Processor Sharing (GPS) 

(1)

❖ Idealized scheduling algorithm that achieves perfect 

fairness

▪ For any interval [t1, t2] and for any task τi∈Φ, GPS always 

satisfies an equation (1)

▪ Serve CPU to tasks in a round robin fashion

▪ Schedule with infinitesimally small time quanta

• Impossible to implement it since it assumes fluid-flow system

III. Fair Share Scheduling of Linux

W(τi)
Arrival 

time(㎳)
Service 

time(㎳)

τ1 4 0 48

τ2 2 0 48

τ3 1 0 36

τ4 1 24 24
0㎳ 16㎳ 32㎳ 48㎳8㎳ 24㎳ 40㎳

τ1

τ2

τ3 τ4
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1. Generalized Processor Sharing (GPS) 

(2)

III. Fair Share Scheduling of Linux

Homer Simpson
(Task 1)

Weight: 4

Marge Simpson
(Task 2)

Weight: 2

Bart Simpson
(Task 3)

Weight: 1

Lisa Simpson
(Task 4)

Weight: 1
Pizza
(CPU time)
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Fairness Measurement

❖ CPU time lag

Assume that task τi has a fixed weight W(τi) in the time 

interval [t1, t2]

The lag of task τi at time t ∈ [t1, t2] is

• Positive lag: τi has received more service than under GPS

• Negative lag: τi has received less service than under GPS

The goal of fair share scheduling is to minimize lag over all 

time intervals

II. Introduction to Fair-share Scheduler

𝑙𝑎𝑔𝜏𝑖
𝑡 = 𝐶𝜏𝑖

𝑡1, 𝑡 −
𝑊 𝜏𝑖

𝑆Φ
× (𝑡 − 𝑡1)

CPU time under GPSActual CPU time
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Fair Share Scheduling Disciplines

II. Introduction to Fair-share Scheduler

Fair share scheduling

Generalized Processor Sharing 

(GPS)

Ideal

scheduling

algorithm

(but impossible

to implement)

approximate approximate

Round Robin-based scheduling Virtual Time-based scheduling

WRR

DRR

GRRR

DWRR

WFQ

WF2Q

STFQ

SCFQ
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WRR (Weighted Round Robin) (1)

❖ Key for fair share scheduling

Time slice

• Time interval for which the task is allowed to run without being 

preempted

– Each task is assigned a time slice proportional to its weight

II. Introduction to Fair-share Scheduler

_periodn_intervalround_robi=





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i

System-wide constant
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WRR (Weighted Round Robin) (2)

❖ Approximation of GPS using time slice

❖ Assigns weighted time slice to each task

❖ Schedules tasks in round robin manner

A task executes for one unit of time slice

II. Introduction to Fair-share Scheduler

0㎳ 16㎳ 32㎳ 48㎳8㎳ 24㎳ 40㎳

weight
Arrival 

time(㎳)
Service 

time(㎳)
Time slice

(㎳)

τ1 4 0 48

τ2 2 0 48

τ3 1 0 36

τ4 1 24 24

round robin interval period=28㎳

τ1 τ2 τ4τ3
16

8

-
4

14

7

3.5
3.5

τ1 τ2
16

8

-
4
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WRR (Weighted Round Robin) (3)

II. Introduction to Fair-share Scheduler

Pizza
(CPU time)

round robin interval = 8

Time Slice = 4

Time Slice = 2

Time Slice = 1

Time Slice = 1

Lisa Simpson
(Task 4)

Weight: 1

Bart Simpson
(Task 3)

Weight: 1

Homer Simpson
(Task 1)

Weight: 4

Marge Simpson
(Task 2)

Weight: 2



57

WRR (Weighted Round Robin) (4)

❖ Evaluation

Low scheduling overhead : O(1)

Weak fairness guarantee

• Lag can be quite large, especially when the weights are large

II. Introduction to Fair-share Scheduler

time

lag

lag

A
ω=3

B
ω=2

C
ω=1

schedule

A
ω=30

B
ω=20

C
ω=10

schedule

Time 

Scheduling order:

AAABBCAAABBC …

Scheduling order:

AAA…AAABB…BBC …C

30 20 10

lagA(t)

lagB(t) 

lagC(t)



58

WFQ (Weighted Fair Queuing) (1)

❖ Key for fair share scheduling

Virtual CPU time (VCT)

