
운영체제의기초:

Process Synchronization

2023년 4월 13, 18, 20일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수

2

Agenda

I. Why Process Synchronization?

II. Semaphore

III. Condition Variable

IV. Monitor

Process Synchronization

I. Why Process Synchronization?

4

Why Process Synchronization? (1)

❖ Processes interact with each other for good

❖ Why permit processes to cooperate?

▪ Want to share resources

• One computer, many users

• One checking account file, many tellers

▪ Want to do things faster

• Read next block while processing current one

• Divide jobs into sub-jobs, execute in parallel

▪ Want to construct systems in modular fashion

• UNIX example: tbl | eqn | troff

I. Why Process Synchronization?

5

Why Process Synchronization? (2)

❖ Properties of interacting processes

▪ Have shared resources and states

▪ Non-deterministic

• Outputs may vary depending execution ordering of processes

▪ Their behavior is maybe irreproducible

• Can’t stop and restart with no bad effects

I. Why Process Synchronization?

6

Uncontrolled Task Interactions (1)

❖ Data sharing problem instance

▪ Interrupt routines and task code may share one or more

variables that they can use to communicate with each other

▪ This may cause a data sharing problem – a sort of

synchronization problem

▪ Such a task is referred to as non-reentrant code

▪ Example: nuclear reactor monitoring system

I. Why Process Synchronization?

7

Uncontrolled Task Interactions (2)

I. Why Process Synchronization?

static int iTemperatures[2];

void interrupt vReadTemperatures (void) {

iTemperatures[0] = !! Read in value from hardware

iTemperatures[1] = !! Read in value from hardware

}

void main (void){

int iTemp0, iTemp1;

while(TRUE){

iTemp0 = iTemperatures[0];

iTemp1 = iTemperatures[1];

if (iTemp0 != iTemp1)

!! set off howling alarm;

}

}

8

Uncontrolled Task Interactions (3)

I. Why Process Synchronization?

static int iTemperatures[2];

void interrupt vReadTemperatures (void) {

iTemperatures[0] = !! Read in value from hardware

iTemperatures[1] = !! Read in value from hardware

}

void main (void){

int iTemp0, iTemp;

while(TRUE){

iTemp0 = iTemperatures[0];

iTemp1 = iTemperatures[1];

if (iTemp0 != iTemp1)

!! set off howling alarm;

}

}

If interrupt occurs between these

two statements, iTemp0 and

iTemp1 will differ and the system

will set off the alarm, even though

the two measured temperatures

were always the same.

9

Uncontrolled Task Interactions (4)

I. Why Process Synchronization?

static int iTemperatures[2];

void interrupt vReadTemperatures (void){

iTemperatures[0] = !! Read in value from hardware

iTemperatures[1] = !! Read in value from hardware

}

void main (void){

while (TRUE){

if (iTemperatures[0] != iTemperatures[1])

!! set off howling alarm;

}

}

The same bug as in previous page!

The problem is that the statement

that compares iTemperatures[0]

with iTemperatures[1] can be

interrupted.

10

Uncontrolled Task Interactions (5)

❖ Solution

▪ Disable interrupts

I. Why Process Synchronization?

void main (void){

int iTemp0, iTemp;

while(TRUE){

disable(); /*Disable interrupts using array*/

iTemp0 = iTemperatures[0];

iTemp1 = iTemperatures[1];

enable();

if (iTemp0 != iTemp1)

!! set off howling alarm;

}

}

11

Task Reentrancy (1)

❖ To handle cooperating processes, we need the

notion of non-interruptible operations

▪ The operation cannot be interrupted in the middle

▪ Examples:

int A,B; A = B; // On most systems

• On uniprocessors, code between interrupts

• Test-and-set instruction in some architectures

❖ To provide non-interruptible operations, we need

some hardware support

I. Why Process Synchronization?

12

Task Reentrancy (2)

