Chapter 3. The Second Law

Phenomena

1. A gas expands and fills the available volume, but does not
spontaneously contract into a smaller one.

2. A hot body cools to the same temperature as its surroundings, but a
body does not spontaneously get hotter than its environment.

3. Heating diamonds yields graphite, but heating graphite does not give
diamonds. [Diamond by chemical vapor deposition]

4. When a ball (the system of interest) bounces on a floor, the ball does
not rise as high after each bounce because there are inelastic losses in
the materials of the ball and floor (that is, the conversion of kinetic
energy of the ball’s overall motion into the energy of thermal motion).

Conclusions
The direction of change leads to the greater disgersal of the total energy.
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Hot source

Figure 3A.3

The Kelvin statement of the Second
Y Law denies the possibility of the
Heat | process illustrated here, in vyhich
. » \Work heat is changed completely into work,
there being no other change.

Flow

The process is not in conflict with
of energy

the First Law because energy is
conserved.

Engine

http://bp.snu.ac.kr 2



Irreversible
Video (time or —time)

aH

Figure 3A.1

The direction of spontaneous change for a ball bouncing on a floor. On each bounce
some of its energy Is degraded into the thermal motion of the atoms of the floor, and
that energy disperses. The reverse has never been observed to take place on a

MacroscopIc .
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Random Motion

Coordinated Motion

Macroscopic World

(a) (b)
Figure 3A.2

The molecular interpretation of the irreversibility expressed by the Second Law.

(@) Aball is resting on a warm surface, and the atoms are undergoing thermal motion
(vibration, in this instance), as indicated by the arrows.

(b) For the ball to fly upwards, some of the random vibrational motion would have to
change into coordinated, directed motion. Such a conversion is highly improbable.
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Measuring Dispersal: the Entropy of a System

Entropy S 1. Athermodynamlc function that measures how the
dispersal of energy alters when a system changes from
one state to another.

2. A state function

v Irreversible
A

e Statistical definition

« Thermodynamic definition

Statistical View of the Entropy

The direction of spontaneous
change is:

- from a state with low probability
of occurring

The direction of spontaneous change for
a gas in a pair of connected vessels

- to one of maximum probability.
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Consider an Ideal Monatomic Gas:

Number of microstates of one atom being in V;: a)( ,.) =cl/
Number of microstates that N atoms are in V;: QV.)=|o\,)]" =cMvN
Number of microstates that N atoms are in V;: Q(V f ): ¢V

Entropy S oc (??) Number of Microstates
S = QQ — not extensive

SSV 1l != KIn Q(V, T)  where k is some constant, Boltzmann constant.

When an ideal gas expands isothermally from V;to V.,

®

AS = S(Vf >_S(Vi): K In(CVf )N K In(cVi )N

Vf
- kN(In cV; —IncV, ): KN In v

N =nN, where n: the number of moles, N,: Avogadro’s number

\Z Ideal Gas
AS =nRIn 7. kN, =R Isothermal (3A.14)
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AS:nﬁ’lngzN/@ln%, ks, =R ol

/ /

Isothermal

Assumptions of this calculation

1) Ideal gas: neglect the interaction between particles and neglect
rotational and vibrational modes.

2) Isothermal process: (5_U j
oV );

Entropy measures the dispersal of energy, and the natural tendency of
spontaneous change is towards the states of higher entropy.

S(I/, 7_) = K=1N Q(l/, 7_) (3A5)

Q = Number of Microstates
Qx| etst NE MAEXE XS, etc.
http://bp.snu.ac.kr 7



Thermodynamic View of Entropy

Thermal energy —» random motion

1. A change in entropy dS is proportional to the amount of heat
added dg. [Extensive Properties]

2. Impact of dg on the chaos is inversely proportional to T.

For a given dg, the change in entropy is large when the temperature is
low, but small if the temperature is high.