• Measure of the degree to which a task has received its 

proportional allocation, relative to others

• The grow rate of a task’s VT is inversely proportional to the 

task’s weight

II. Introduction to Fair-share Scheduler

𝑉𝐶𝑇𝜏𝑖
(𝑡) =

𝐶𝜏𝑖
(0, 𝑡)

𝑊(𝜏𝑖)

5000cc

1000cc

1km

1km
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WFQ (Weighted Fair Queuing) (2)

Preemption tick period

• Time interval for which the scheduler checks for preemption

Virtual finish time (VFT)

• VCT that the task would have after executing for one 

preemption tick period T

II. Introduction to Fair-share Scheduler

𝑉𝐹𝑇𝜏𝑖
(𝑡) = 𝑉𝐶𝑇𝜏𝑖

(𝑡 + 𝑇) = 𝑉𝐶𝑇𝜏𝑖
(𝑡) +

𝑇

𝑊(𝜏𝑖)

= 1 pizza slice
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WFQ (Weighted Fair Queuing) (2)

❖ Approximation of GPS using virtual time

❖ Computes virtual finish time on every preemption tick

❖ Schedules tasks in increasing order of virtual finish 

time

II. Introduction to Fair-share Scheduler

weight
Arrival 

time(㎳)
Service 

time(㎳)
Virtual 

finish time

τ1 4 0 48

τ2 2 0 48

τ3 1 0 36

τ4 1 24 24

0㎳ 16㎳ 32㎳ 48㎳8㎳ 24㎳ 40㎳

preemption tick=4㎳

τ1 τ2 τ4τ3 τ1 τ2 τ1 τ1 τ4τ3 τ2 τ10
0

-

0

1
0

-

0

1

2

-

0

1

2

-

4

2

2

-

4

2

4

-

4

3

4

0

4

3

4

4

4

4

4

4

4

4

4

4

8

4

6

4

8

5

6

4

8

5

6

8

8
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WFQ (Weighted Fair Queuing) (3)

II. Introduction to Fair-share Scheduler

Pizza
(CPU time)

preemption tick = 1

VFT:

VFT:

VFT:

VFT:

Lisa Simpson
(Task 4)

Weight: 1

Bart Simpson
(Task 3)

Weight: 1

Homer Simpson
(Task 1)

Weight: 4

Marge Simpson
(Task 2)

Weight: 2

0

0

0

0

1/4

0

0

0

1/4

1/2

0

0

1/4

1/2

1

0

1/4

1/2

1

1

2/4

1/2

1

1

3/4

1/2

1

1

3/4

1

1

1

1

1

1

1
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WFQ (Weighted Fair Queuing) (4)

❖ Evaluation

Quite high scheduling overhead : O(N) or O(log N)

• Might incur too much context switching overhead

Strong fairness guarantee

• Independent from weight set

II. Introduction to Fair-share Scheduler

Time 

Negative lag

never falls below -TlagA(t)

lagB(t) 

lagC(t)

time

lag
A

ω=3

B
ω=2

C
ω=1

A
ω=30

B
ω=20

C
ω=10

Scheduling order:

ABAABCABAABC …
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Completely Fair Scheduler: RR or VT?

II. Introduction to Fair-share Scheduler

Fair share scheduling

Generalized Processor Sharing 

(GPS)

approximate approximate

Round Robin-based scheduling Virtual Time-based scheduling

WRR

DRR

GRRR

DWRR

WFQ

WF2Q

STFQ

SCFQ

CFS
?
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2. Rotating Staircase Deadline 

Scheduler (RSDL)

III. Fair Share Scheduling of Linux

Con Kolivas (Australian 

anaesthetist, known for his programming work 

on the Linux kernel in his spare time)
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3. Completely Fair Scheduler (CFS) (1)

III. Fair Share Scheduling of Linux

Ingo Molnár (Hungarian Linux 

hacker, employed by Red Hat)
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3. Completely Fair Scheduler (CFS) (2)

❖ Primary task scheduler of the mainline Linux kernel 

since its 2.6.23 release

▪ Designed and developed by Ingo Molnár

• Inspired by Con Kolivas’s work

▪ The first Implementation of fair share scheduling widely used 

in a general-purpose OS (Linux)

III. Fair Share Scheduling of Linux

Linux developer I. Molnár

<Red Hat>Anesthesiologist C. Kolivas
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3. Completely Fair Scheduler (CFS) (3)

