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|. Why Process Synchro

Why Process Synchronization? (1)

Processes interact with each other for good

Why permit processes to cooperate?
Want to share resources
« One computer, many users
* One checking account file, many tellers
Want to do things faster
» Read next block while processing current one
 Divide jobs into sub-jobs, execute in parallel

Want to construct systems in modular fashion
« UNIX example: tbl | egn | troff
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l. Why Process Synchroni

Why Process Synchronization? (2)

Properties of interacting processes
Have shared resources and states
Non-deterministic
« Outputs may vary depending execution ordering of processes
Their behavior is maybe irreproducible
« Can’t stop and restart with no bad effects
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|. Why Process Synchro

Uncontrolled Task Interactions (1)

Data sharing problem instance

Interrupt routines and task code may share one or more
variables that they can use to communicate with each other

This may cause a data sharing problem — a sort of
synchronization problem

Such a task is referred to as non-reentrant code

Example: nuclear reactor monitoring system
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|. Why Process Synchro

Uncontrolled Task Interactions (2)

static int iTemperatures|[2];

void interrupt vReadTemperatures (void) {
iTemperatures[0] = !! Read in value from hardware
iTemperatures[l] = !! Read in value from hardware

}

void main (void) {
int iTempO, iTempl;

while (TRUE) {

iTempO = iTemperatures[O0];
iTempl = iTemperatures|[l];
if (iTempO '= iTempl)

1! set off howling alarm;
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l. Why Process Synchrc

Uncontrolled Task Interactions (3)

static int iTemperatures|[2];

void interrupt vReadTemperatures (void) {

iTemperatures[0] = !! Read in value from hardware
iTemperatures[l] = !! Read in value from hardware
} _ _ _ If interrupt occurs between these
void main (void) { two statements, iTempO and
int iTempO, iTemp; iTempl will differ and the system

will set off the alarm, even though
while (TRUE) { the two measured temperatures
iTemperatures[0] ; were always the same.

iTemp0 =
iTempl = iTemperatures|[l];
if (iTempO '= iTempl)

1! set off howling alarm;
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|. Why Process Synchro

Uncontrolled Task Interactions (4)

static int iTemperatures|[2];

void interrupt vReadTemperatures (void) {
iTemperatures[0] = !! Read in value from hardware

iTemperatures[l] = !! Read in value from hardware

The same bug as in previous page!

The problem is that the statement
that compares iTemperatures[O]
with  iTemperatures[l] can be

void main (void) { interrupted.
while (TRUE) {
if (iTemperatures[0] '= iTemperatures|[l])

1! set off howling alarm;
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l. Why Process Synchroni

Uncontrolled Task Interactions (5)

Solution
Disable interrupts

void main (void) {
int iTempO, iTemp;

while (TRUE) {
disable(); /*Disable interrupts using array*/
iTempO0 = iTemperatures|[0];
iTempl = iTemperatures[l];
enable () ;
if (iTempO !'= iTempl)
1! set off howling alarm;
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|. Why Process Synchro

Task Reentrancy (1)

To handle cooperating processes, we need the
notion of non-interruptible operations
The operation cannot be interrupted in the middle

Examples:
int A,B; A = B; // On most systems
« On uniprocessors, code between interrupts
« Test-and-set instruction in some architectures

To provide non-interruptible operations, we need
some hardware support
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Task Reentrancy (2)

Synchronization

Using atomic operations to ensure correct operation of

Interacting processes

Example of interacting processes that need synchronization
« Two processes execute the following code

if (BufferIsAvail) {
BufferIsAvail = FALSE;
UseBuffer() ;
BufferIsAvail = TRUE;
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Task Reentrancy (3)

Time Proc1l Proc 2

0 if (BufferIsAvail)

1 if (BufferIsAvail)

2 BufferIsAvail = FALSE

3 BufferIsAvail = FALSE
4 UseBuffer () ;

5 UseBuffer () ;

Problem: Both processes issue UseBuffer ()
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Task Reentrancy (4)

Lack of atomicity of “if’ and “assignment”