. dq rev
dS — I to a measure of the amount of randomness

already present (T) (3A.1)

The ratio of a randomizing influence (dq,,,)

If the changes are restricted to reversible transfer of heat, then the
quantity dq,./T Is found to be a state function.
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For a reversible and isothermal expansion (V; — V;) of an ideal gas,

oU %,
dll =dag +aw =0 dU =| — + dVv
/ (aT jﬂ/ [/év j

aqg = -aw
q o l 0: ideal gas
e,
4Gy, = pdV = —7—aV 0: isothermal
On integration,
=nRT In Vi
qrev _ Vi
f f f
dq 1 g
AS = |dS =| /= == | dg,,, =
-! ‘!- T _I_'!A qrev T
NRT IV, /V,) V sotherm
_ V) e Ve (same as page 6) Isothermal
v (3A.14)
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Fina 45 — ey

f T

Figure 3A.6

In a thermodynamic cycle, the overall
change in a state function (from the initial
state to the final state and then back to the

Initial state again) is zero.

Pressure, p

i
Initial
state

Volume, V

For an isolated system, no heat enters or leaves the system irreversively, 1.e. dq:O
This inequality shows that these spontaneous processes must lead to an
Increase in entropy of the universe.
The second law: In an isolated system, spontaneous processes occur in
the direction of increasing entropy.
SAS =0
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3A.4(b) Entropy Change Arising from a Phase Transition

Under the condition of constant pressure, the latent heat is an
enthalpy of phase transition AH..

AS — AH,
— T T, : transition temperature
#

» Both melting and boiling are endothermic processes (4H, > 0). So, each
IS accompanied by an increase of the system’s entropy.

» I the phase transition is exothermic (AH, < 0, as in freezing or
condensing), then the entropy change is negative. This decrease in
entropy is consistent with localization of matter and energy that
accompanies the formation of a solid from a liquid or a liquid from a gas.

» If the transition is endothermic (AH, > 0, as in the melting and
vaporization), then the entropy change is positive, which is consistent
with dispersal of energy and matter in the system.
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R=8.314J moltK-!
The entropy change of transition:

AHgppm  9.27x10°
T, 111.8

3
3OX1(7) =86 JK *mol™

AS (methane) = =83.1JK "mol™

AS(carbon tetrachloride) =

A wide range of liquids gives approximately the same entropy of
vaporization. = Trouton’s rule (page 122)

AS(water) =109 JK "mol™ large entropy change due to H-bonds

AS ~10 R/mol ~10k; /molecule (liquid —vapor)
AS ~ 1R/mol ~ 1k /molecule (solid—liquid)
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> W

Figure 3A.8

Suppose:

An energy ¢, (for example, 20 kJ) is supplied to
the engine, and

d. Is lost from the engine (for example, g, = -15
kJ), and discarded into the cold reservaoir.

The work done by the engine is equal to g, + q,
(for example, 20 kJ + (—15 kJ) =5 kJ).

The efficiency is the work done divided by the
heat supplied from the hot source. = 25%

5Engine

Cold Reservolir
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3A.3(a) Reversible Heat Engine: The Efficiency

Since the temperature of a cold reservoir is lower than that of a hot one,
an overall increase of entropy can be produced even If g, _Is withdrawn
from the hot reservoir, and less than g, is transferred to the cold.

0 Reversible change

L qc qh -
AS o = T T IS ZETO. by an infinitesimal modification
h

C

Therefore, we are free 50 use some kind of device, an engine, to draw off
the difference (qh — (. ) as work.

The work that an engine may produce Is:

. _q 1 T Reversible Engine
Winax = Gh =G = Gy _ﬁ = Maximum Work

The Carnot efficiency (&) Is defined as the ratio of the maximum
work generated to the heat absorbed.
& = Wlmax —1— T_c

a T (3A9)
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Example:

Calculate the Carnot efficiency (reversible heat engine) of an
Internal combustion engine where T, = 3200 K and T, = 1400 K.

Solution:

g :1—@ =0.56 =56%
3200

Compare with the practical efficiency (&~ 25%) of internal combustion
engines.

http://bp.snu.ac.kr
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Basic Structure of a
Carnot Cycle

Step 1:
Step 2:
Step 3:
Step 4.