❖ Synchronization

▪ Using atomic operations to ensure correct operation of

interacting processes

▪ Example of interacting processes that need synchronization

• Two processes execute the following code

if(BufferIsAvail) {

BufferIsAvail = FALSE;

UseBuffer();

BufferIsAvail = TRUE;

}

I. Why Process Synchronization?

13

Task Reentrancy (3)

I. Why Process Synchronization?

Time Proc 1 Proc 2

0 if(BufferIsAvail)

1 if(BufferIsAvail)

2 BufferIsAvail = FALSE

3 BufferIsAvail = FALSE

4 UseBuffer();

5 UseBuffer();

Problem: Both processes issue UseBuffer()

14

Task Reentrancy (4)

❖ Lack of atomicity of “if” and “assignment”

❖ Mutual exclusion

▪ Mechanisms which ensure that only one person or process

is doing certain things at one time

❖ Critical section

▪ A section of code, or collection of operations, in which only

one process may be executing at a time

I. Why Process Synchronization?

15

Task Reentrancy (5)

❖ Requirements for a mutual exclusion mechanism

▪ Only one process is allowed in a critical section at a time

▪ If several requests at once, it must allow one process to

proceed

▪ It must not depend on processes outside critical section

I. Why Process Synchronization?

16

Task Reentrancy (6)

❖ Desirable properties for a mutual exclusion

mechanism

▪ Don’t make a process wait forever

▪ Efficient

• Don’t use up substantial amounts of resources when waiting

• Example: busy waiting

▪ Simple

• Should be easy to use

I. Why Process Synchronization?

II. Semaphore

18

Motivations (1)

II. Semaphore

19

Motivations (2)

II. Semaphore

20

Operations (1)

II. Semaphore

열쇠 줘~열쇠 받아~기다려~

열쇠 받아~

21

Operations (2)

II. Semaphore

열쇠 받아~

22

Basics

❖ One of key synchronization mechanisms

▪ Synchronization variables that take on integer values

▪ P(Semaphore)

• An atomic operation that waits for semaphore to become

positive and then decrements it by one

• Also called wait()

▪ V(Semaphore)

• An atomic operation that increments semaphore by one

• Also called signal()

▪ They are simple and elegant

▪ They do a lot more that just mutual exclusion

II. Semaphore

23

Usage

II. Semaphore

Task1(){

P(S1)

use pr;

V(S1)

}

Task2(){

P(S1)

use pr;

V(S1)

}

semaphore S1 = 1;

24

Initialization (1)

❖ Binary semaphore versus counting semaphore

II. Semaphore

25

Initialization (2)

II. Semaphore

Task1(){

P(S1)

use pr;

V(S1)

}

Task2(){

P(S1)

use pr;

V(S1)

}

semaphore S1 = 2;

26

Basics

❖ Buffer example with semaphores:
P(BufferIsAvail);

UseBuffer();

V(BufferIsAvail);

▪ Note: BufferIsAvail must be set to one

▪ What happens if BufferIsAvail is set to two? or zero?

❖ Roles of semaphores

▪ Mutual exclusion

▪ Scheduling

II. Semaphore

27

Scheduling

II. Semaphore

ISR Task

V(S) P(S)

semaphore S = 0;

28

Producer/Consumer (1)

❖ Three key components

▪ Producer: Creates copies of a resource

• Example: User typing characters

▪ Consumer: Uses up (destroys) copies of a resource

• Example: Program reading users characters

▪ Buffers: Memory used to hold info after the producer has

created it and before the consumer has used it

❖ Operating rules

▪ Allow producer to get ahead of consumer

▪ Consumer and procedure don’t operate in lock-step

II. Semaphore

29

Producer/Consumer (2)

II. Semaphore

write to

buf

read

from buf

Producer Consumer

Bounded buffer with blocking reads and writes

30

Producer/Consumer (3)

❖ What is “correct” for this example?