Mutual exclusion

Mechanisms which ensure that only one person or process
IS doing certain things at one time

Critical section

A section of code, or collection of operations, in which only
one process may be executing at a time
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Task Reentrancy (5)

Requirements for a mutual exclusion mechanism
Only one process is allowed in a critical section at a time

If several requests at once, it must allow one process to
proceed

It must not depend on processes outside critical section
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Task Reentrancy (6)

Desirable properties for a mutual exclusion
mechanism
Don’t make a process wait forever

Efficient
« Don’t use up substantial amounts of resources when waiting
« Example: busy waiting

Simple
» Should be easy to use

Seoul National Universit

B RT.Sy b 16




Il. Semaphore
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Il. Semaphore

Motivations (1)
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Il. Semaphore

Motivations (2)
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Operations (1)

Il. Semaphore




Operations (2)




Il. Semaphore

Basics

One of key synchronization mechanisms

Synchronization variables that take on integer values
P (Semaphore)

« An atomic operation that waits for semaphore to become
positive and then decrements it by one

 Also called wait()

V (Semaphore)
« An atomic operation that increments semaphore by one
 Also called signal()

They are simple and elegant

They do a lot more that just mutual exclusion
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Il. Semaphore

Usage
Task1 () { Task2 () {
P(S1) P(S1)
use pr; use pr,
V(S1l) V(Sl)
} }
semaphore S1 = 1;
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Il. Semaphore

Initialization (1)

Binary semaphore versus counting semaphore
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Il. Semaphore

Initialization (2)

Taskl () { Task2 () {
P(S1) P(S1)
use pr; use pr,
V(S1) V(sl)
} }
semaphore S1 = 2;
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Il. Semaphore

Basics

Buffer example with semaphores:
P (BufferIsAvail) ;
UseBuffer() ;
V(BufferIsAvail) ;

Note: BufferIsAvail must be set to one
What happens if BufferIsAvail is set to two? or zero?

Roles of semaphores
Mutual exclusion
Scheduling
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Scheduling

ISR Task

semaphore S = 0;
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Il. Semaphore

Producer/Consumer (1)

Three key components

Producer: Creates copies of a resource
« Example: User typing characters

Consumer: Uses up (destroys) copies of a resource
« Example: Program reading users characters

Buffers: Memory used to hold info after the producer has

created it and before the consumer has used it
Operating rules

Allow producer to get ahead of consumer

Consumer and procedure don’t operate in lock-step
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Il. Semaphore

Producer/Consumer (2)

Producer consumer
write to read
buf from buf

Bounded buffer with blocking reads and writes
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Il. Semaphore

Producer/Consumer (3)

What is “correct” for this example?

Constraints

The consumer must wait for the producer to fill some of the
buffer space if the buffer is empty

The producer must wait for the consumer to empty some of
the buffer space if the buffer is full

A separate semaphore is used for each constraint
buf avail — Initialized to numBuffers
data avail — Initialized to 0
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Il. Semaphore

Producer/Consumer (4)

Producer () {

P(buf avail)

V(data avail)

Consumer () {

P(data avail)

buf = data; data = buf;

V(buf avail)

}

Semaphore

buf avail = 3,
data avail

Il
)

Seoul National University
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Il. Semaphore

Producer/Consumer (5)

Note
= V() is done when a resource is created
= P() when destroyed
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Disable Interrupts (1)

Taskl () { Task2 () {
P(S1) P(S1)
use prl; use prl;
V(S1) V(s1)
} }
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Disable Interrupts (2)

Task3 () { Taskl () {
P(S2) disable intr
use pr2; use prl;
V(S2) enable intr
} }

Turn all traffic lights in Seoul into red
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Drawbacks (1)

Producer () { Consumer () {
P(S1) P(S2)
buf = data; data = buf;
V(S2) V(s1)
} }

Semaphore naming issue
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Drawbacks (2)

Taskl () { Task2 () {
P(S1) P(S2)
buf = data; data = buf;
V(S1) V(s1)
} }

Is this a race condition or not?
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Il. Semaphore