Pressure, p

Adiabat

™ A (o Vi) Reversible
| Ildeal Gas
Adiabat
4 1
Tcold (p2’ Vz)
(P4 Vo) Isotherm
Isotherm\ 2 _
Figure 3A.7
3
(Ps, V3)
o
Volume, V

Reversible isothermal expansion at the temperature T,
Reversible adiabatic expansion in which the temperature falls from T, to T, .
Reversible isothermal compression at T..

Reversible adiabatic reversible compression,

Restores the system to its initial state.

http://bp.snu.ac.kr
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The Carnot Cycle

All engines work on a cycle.

Adiabat

ml (P1, V1)

A 1

Pressure, p

T

C

(P4 V)

Isotherm\

Step 1 [Isothermal at q,].

The gas absorbs heat (q,) from
the high-temperature resorvoir
(temperature T,) and expands
Isothermally and reversibly
fromV, to V..

Adiabat

(P2, V)

Isotherm vV
g, = RT, In—=
1
w=—RT, In vz
(P3, Va) \%

N AU =0

(3A.14)

\Volume, V

http://bp.snu.ac.kr

(since isothermal, ideal gas)
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Adiabat

ml Py, V1)

1

Te (P2, V)
(pg: Vy) Isotherm

Isotherm\ 2

Adiabat

Pressure, p
AN

Y‘\_

\olume, V

http://bp.snu.ac.kr

(P3: V3)

Step 2 [Adibatic].

The gas expands adiabatically
and reversibly from V, to V; in
doing so, its temperature drops
from T, to T..

g=0

TC
w=AaU = .Lh C,dT Ideal gas

from dU(\/,T):(ﬁ—Uj dT +(8—Uj dv
oT ), oV J;

18



Adiabat Step 3 [Isothermal at g_].

Th\l Py, Vy) The gas Is compressed from V, to
= Adiah V, while in thermal contact with
S|, 1 labat the low temperature resorvoir
& temperature T.), isothermall
£ M\H(pz, v2) gnd r%versibly.C) ’

(P4, V) Isotherm

\Y

Isotherm\ 2 g, =RT, In—=

V3

3
(Ps, V) w=—-RT_In Ve
N Ve
Volume, V AU =0

http://bp.snu.ac.kr 19



Adiabat Step 4 [Adibatic].

_ INNEYCRA The gas is compressed

S Adiabat adiabatically and reversibly from
2| 4 1 V, to V,, warming in the process
ST (p,, V) from T to T,.

(P4 Va) Isotherm
Isotherm\ 2 g=0
3 w=AU =["C,dT
(P3, V) ’
N
Volume, V

http://bp.snu.ac.kr 20



Adding these together, Step 1 Step 3

glcycle) =g, +a, = AT,In2 + AT In%
2 Vs
Step 1
W(cycle) =—-H7, In% — AT, In%
3
Step 3
AU(cycIe)z 0 :

For an ideal gas, and for reversible and adiabatic expansion*

C Ian— RIan
L TV (2E.2b)

*dq=0; dU =dw=-pdv  dU =C,dT.
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w(cycle) =—RT, In \% —RT, In Vs

1 V3
Apply the relation to the steps 2 and 4 Adiabat
In 1o In V2 In Vi SEONOND
C,,In=-=—-RIn—==-RIn—+ o) :
v, T v, Vv, § N 1 \Adlabat
.'.ﬁzﬁjﬁz\é:m\éz_m\i E Tc H\SpZ’VZ)
V3 V4 V4 V1 Vl V3 (p4,V4) Isotherm
2
L —W=RT,InY2_RT,InY2 =R(T, -T,)In 2 |'Sthem
V, V, V, 3
(P3,V3)
q, = RT, In Ve %\3 3
! Volume, V

.. The efficiency of a Carnot engine is the ratio of the net work (-w)
to the fuel burned to provide the heat g,. —

. -w T -T T
efficiency = — =-——= =1—(—°j 3A.10
o T T, (3A.10)
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Any Reversible Cycle

Survive

Pressure, p

Figure 3A.10

Volume, V

A general cycle can be divided into small Carnot cycles. The match is exact in the limit
of infinitesimally small cycles. Paths cancel in the interior of the collection, and only
the perimeter, an increasingly good approximation to the true cycle as the number of
cycles increases, survives.