❖ Constraints

▪ The consumer must wait for the producer to fill some of the

buffer space if the buffer is empty

▪ The producer must wait for the consumer to empty some of

the buffer space if the buffer is full

❖ A separate semaphore is used for each constraint

▪ buf_avail — Initialized to numBuffers

▪ data_avail — Initialized to 0

II. Semaphore

31

Producer/Consumer (4)

II. Semaphore

Producer(){

P()

buf = data;

V()

}

Consumer(){

P()

data = buf;

V()

}

Semaphore buf_avail = 3,

data_avail = 0;

buf_avail

data_avail

data_avail

buf_avail

32

Producer/Consumer (5)

❖ Note

▪ V() is done when a resource is created

▪ P() when destroyed

II. Semaphore

33

Disable Interrupts (1)

II. Semaphore

Task1(){

P(S1)

use pr1;

V(S1)

}

Task2(){

P(S1)

use pr1;

V(S1)

}

34

Disable Interrupts (2)

II. Semaphore

Task3(){

P(S2)

use pr2;

V(S2)

}

Task1(){

disable intr

use pr1;

enable intr

}

Turn all traffic lights in Seoul into red

35

Drawbacks (1)

II. Semaphore

Producer(){

P(S1)

buf = data;

V(S2)

}

Consumer(){

P(S2)

data = buf;

V(S1)

}

Semaphore naming issue

36

Drawbacks (2)

II. Semaphore

Task1(){

P(S1)

buf = data;

V(S1)

}

Task2(){

P(S2)

data = buf;

V(S1)

}

Is this a race condition or not?

37

Solution

II. Semaphore

Task1(){

mutex_lock(S1)

buf = data;

mutex_unlock(S1)

}

Task2(){

mutex_lock(S2)

data = buf;

mutex_unlock(S1)

}

This is surely a race condition

38

Implementation (1)

❖ Uniprocessor solution:

struct Semaphore {

int cnt;

Queue queue;

}

❖ Key idea

▪ Use disable interrupt primitive to get mutual exclusion

II. Semaphore

39

Implementation (2)

II. Semaphore

P(S) {

disableInterrulpts();

if(S.cnt-- > 0)

enableInterrupts();

else

sleep(S.queue);

}

sleep(Q) {

// cur_p is current proc

enqueue(cur_p, Q);

enableInterrupts();

yield_cpu();

}

V(S) {

disbleInterrupts();

if(S.cnt++ >= 0)

enableInterrpts();

else

wakeup(S.queue);

}

wakeup(Q) {

p = dequeue(Q);

enableInterrupts();

reschedule(p);

}

40

Implementation (3)

❖ Semaphore implementation of the previous slide

▪ Works only for FIFO semaphore queue

▪ Works only for a single core processor

II. Semaphore

41

Implementation (4)

❖ Guaranteeing atomicity on a single processor

II. Semaphore

CPU 1

Shared Data

Memory

Bus

42

Implementation (5)

❖ Multiprocessor solution:

▪ Mutual exclusion is harder

❖ Possibilities

▪ Prevent other processors from accessing main memory

▪ Use atomic hardware support for memory operations

• Memory accesses via unified read-and-write bus transactions

• Atomic read-modify-write instruction

II. Semaphore

43

Implementation (6)

❖ Broken atomicity on a multiprocessor

II. Semaphore

Shared Data

Bus

CPU 1 CPU 2

Memory

44

Implementation (7)

❖ Guaranteeing atomicity on a multiprocessor

II. Semaphore

CPU 1 CPU 2

Memory

Bus

Shared Data

45

Implementation (8)

❖ Multiprocessor-safe primitives:

▪ Utilize test-and-set (TAS) instruction

▪ Change disableInterrupt(); to

disableInterrupt();

while (TAS(lockMem) ! = 0) continue;

▪ Change enableInterrupt(); to

lockMem = 0;

enableInterrupt();