Solution

Taskl () {
mutex lock (S1)
buf = data;

mutex unlock (S1)

Task2 () {
mutex lock (S2)
data = buf;

mutex unlock (S1)

}

This is surely a race condition

Seoul National Universi
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Il. Semaphore

Implementation (1)

Uniprocessor solution:
struct Semaphore ({
int cnt;

Queue queue;

Key idea
Use disable interrupt primitive to get mutual exclusion
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Il. Semaphore

Implementation (2)

P(S) { V(s) {
disableInterrulpts() ; disbleInterrupts() ;
if(S.cnt-- > 0) if (S.cnt++ >= 0)

enableInterrupts() ; enableInterrpts() ;
else else
sleep (S.queue) ; wakeup (S . queue) ;

} }

sleep(Q) { wakeup (Q) {

// cur p is current proc p = dequeue (Q) ;
enqueue (cur_p, Q) enableInterrupts() ;
enableInterrupts() ; reschedule (p) ;
yield cpu(); }
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Il. Semaphore

Implementation (3)

Semaphore implementation of the previous slide
Works only for FIFO semaphore queue
Works only for a single core processor
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Il. Semaphore

Implementation (4)

Guaranteeing atomicity on a single processor

Memory

-

Shared Data

Bus

Seoul National University
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Il. Semaphore

Implementation (5)

Multiprocessor solution:
Mutual exclusion is harder

Possibilities
Prevent other processors from accessing main memory

Use atomic hardware support for memory operations
* Memory accesses via unified read-and-write bus transactions
» Atomic read-modify-write instruction
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Il. Semaphore

Implementation (6)

Broken atomicity on a multiprocessor

Memory
— Shared Data
'
I
Bus
I I
= =
CPU 1 CPU 2
B RT@®S 1 2b
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Il. Semaphore

Implementation (7)

Guaranteeing atomicity on a multiprocessor

Memory

-

Shared Data

Bus

CPU 1

CPU 2

Seoul National University
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Il. Semaphore

Implementation (8)

Multiprocessor-safe primitives:
Utilize test-and-set (TAS) instruction

Change disableInterrupt(); to
disableInterrupt() ;
while (TAS(lockMem) ! = 0) continue;

Change enableInterrupt() ; to
lockMem = 0;
enableInterrupt() ;

Note:
» Multiprocessor solution does some busy-waiting

Seoul National University
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Il. Semaphore

Implementation (9)

Important point

Implement some mechanism once, very carefully and then
always write programs that use that mechanism

« Layering is very important

Seoul National University
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pthread Mutex (1)

Header file
#include <pthread.h>

Semaphore declaration
pthread mutex t mutex;

Semaphore functions
int pthread mutex 1nit (
pthread mutex t *mutex,
const pthread mutexattr t *attr);

int pthread mutex lock (*mutex);
int pthread mutex unlock (*mutex);

int pthread mutex destroy (*mutex);
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Il. Semaphore

pthread Mutex (2)

#include <stdio.h>

#include <string.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

pthread t tid[2];
int counter = 0;
pthread mutex t mutex;

Seoul National Universit
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Il. Semaphore

pthread Mutex (3)

void *ThreadCode (void *argument)

{

pthread mutex lock (&mutex) ;

unsigned long i = 0;
counter++;

printf (“\n Job %d started.\n”, counter);
for (i=0; i<OxXFFFFFFFF; i++);
printf (“\n Job %d finished.\n”, counter);

pthread mutex unlock (&mutex) ;

return NULL;
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Il. Semaphore

pthread Mutex (4)

int main(void)

{

int i = 0, err;

/* Since mutex is a binary semaphore, it gets 1 */

if (pthread mutex init(&mutex, NULL) !'= 0) {
printf ("\n mutex init failed.\n");
return 1;

}

while (i < 2){
err = pthread create(&(tid[i]), NULL, ThreadCode, NULL)
if (err '= 0)

printf ("\ncan't create thread: [%$s].\n", strerror(err)):;

i++;
}
pthread join(tid[0], NULL);
pthread join(tid[1], NULL);
pthread mutex destroy (&mutex) ;

return O0;