Because the energy or entropy change around every individual cycle is zero, the integral
of the energy or entropy around the perimeter is zero too.
http://bp.snu.ac.kr 23




Hot source

http://bp.snu.ac.kr

= -1dql/T,

dS = +Idql/T,

Brief Illus. 3A.6

(skip)

When energy leaves a hot reservoir as
heat, the entropy of the reservoir
decreases.

When the same quantity of energy
enters a cooler reservoir, the entropy
Increases by a larger amount.

Hence, overall there is an increase in
entropy and the process is
spontaneous.

Relative changes in entropy are
indicated by the sizes of the arrows.

24



Brief Hlus. (skip)
3A.6 T ‘ t
A\ 9y Reverse of
-\ <«—— Carnot Cycle

w

not spontaneous \

J i

(a) The flow of energy as heat from a cold source to a hot sink is not spontaneous. As
shown here, the entropy increase of the hot sink is smaller than the entropy decrease of
the cold source, so there is a net decrease of entropy.

(b) The process becomes feasible if work is provided to add to the energy stream. Then
the increase of entropy of the hot sink can be made to cancel the entropy decrease of the
cold source.
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3C Concentrating on the System (p. 131)

The criterion for Natural, spontaneous change solely
In terms of the properties of the system is:

i) Constant volume:  (dq), =dU

ds _av >0 TdS >duU for spontaneous
T

ii) Constant pressure: (dq)p =dH

ds _dTH >0 TdS >dH for spontaneous

dS—d—qZO

http://bp.snu.ac.kr
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Now one can €TINE new thermodynamic functions for the criterion of
spontaneous process.

i) Helmholz function: A=U —T3 > J eI K

11) Gibbs function: G=H-TS

At constant temperature,

dA=dU -TdS dG =dH -TdS

A: maximum work function or work function Chap. 3C.1(c) (skip)

Consider an isothermal system changing reversibly and delivering
maximum work.

dU =dgq,,, +dw,,

dA=dU -TdS =dq,,, +dw,, —TdS
Since TdS = dq,,,

-.dA=dw, atconstant temperature

It follows that if we know A4A for a process, we also know the

maximum amount of work that the system can do. (—w,,, = —AA)
http://bp.snu.ac.kr 27



(skip)
3C.1(e) Some Remarks on the Gibbs Function

AG =G, -G
dH =dU +d(pV)=dq,,, +dw,, +d(pV)

react

At constant temperature

dG =dH —T}sé dg,,, +dw,_, +Vdp + pdV —;ds
=dw,,, +Vdp + pdV

where dw__ Is the maximum work of the system (expansion work

rev

(-pdV) + other kinds of work).

dG =—pdV +dw, , +\dp + pdV/

dG =dw, ., 0 (constant pressure)

At constant pressure and temperature, the change of the Gibbs
function in a particular process gives the maximum extra work.
This extra work is called the net work. (—w, _ =-AG)
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3B The Variation of Entropy with Temperature
(constant P)

S(Tf):S(Ti)+ .f%’ dqrev:deT

JooT
S(T )—S(T " 1 CdT After Measuring C, Experimentally,
SR I | We Can Identify S(T), H(T) & G(T).

If C, Is Independent of temperature in the temperature range of
Interest, we obtain

S(T,)=s(T)+C, [ ‘%r_T _S(T)+C, ,ntj

At some temperatures between 0 and T, the materials may change its
phase and absorb heat in the process.