▪ Note:

• Multiprocessor solution does some busy-waiting

II. Semaphore

46

Implementation (9)

❖ Important point

▪ Implement some mechanism once, very carefully and then

always write programs that use that mechanism

• Layering is very important

II. Semaphore

47

pthread Mutex (1)

❖ Header file
▪ #include <pthread.h>

❖ Semaphore declaration
▪ pthread_mutex_t mutex;

❖ Semaphore functions
▪ int pthread_mutex_init(

pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

▪ int pthread_mutex_lock(*mutex);

▪ int pthread_mutex_unlock(*mutex);

▪ int pthread_mutex_destroy(*mutex);

II. Semaphore

48

pthread Mutex (2)

II. Semaphore

#include <stdio.h>

#include <string.h>

#include <pthread.h>

#include <stdlib.h>

#include <unistd.h>

pthread_t tid[2];

int counter = 0;

pthread_mutex_t mutex;

49

pthread Mutex (3)

II. Semaphore

void *ThreadCode(void *argument)

{

pthread_mutex_lock(&mutex);

unsigned long i = 0;

counter++;

printf(“\n Job %d started.\n”, counter);

for(i=0; i<0xFFFFFFFF; i++);

printf(“\n Job %d finished.\n”, counter);

pthread_mutex_unlock(&mutex);

return NULL;

}

50

pthread Mutex (4)

II. Semaphore

int main(void)

{

int i = 0, err;

/* Since mutex is a binary semaphore, it gets 1 */

if (pthread_mutex_init(&mutex, NULL) != 0){

printf("\n mutex_init failed.\n");

return 1;

}

while (i < 2){

err = pthread_create(&(tid[i]), NULL, ThreadCode, NULL);

if (err != 0)

printf("\ncan't create thread: [%s].\n", strerror(err));

i++;

}

pthread_join(tid[0], NULL);

pthread_join(tid[1], NULL);

pthread_mutex_destroy(&mutex);

return 0;

}

51

pthread Mutex (5)

II. Semaphore

$ gcc mutex.c –o mutex –lpthread

$./mutex

Job 1 started

Job 1 finished

Job 2 started

Job 2 finished

52

POSIX Semaphores (1)

❖ Header file
▪ #include <semaphore.h>

❖ Semaphore declaration
▪ sem_t sem;

❖ Semaphore functions
▪ init sem_init(sem_t *sem, int pshared,

unsigned int value);

▪ int sem_wait(sem_t *sem);

▪ int sem_post(sem_t *sem);

▪ int sem_destory(sem_t *sem);

II. Semaphore

53

POSIX Semaphores (2)

II. Semaphore

#include <stdio.h>

#include <string.h>

#include <pthread.h>

#include <semaphore.h>

#include <stdlib.h>

#include <unistd.h>

pthread_t tid[2];

int counter = 0;

sem_t sem;

54

POSIX Semaphores (3)

II. Semaphore

void *ThreadCode(void *argument)

{

sem_wait(&sem);

unsigned long i = 0;

counter++;

printf(“\n Job %d started.\n”, counter);

for(i=0; i<0xFFFFFFFF; i++);

printf(“\n Job %d finished.\n”, counter);

sem_post(&sem);

return NULL;

}

55

POSIX Semaphores (4)

II. Semaphore

int main(void)

{

int i = 0, err;

/* Since sem is a binary semaphore, it gets 1 */

if (sem_init(&sem, 0, 1) != 0){

printf("\n sem_init failed.\n");

return 1;

}

while (i < 2){

err = pthread_create(&(tid[i]), NULL, ThreadCode, NULL);

if (err != 0)

printf("\ncan't create thread: [%s]", strerror(err));

i++;

}

pthread_join(tid[0], NULL);

pthread_join(tid[1], NULL);

sem_destroy(&sem);

return 0;

}

56

POSIX Semaphores (5)

II. Semaphore

$ gcc semaphore.c –o semaphore –lpthread

$./semaphore

Job 1 started

Job 1 finished

Job 2 started

Job 2 finished

III. Condition Variable

58

What is Condition Variable?