—— RT@S
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pthread Mutex (5)

$ gcc mutex.c —-o mutex —-lpthread
$ ./mutex

Job 1 started

Job 1 finished

Job 2 started

Job 2 finished

Seoul National Universit

BN RT@®S 1:h 51




POSIX Semaphores (1)

Header file
#include <semaphore.h>

Semaphore declaration

sem_t sem;

Semaphore functions
init sem init(sem t *sem, 1int pshared,
unsigned int value);

int sem walt(sem t *sem);
int sem post(sem t *sem);

int sem destory(sem t *sem);
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POSIX Semaphores (2)

#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdlib.h>
#include <unistd.h>

pthread t tid[2];
int counter = 0;
sem_t sem;

Seoul National University
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Il. Semaphore

POSIX Semaphores (3)

void *ThreadCode (void *argument)

{

sem wait(&sem) ;

unsigned long i = 0;
counter++;

printf (“\n Job %d started.\n”, counter);
for (i=0; i<OxXFFFFFFFF; i++);
printf (“\n Job %d finished.\n”, counter);

sem post(&sem) ;

return NULL;

Seoul National Universit
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Il. Semaphore

POSIX Semaphores (4)

int main(void)
{

int i = 0, err;

/* Since sem is a binary semaphore, it gets 1 */

if (sem _init(&sem, 0, 1) !'= 0){
printf ("\n sem init failed.\n");
return 1;

}

while (i < 2){
err = pthread create(&(tid[i]), NULL, ThreadCode, NULL)
if (err '= 0)

printf ("\ncan't create thread: [%$s]", strerror(err));

i++;
}
pthread join(tid[0], NULL);
pthread join(tid[1], NULL);
sem destroy (&sem) ;

return O0;
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POSIX Semaphores (5)

$ gcc semaphore.c —-o semaphore —-lpthread
$ ./semaphore

Job 1 started

Job 1 finished

Job 2 started

Job 2 finished
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lIl. Condition Variable
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lll. Condition Variable

What 1s Condition Variable?

Condition variable

An event having two operations that are performed on itself
« Two operations: wait (c), signal (c)

* Note that a condition variable has no value!

— One cannot store a value into or
retrieve a value from a condition variable

» A thread waits for an event to occur using wait (c)

113 ]

— Condition variable “c” corresponds to the event

— Condition variable is associated with a waiting queue

» A thread wakes up another thread
waiting on an event using signal (c)

113 7

— Condition variable “c” corresponds to the event
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POSIX Condition Variable (1)

Header file
#include <pthread.h>

Semaphore declaration
pthread cond t cond;

Semaphore functions
int pthread cond 1nit (
pthread cond t *cond,
const pthread condattr t *attr);

int pthread cond wait (*cond, *mutex);
int pthread cond signal (*cond) ;

int pthread cond destroy(*cond);
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POSIX Condition Variable (2)

#include <stdio.h>
#include <pthread.h>

/* static initializers */
pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
pthread cond t cond = PTHREAD COND INITIALIZER;

int data_produced = 0;
int count = 0;
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POSIX Condition Variable (3)

void *consumer (void)
{
while (1) {
pthread mutex lock (&mutex) ;
while (data produced == 0)
pthread cond wait(&cond, &mutex);

printf ("Consumed %d\n", count) ;
data produced = 0;
pthread cond signal (&cond) ;
pthread mutex unlock (&mutex) ;

}

return O;

Seoul National University
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POSIX Condition Variable (4)

void *producer (void)
{
while (1) {
pthread mutex lock (&mutex) ;
while (data produced == 1)
pthread cond wait(&cond, &mutex);

printf ("Produced %d\n", count++) ;
data produced = 1;
pthread cond signal (&cond) ;
pthread mutex unlock (&mutex) ;

}

return O;
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B RT@S 15b 62




POSIX Condition Variable (5)

int main(void)

{
pthread t tid[2];

pthread create(&(tid[0]), NULL, consumer, NULL) ;
pthread create(&(tid[1]), NULL, producer, NULL) ;

pthread join(tid[0], NULL);
pthread join(tid[1], NULL);

return O;
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Why Condition Variable Needs Mutex?