Csolld Cll AH Cgas
A o, [T

S(T)=S(O)+j0 = dT + Tfme"+Tde + " <

In the vicinity of absolute zero: C, =aT’
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O
Melt
Boill

temperature axis: not linear

C,/T
h"H-.._____
C
s g | (b)
N T
o X
> 9
Q o
A g =
'
—aT? 'g Gas
Co=al™) J20iliie®s s(0) Ll
Tf Tb T Tb T

Figure 3B.1

The determination of entropy from heat capacity data.
(@) The variation of C /T with the temperature for a sample.

(b) The entropy, which is equal to the area [in (a)] beneath the upper curve
up to the corresponding temperature, plus the entropy of each phase
transition passed.

http://bp.snu.ac.kr
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Chapter 3B.2

At absolute zero, all quenchable energy has been quenched. In the
case of a perfect crystal at absolute zero, all the atoms are in a regular,
uniform array, and the absence of disorder and thermal chaos suggests
that the entropy Is the same In every case.

The Third Law of Thermodynamics:

All perfect crystals have the same entropy at absolute zero.

If the value zero is arbitrarily ascribed to the entropies of the
elements (in the perfect crystalline form stable at T = 0 K),

then all perfect crystalline compounds also have zero entropies at
absolute zero.

http://bp.snu.ac.kr
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Chapter 3D Combining the First and Second Laws

G=G(p,T,n) n:composition

Combining the first law and second law

The first law says

dU =dqg +dw (1)
For reversible processes in the absence of any kind of work other than
pV-work,

aw.,, =-padV (2)

aq,, =7dS 3)

duU =T7dS - paV “)

Master equation or fundamental equation
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au =7adS — pdV

U=U(SV)
du :(a_uj ds +(5—Uj dv (5)
oS )y oV )
Comparing egs (4) and (5), we obtain relationships. dU =TdS — pdV
oU
— | =T 6
=) ®
ouU
—|—| = 7
(av ) i 2

Equation (6) enables a temperature to be expressed solely in terms of
extensive thermodynamic quantities. If the volume is constant, the
relation states that the ratio of the change in energy (a First Law concept)
to the corresponding change in entropy (a Second Law concept) is equal
to the temperature of the system, whatever its nature or composition.

-160420(%)
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3.8(a) Various Maxwell Relationships

dU =TdS — pdV (4)
U : exact differential

By using the relation No. 4,

oT op

o) __(op 0 |
(av js (55 jv (8) Maxwell relation
G=H-TS
dG = '+ pd¥’ +Vdp ~ TS - ST - dU =TdS - pdV
- dG =Vdp— SdT )

G : exact differential

oV 0S
— | =— — 10) Maxwell relati
(aij (Gpl (10) xwell relation
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Note:

If f is a function of x and y, then when x and y change by
dx and dy, f changes by

=(2) e (L)

ox ay/,
Partial derivatives may be taken in any order:
o’f i
3x 3y dy ox

In the following, z is a variable on which x and y depend
(for example, x, y, and z might correspond to p, V,
and 7).

Relation No. 1. When x is changed at constant z:

(5.2 G+ 5.3

Relation No. 2 (the Inverter).

BT
3y/. (dy

Relations between partial derivatives

Relation No. 3 (the Permuter).

5).--GG).

By combining this and Relation No. 2 we obtain Euler’s

chain relation:
)5
dy/. \oz/ \ox/,

Relation No. 4. This relation establishes whether or not df
is an exact differential.