❖ Condition variable

▪ An event having two operations that are performed on itself

• Two operations: wait(c), signal(c)

• Note that a condition variable has no value!

– One cannot store a value into or

retrieve a value from a condition variable

• A thread waits for an event to occur using wait(c)

– Condition variable “c” corresponds to the event

– Condition variable is associated with a waiting queue

• A thread wakes up another thread
waiting on an event using signal(c)

– Condition variable “c” corresponds to the event

III. Condition Variable

59

POSIX Condition Variable (1)

❖ Header file
▪ #include <pthread.h>

❖ Semaphore declaration
▪ pthread_cond_t cond;

❖ Semaphore functions
▪ int pthread_cond_init(

pthread_cond_t *cond,

const pthread_condattr_t *attr);

▪ int pthread_cond_wait(*cond, *mutex);

▪ int pthread_cond_signal(*cond);

▪ int pthread_cond_destroy(*cond);

III. Condition Variable

60

POSIX Condition Variable (2)

III. Condition Variable

#include <stdio.h>

#include <pthread.h>

/* static initializers */

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int data_produced = 0;

int count = 0;

61

POSIX Condition Variable (3)

III. Condition Variable

void *consumer(void)

{

while (1) {

pthread_mutex_lock(&mutex);

while (data_produced == 0)

pthread_cond_wait(&cond, &mutex);

printf("Consumed %d\n", count);

data_produced = 0;

pthread_cond_signal(&cond);

pthread_mutex_unlock(&mutex);

}

return 0;

}

62

POSIX Condition Variable (4)

III. Condition Variable

void *producer(void)

{

while (1) {

pthread_mutex_lock(&mutex);

while (data_produced == 1)

pthread_cond_wait(&cond, &mutex);

printf("Produced %d\n", count++);

data_produced = 1;

pthread_cond_signal(&cond);

pthread_mutex_unlock(&mutex);

}

return 0;

}

63

POSIX Condition Variable (5)

III. Condition Variable

int main(void)

{

pthread_t tid[2];

pthread_create(&(tid[0]), NULL, consumer, NULL);

pthread_create(&(tid[1]), NULL, producer, NULL);

pthread_join(tid[0], NULL);

pthread_join(tid[1], NULL);

return 0;

}

64

Why Condition Variable Needs Mutex?

❖ Reason

▪ wait() involves unlocking, blocking, wake-up, and locking

▪ wait() needs an atomic operation that is able to (1) do the

wait and (2) unlock the mutex atomically

• Calling unlock() and wait() in series does not work

– If signal() is issued after unlock() and before wait(),

signal() will be missed and wait() will stay blocked

• Neither does calling wait() and unlock()

– The thread gets blocked with the mutex being locked

III. Condition Variable

IV. Monitor

66

Why Monitors?

❖ Motivations

▪ Semaphore is an unstructured construct

• Prone to synchronization bugs – race condition

• Too low-level

▪ Great if we have a structured construct

having a higher-level abstraction

• High-level mutual exclusion semantics

– Only one thread is active in the construct at any given time

• Locks are hidden

– Automatically locks and unlocks to enter or exit from a critical

section

▪ Too good to be true?!