1. Providing fair share scheduling by giving each task 

CPU time proportional to its weight

▪ For a given time interval [t1, t2], CFS attempts to provide the 

following amount of CPU time for a task τi

2. Efficiently utilizing CPU resource in multicore system

III. Fair Share Scheduling of Linux

𝐶𝜏𝑖
(𝑡1, 𝑡2) =

𝑊 𝜏𝑖

𝑆Φ
× (𝑡2 − 𝑡1)

Weight of i Total weight

Total CPU time
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(1) Virtual Runtime

❖ Definition

▪ The task’s cumulative execution time inversely scaled by its 

weight

• 𝑊0 : the weight of nice value 0

• 𝑃𝑅(𝜏𝑖 , 𝑡) : Actual runtime of task 𝜏𝑖 in time interval [0, 𝑡]

▪ Used to approximate the GPS (perfect fair share scheduling)

• CFS assigns each task virtual runtime to account for how long 

a task has run and thus how much longer it ought to run

III. Fair Share Scheduling of Linux

𝑉𝑅(𝜏𝑖 , 𝑡) =
𝑊0

𝑊(τi)
× 𝑃𝑅(𝜏𝑖 , 𝑡)
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(2) Time Slice

❖ Definition

▪ Time interval for which the task is allowed to run without 

being preempted

• The length of task τi’s time slice is proportional to its weight

– 𝑆Φ : the set of runnable tasks in a run queue

– 𝑃 : the constant for a given workload

– 𝑛 : the number of tasks

III. Fair Share Scheduling of Linux

𝑇𝑆τi
=

𝑊(𝜏i)

𝑆Φ
× 𝑃

𝑃 = ቊ
sched_latency if n < nr_latency

min_granularity × 𝑛 otherwise

Targeted preemption 

latency for CPU-bound 

tasks

Minimum preemption 

granularity for CPU-

bound tasks
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(3) Task Priority and Weight

❖ Linux priority range

▪ Nice value (-20~19, default of 0)

• Standard priority range used in all Unix systems

• Priority for normal (time-sharing) tasks

• Larger nice value corresponds to a lower priority

▪ Real-time priority (0~99)

• Priority for real-time tasks

• Higher real-time priority value corresponds to greater priority

• Real-time tasks have priority over normal tasks

III. Fair Share Scheduling of Linux

Real-Time Priority

99 98 97 96 … 3 2 1 0 -20 -19 -18 … 17 18 19

Nice Value

Higher Priority Lower Priority
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(3) Task Priority and Weight

❖ Calculating Linux priority (PR)

▪ Ranges from -100 to 39

• The lower the PR, the higher the priority of the task is

▪ Real-time tasks: -100~-1

• PR = -1 - real_time_priority

▪ Normal tasks: 0~39

• PR = 20 + NI

III. Fair Share Scheduling of Linux
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(3) Task Priority and Weight

❖ Nice-to-weight mapping

▪ Recycle nice values to represent the weight values of tasks

▪ “10% effect” mapping rule: 55% vs. 45%

• From any nice level,

– If you go up one level, it's -10% CPU usage

– If you go down 1 level, it's +10% CPU usage

III. Fair Share Scheduling of Linux

static const int prio_to_weight[40] = {

/* -20 */ 88761, 71755, 56483, 46273, 36291,

/* -15 */ 29154, 23254, 18705, 14949, 11916,

/* -10 */ 9548,  7620,  6100,  4904,  3906,

/*  -5 */ 3121,  2501,  1991,  1586,  1277,

/*   0 */ 1024,  820,   655,   526,   423,

/*   5 */ 335,   272,   215,   172,   137,

/*  10 */ 110,   87,    70,    56,    45,

/*  15 */ 36,    29,    23,    18,    15,

};

kernel/sched.c
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(3) Task Priority and Weight

❖ Each task stores weight value

III. Fair Share Scheduling of Linux

struct load_weight {

unsigned long weight, inv_weight;

};

include/linux/sched.h
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(4) Run Queue Structure

❖ Each CPU owns its run queues

▪ Red-black tree for the normal tasks, array for the RT tasks

III. Fair Share Scheduling of Linux

Task 4

Task 2 Task 5

Task 1 Task 3 Task 6 Task 7

-100

-99

-1

0Normal Tasks

RT Tasks

Prioritized Runqueue

Task 1 Task 2 Task 3

Task 4

…

Level

-98 Task 5 Task 6
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(4) Run Queue Structure