3 oh
df =g dx + h dy is exact if(—g) =<—)
oy/ axi,
If df is exact, its integral between specified limits is
independent of the path.

http://bp.snu.ac.kr
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A=U —TS
dA=dU —TdS — SdT

From equations (4) and (11)
dA=—-pdV —SdT

A :exact differential

o), ~Lar),

Maxwell relation

http://bp.snu.ac.kr

(11)

(12) Maxwell relation
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H=U+PV
dH =dU + pdV +Vdp

From equations (4) and (13), dU =TdS-pdV
dH =TdV +Vdp

H : exact differential

5L15)

Maxwell relation

http://bp.snu.ac.kr
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3D.1(b) The Variation of Internal Energy with VVolume

(auj :T(apj -p (Sec. 2D.2)
oV ); oT )

oU oU
Derivation dU(S,V) = (a_s)v ds + (a_vl dv (5

Dividing equation (5) by dV and imposing constant temperature,

&) - EE AR (9

Combining equations (6), (7) and (15), one can obtain

(%) (%)
N T v T Maxwell relation
oL : : : 0S op
Substitution of equation (12) into equation (16) (—j =(—j
oV ). \aT ),
BECE
N ); ot )y (3D.6)
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Example 3D.2 (8U

Show thermodynamically that a_v)T is zero for an ideal gas,

and compute its value for a van der Waals gas. 5U ap
Solution: [j = (j —P
. _ N ); or ),
For an ideal gas, pV=nRT.
& &
or ).V ov ). \aT ),
Combining two equations,
(au j nRT
_ - p — O
N ).V
nRT n’a

The equation of state of a van der Waals gas P = V_nb V2
IR
or ), V-—nb

(Qj _ORT__ nRT _h'a
v ).~V —nb —nb v/ nb v2 V2 ppt 2-61
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3D. 2 Properties of the Gibbs Free Energy

G=H-TS
H=U-+pV
dG =dH —-TdS —SdT
=dU + pdV +Vdp —TdS - SdT (17)
Combining equation (4)and (17),
. dG =TdS — pdV + pdV +Vdp —TdS —SdT

=Vdp - SdT (18)
G = G(p T) Master equation
dG = | dp+ (an dT (19)
ap oT
Combining egs (18) and (19), one obtains
Gy, (@j =S (20)
op ), or J,

http://bp.snu.ac.kr
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G dG =—-SdT +Vdp+ > xdn,

' (Chap. 5)
Gibbs
energy, G Figure 3D.1
Curvature The variation of the Gibbs energy of a
system:
- with temperature at constant P
- with pressure at constant T
Slope =+V The slope of the former is equal to the

negative of the entropy of the system
and that of the latter is equal to the
volume

« Curvature for P
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Figure 3D.2

Gas

Gibbe energy, G

curvature

(@j _ s
ot J,

curvature

dG =—-SdT +Vdp+ > xdn,

The variation of the Gibbs energy with the
temperature is determined by the entropy.

Because the entropy of the gaseous phase of
a substance is greater than that of the liquid
phase, and the entropy of the solid phase is
smallest, the Gibbs energy changes most
steeply for the gas phase, followed by the
liquid phase, and then the solid phase of the
substance.

http://bp.snu.ac.kr

Temperature, T
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3D.2(b) The Change of Gibbs Energy with Temperature

Equation (20) implies that, as S is always a positive quantity, G must decrease
when the temperature is raised at constant pressure (see Figure 3D.1).

G=H-TS szHT_G (21)
Combining egs (20) and (21),
6G) G-H oG
(5).-%5 @ [F) -
oG/T)) _1(aG) ,4f 2 (1
( ot jp_T(aijG(aT[TDp 2
1 |(0G G
HE)
Combining egs (22) and (23), one obtains
o(G/T) H
( 2/ jp:—; 24) G(T) — H(T)

Gibbs-Helmholtz equation (3D-10)
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For a chemical reaction,

Initial state (reactants)—final state (products)

AG=G, -G

(a(AcT;/T)jp :_[:sz )

(6(AG/T)] __AM

oT T2

http://bp.snu.ac.kr
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3D.2(c) The Change of Gibbs Free Energy with Pressure

5]
op ),

For a reaction in which G; changes to G;,

OAG
ap

Integration of the above equation results in

G(p, )=G(Pi)+j:fV(p)dp (*) (3D.12b)

J =AV, Where AV=V,-V,
;

G 1s virtually independent of pressure for solid or liquid.
For liguid or solid, volume depends only very weakly on the pressure:
Gm(pf );Gm(pi)_l_(pf — b )Vm

Except at very high pressure, (p, — p;)V,, is very small and virtually no
error is introduced.