• No – the answer to this wish is “monitor”

IV. Monitor

67

What is Monitors? (1)

❖ Key ideas

▪ Monitor

• A synchronization tool that automatically locks and unlocks a

mutex lock (AKA monitor lock) when in a critical section

– The mutex lock is added implicitly to the code, never seen by user

• Has condition variables for dealing with diverse scheduling

situations (thread cooperation)

• Mostly associated with an abstract data type (ADT)

▪ ADT

• A class of objects whose logical behavior is defined by a set of

values and a set of operations

• Reminds us of a class in an object-oriented language

IV. Monitor

68

What is Monitors? (2)

❖ Definition

▪ A monitor is

• A programming language construct (ADT or class) that

supports controlled access to shared data

▪ A monitor encapsulates:

1. Shared data structures

2. Procedures that operate on the shared data

3. Synchronization between concurrent threads that invoke those

procedures

▪ Implication from ADT

• Data can only be accessed from within the monitor,

using the provided procedures

• Leads to the protection of the data from unstructured access

IV. Monitor

69

What is Monitors? (3)

❖ Evolution

▪ Brinch Hansen (1973)

• Requires Signal to be the last statement

▪ C. A. R. Hoare (1974)

• CACM, vol. 17, no. 10. 10 October 1974, pp. 549-557

• Requires relinquishing CPU to signaler

▪ Mesa language (1977)

• Monitor in language, but signaler keeps mutex and CPU

• Waiter simply put on ready queue, with no special priority

▪ Pthreads (1995)

• Mutex lock primitives and condition variables

▪ Java threads (1995)

• Use most of the Pthreads primitives

IV. Monitor

70

Condition Variables in Monitor (1)

❖ Three operations
▪ wait(condition)

• Release monitor lock, put thread to sleep

• Reacquire lock when waken

▪ signal(condition)

• Wake up one thread waiting on the condition variable

• If nobody waiting, do nothing

▪ broadcast(condition)

• Wake up all threads waiting on the condition variable

IV. Monitor

71

Condition Variables in Monitor (2)

❖ Semantic variations on the wait/signal mechanism

▪ Who gets the monitor lock after a signal?

• “Hoare semantics”

– On signal, the signaler releases the monitor lock

– The awakened thread acquires the monitor lock

– Re-enters the monitor (need not check) and resumes

• “Mesa semantics”

– On signal, the signaler keeps the monitor lock

– The awakened thread waits for the monitor lock

– Must check again and be prepared to sleep

IV. Monitor

72

Code Example using Monitor (1)

IV. Monitor

procedure producer()

begin

while (true) do

begin

data = produceData();

ProducerConsumer.insert(data);

end

end

procedure consumer()

begin

while (true) do

begin

data = ProducerConsumer.remove();

consumeData(data);

end

end

73

Code Example using Monitor (2)

IV. Monitor

monitor ProducerConsumer

integer count;

condition full, empty;

procedure insert(integer data)

begin

if (count = N) then full.wait();

enqueue(data);

count++;

if (count = 1) then empty.signal();

end

function integer remove()

begin

if (count = 0) then empty.wait();

remove = dequeue();

count--;

if (count = N-1) then full.signal();

end

count = 0;

end monitor

74

Monitor Implementation (1)

IV. Monitor

monitor ResourceManager

boolean busy;

condition x;

procedure acquire()

begin

if (busy) then x.wait();

busy = true;

end

procedure release()

begin

busy = false;

x.signal();

end

busy = false;

end monitor

75

Monitor Implementation (2)

IV. Monitor

P(monitor_lock);

Body of the Function;

if (sig_lock_cnt > 0) {

V(sig_lock);

} else {

V(monitor_lock);

}

/* x.wait */

x_cnt++;

if (sig_lock_cnt > 0) {

atomically {
V(sig_lock);

P(x_lock);

}

} else {
atomically {

V(monitor_lock);

P(x_lock);

}

}

x_cnt--;

/* x.signal */

if (x_cnt > 0) {

sig_lock_cnt++;

atomically {

V(x_lock);

P(sig_lock);

}

sig_lock_cnt--;

}

monitor_lock Semaphore for the monitor

sig_lock Semaphore for signalers

x_lock Semaphore for condition x

76

What is Monitors? (4)

❖ Disadvantages

▪ May be less efficient than lower-level synchronization

▪ Not available from all programming languages

IV. Monitor