❖ “Red-black tree” is the time-ordered run queue 

structure of CFS for storing normal tasks

▪ No path in the tree will ever be more than twice as long as 

any other (self-balancing)

▪ Operations on the tree occur in 𝑂(log 𝑛) time 

• Inserting or deleting a task is quick and efficient

III. Fair Share Scheduling of Linux

19 34

492 98

Most need CPU Least need CPU

tasks_timeline

*rb_leftmost

Tasks are sorted in 

increasing order of virtual 

runtime
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(5) Running Example

III. Fair Share Scheduling of Linux

nice 𝑊(𝜏𝑖)
𝑊(𝜏𝑖)

𝑆Φ
time slice

τ1 -10 9548 0.6753 4.0518

τ2 -5 3121 0.2208 1.3248

τ3 0 1024 0.0724 0.4344

τ4 5 335 0.0237 0.1422

τ5 10 110 0.0078 0.0468

total 14138 1.000 6

Task description

τ4

vr = 0

τ2

vr =0

τ5

vr = 0

τ1

vr = 0

τ3

vr = 0

Currently running: N/A

τ4

vr = 0

τ3

vr =0

τ5

vr = 0

τ2

vr = 0

Currently running: 
τ1

vr = 0.536

τ5

vr = 0

τ4

vr =0

τ1

vr = 0.536

τ3

vr = 0

Currently running: 
τ2

vr = 0.656

τ1 τ2 τ3

τ1

vr = 0.536

τ5

vr =0

τ2

vr = 0.656

τ4

vr = 0

Currently running: 
τ3

vr = 1.000

τ4

τ2

vr = 0.656

τ1

vr =0.536

τ3

vr = 1.000

τ5

vr = 0

Currently running: 
τ4

vr = 3.057

τ5

τ3

vr = 1.000

τ2

vr =0.656

τ4

vr = 3.057

τ1

vr = 0.536

Currently running: 
τ5

vr = 9.309

τ1

τ4

vr = 3.057

τ3

vr =1.000

τ5

vr = 9.309

τ2

vr = 0.656

Currently running: 
τ1

vr = 1.072

τ4

vr = 3.057

τ1

vr =1.072

τ5

vr = 9.309

τ3

vr = 1.000

Currently running: 
τ2

vr = 1.312

τ2 τ3

τ4

vr = 3.057

τ2

vr =1.312

τ5

vr = 9.309

τ1

vr = 1.072

Currently running: 
τ3

vr = 2.000

τ1

τ4

vr = 3.057

τ3

vr =2.000

τ5

vr = 9.309

τ2

vr = 1.312

Currently running: 
τ1

vr = 1.609

τ2

τ4

vr = 3.057

τ3

vr =2.000

τ5

vr = 9.309

τ1

vr = 1.609

Currently running: 
τ2

vr = 1.969

τ1

τ4

vr = 3.057

τ3

vr =2.000

τ5

vr = 9.309

τ2

vr = 1.969

Currently running: 
τ1

vr = 2.145

τ4

vr = 3.057

τ1

vr =2.145

τ5

vr = 9.309

τ3

vr = 2.00

Currently running: 
τ2

vr = 2.625

τ2 τ3

τ4

vr = 3.057

τ2

vr =2.625

τ5

vr = 9.309

τ1

vr = 2.145

Currently running: 
τ3

vr = 3.000

5ms 7ms8ms9ms10ms 15ms 17ms18ms 23ms 25ms 30ms 32ms33ms

Scheduling tick: 1㎳ (HZ = 1000)

time (㎳)
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(6) Load Balancing

III. Fair Share Scheduling of Linux

CORE 0 CORE 1

② Scheduling algorithm ② Scheduling algorithm

③ Load balancing

① Run queue structure ① Run queue structure



IV. Summary
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Evolution of Scheduling Policies

IV. Summary

Shortest 

Remaining 

Time First

Difficult to predict the 
size of CPU burst

Round 

Robin

Optimal

Round Robin Introduced

Choose the optimal 
time slice size 
(Dynamically)

Multi 

Level 

Feedback

Queue

Priority Introduced

Rotating 

Staircase 

Deadline 

Scheduler

Fair Share Introduced

Tasks are inserted into 
the end of queues

Tasks are inserted into the 
queues based on their virtual 

deadlines

CFS

Single Round Robin 
Scheduler, RRDS