. For solids and liquids, G, (p; )~G,(p,)
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Gibbe energy, G

Figure 3D.3

Gas

Liquid

m

http://bp.snu.ac.kr

Pressure, p

The variation of the Gibbs energy with the
pressure is determined by the volume of
the sample.

Because the volume of the gaseous phase
of a substance is greater than that of the
same amount of liquid phase, and the
volume of the solid phase is smallest (for
most substances), the Gibbs energy
changes most steeply for the gas phase,
followed by the liquid phase, and then the
solid phase of the substance.

Because the volumes of the solid and
liquid phases of a substance are similar,
they vary by similar amounts as the
pressure is changed.

~5%10%2 atoms / cm?3
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dG =-SdT +Vdp + Z:,uidﬂi (Chap. 5)

volme,  Acwal  G(p)=G(p)+["V(p)p
volume P
pf pi )V

gonstant\ \ | Gm( )EGm(pi +(pf _
| 5 . AG_=V_Ap

m

Solid or Liquid

Figure 3D.4
The difference in Gibbs energy of a

solid or liquid at two

; A ; pressures is equal to the rectangular
< p > area shown.

Volume, V

We have assumed that the variation of

P i i i
Pressure, p P volume with pressure is negligible.
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For anideal gas, V :ﬂ

p

G(p; )=G(p)+ | V(p)dp )

Pi

Inserting the above equation into equation (*) yields

G(p, )=G(p)+[" %dp

~.G(p,)=G(p,)+nRT nr Ideal Gas
Pi constant T

http://bp.snu.ac.kr

(3D.12b

(3D.15)

)
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V=nRT/p

Ideal Gas
constant T

Volume, V

Isothermal Compression

_[Vdp

Pi Pr
Pressure, p

http://bp.snu.ac.kr

G(p,) =G(p,)+RT In -F

Figure 3D.5

The difference in Gibbs energy for
a perfect gas at two pressures is
equal to the area shown below the
perfect-gas isotherm.
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3D.2(c) Chemical Potential of an Ideal Gas

Standard state of an ideal gas = 1 atm G(p,)=G(p,)+NRT In Ps

Gibbs functionat 1 atm=G?© P;

At any other pressure p,
G(p) =G’ +nRT In(p/atm)

For one mole of material,

G.(p)=G. +RTIn(p/atm
n(P)=G; (p/atm) Molar Gibbs Free Energy

We write 2=G,_(p): Chemical Potential

u(p,T)=1"(M)+RTInp \deal Gas  (3D.15)
For a single component, chemical potential = G

m

10,7, 0,05, 0,,...) = 1’(p,T) + AT Inp,

Ideal Gas
http://bp.snu.ac.kr 50




Single Component + ldeal Gas

u(p,T)=G,(p,T)=x"(T)+RT In p

----------------------------------------------

Figure 3D.6

The molar Gibbs free energy of a
perfect gas is proportional to In p.

Molar Gibbs energy, G_

p : 1 (unitless)
pe

l Pressure, p
—00
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: (skip)
Real Gases: the Fugacity

G.(p)=G. +RTIn(p/atm) : applicable to ideal gases

For real gases, we are to determine the pressure dependence of the
volume of a sample of real gas and to calculate G(p) from _[V(p)dp
by numerical integration.

G =G’ +RTIn(f/atm) = u=4"+RTIn(f/atm)

The quantity f plays the role of the pressure, but it has a value which
ensures that the chemical potential is given by the last equation
whatever the pressure. Here f is called as the fugacity of gas.

The following equation is true for all substances.

G(p)=G(p)+ [ 'V(P)dp; G, (P,) =G, (p)+[ "V, (P)dp
Hence, for a real gas,

f f
V=4 (p, T) 4 (p, T)=RT In -
Pi .
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For an ideal gas,

f f
p Vn:ealdp :lureal (pf ,T)_ﬂreal(pi,T) —RT Ian
Pi

The difference of the two equations

f f
jp V= (p) =V () fdp = RTInT—RT In In I:)f

(ff / pf) Pt real ideal
'ﬂ{ }RT V! (p) -V (p) fdp

(f./p)

p, =0 i—>1

p,

In(pj j {Vreal(p) Vldeal(p)}dp

V ideal _ ﬂ

p

http://bp.snu.ac.kr
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Molar Gibbs energy, G_

Real

gas
Perfect

_ Attractions
. dominant

o
P

Repulsions dominant

.

http://bp.snu.ac.kr

Pressure, p

(skip)

Figure 3.25

The molar Gibbs free energy of a
real gas. As p — 0, the molar Gibbs
free energy coincides with the value
for a perfect gas. When attractive
forces are dominant (at intermediate
pressures), the molar Gibbs free
energy Is less than that of a perfect
gas and the molecules have a lower
‘escaping tendency’. At high
pressures, when repulsive forces are
dominant, the molar Gibbs free
energy of a real gas is greater than
that of a perfect gas. Then the
‘escaping tendency’ is increased.
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The Real Volume-Pressure Dependence

Compression factor

err:eaI :>V real __ ZRT

RT P

— f _ 1 P real ideal
Forarealgas,z=z(p, T) In(pj_RTJ‘O {Vm (p)-V, (P)}dp

In(f]:1 p[zRT_RTjdp:RT p(z(p,T)—ljdp
P RT -0 P P RT 0 P

ya—

http://bp.snu.ac.kr
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Standard States of Real Gases

For an ideal gas, p = latm: standard state

For a real gas, f = 1atm: standard state
f =
g : fugacity coefficient p(p)=° +RT In(f /atm)

1(p)=° +RT In(p/atm)+RT In y
\ )

|

The chemical potential of  Deviation from ideality
an ideal gas

http://bp.snu.ac.kr
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Open System and Changes of Composition
dG = —SdT +Vdp G =2 mn,

At constant pressure and temperature, Gibbs function has no changes.
However, when composition change, Gibbs function changes.

G(p’T): G(p,T’ n,n,,n,,-- ) dG = -SdT +Vdp +Z:,Llidﬂi
where n,, n,, ... are the amount of substances 1, 2, ...present. Derivation in
Chap. 5
dG = (an dp + (ﬁj dT P
ap TNy, Ny oT p,Ng Ny (1)

oG oG
+| — dn, +| — dn, +---
anl p,T,ny,Ng--- anZ p,T.n,Ng

Let the composition be fixed and permit only the temperature and
pressure to change.

oG . G __
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Suppose now that substance 1 is the only substance present. (
G oc the amount of material present

G=nG,, =Nt At constant temperature and pressure,
dG = g dn

Therefore, the chemical potential of species 1 is the measure of how the
Gibbs function of species 1 changes when the amount present is varied.

More than One Component:

U (T, p,nj)= a_nl (as a definition)

T,p.n;

_%

Partial Molar Gibbs Free Energy for atom |

= Chemical Potential for atom I
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Substituting egs (2), (3) and (4) into eq (1), one obtains

dG =-SdT +Vdp + g dn, + w,dn, +--- (later)
dG = oG dp +(§) dT
ap T,n N, aT P,Ny,Ny--
0G 0G
+| — dn, +| — dn, +---
More general form (5“11;,%,”3... (8n2 jpm e

dG(T, p,n;) =-SdT +Vdp+ > zdn,

(reversible)

the master equation of chemical thermodynamics
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Entropy (Boltzmann Formula) + £ st MI2E =l BSR

AlloyOll Al g, and p, S8 8He: &8 8t (Chap. 5)

Problems from Chap. 3

3A.2
3A.1(b) 3A.2(b) 3A.3(b) 3A.5(b) 3A.7(b)
3A.2

3B.8

3D.2

3D.1(b) 3D.2(b) 3D.3(b)

3.2

-160425(&)
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