Reason
wait () involves unlocking, blocking, wake-up, and locking

wait () needs an atomic operation that is able to (1) do the
wait and (2) unlock the mutex atomically
« Calling unlock () and wait () in series does not work

— If signal () Iisissued after unlock () and before wait (),
signal () will be missed and wait () will stay blocked

» Neither does calling wait () and unlock ()
— The thread gets blocked with the mutex being locked

Seoul National University
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V. Monitor
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Why Monitors?

Motivations

Semaphore is an unstructured construct
* Prone to synchronization bugs — race condition
* Too low-level
Great if we have a structured construct
having a higher-level abstraction
« High-level mutual exclusion semantics
— Only one thread is active in the construct at any given time

* Locks are hidden

— Automatically locks and unlocks to enter or exit from a critical
section

Too good to be true?!
 No —the answer to this wish is “monitor”

Seoul National University
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What is Monitors? (1)

Key ideas
Monitor

* A synchronization tool that automatically locks and unlocks a
mutex lock (AKA monitor lock) when in a critical section

— The mutex lock is added implicitly to the code, never seen by user

« Has condition variables for dealing with diverse scheduling
situations (thread cooperation)

« Mostly associated with an abstract data type (ADT)

ADT

» A class of objects whose logical behavior is defined by a set of
values and a set of operations

» Reminds us of a class in an object-oriented language

Seoul National University

BN RT® 67




What is Monitors? (2)

Definition
A monitor iIs

« A programming language construct (ADT or class) that
supports controlled access to shared data

A monitor encapsulates:
1. Shared data structures
2. Procedures that operate on the shared data

3. Synchronization between concurrent threads that invoke those
procedures

Implication from ADT

« Data can only be accessed from within the monitor,
using the provided procedures

» Leads to the protection of the data from unstructured access

Seoul National University
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What is Monitors? (3)

Evolution

Brinch Hansen (1973)
* Requires Signal to be the last statement
C. A. R. Hoare (1974)
« CACM, vol. 17, no. 10. 10 October 1974, pp. 549-557
* Requires relinquishing CPU to signaler
Mesa language (1977)
« Monitor in language, but signaler keeps mutex and CPU
« Waiter simply put on ready queue, with no special priority
Pthreads (1995)
» Mutex lock primitives and condition variables
Java threads (1995)
« Use most of the Pthreads primitives

Seoul National University
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V. Monitor

Condition Variables in Monitor (1)

Three operations

wait (condition)
« Release monitor lock, put thread to sleep
« Reacquire lock when waken

signal (condition)
« Wake up one thread waiting on the condition variable
* If nobody waiting, do nothing

broadcast (condition)
« Wake up all threads waiting on the condition variable
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V. Monitor

Condition Variables in Monitor (2)

Semantic variations on the wait/signal mechanism

Who gets the monitor lock after a signal?

* “Hoare semantics”

— On signal, the signaler releases the monitor lock

— The awakened thread acquires the monitor lock

— Re-enters the monitor (need not check) and resumes
* “Mesa semantics”

— On signal, the signaler keeps the monitor lock

— The awakened thread waits for the monitor lock

— Must check again and be prepared to sleep
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V. Monitor

Code Example using Monitor (1)

procedure producer ()

begin
while (true) do
begin
data = produceData () ;
ProducerConsumer.insert (data) ;
end
end

procedure consumer ()

begin
while (true) do
begin
data = ProducerConsumer.remove () ;
consumeData (data) ;
end
end

Seoul National University
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V. Monitor

Code Example using Monitor (2)

monitor ProducerConsumer
integer count;
condition full, empty;
procedure 1insert (integer data)

begin
if (count = N) then full.wait();

enqueue (data) ;

count++;
if (count = 1) then empty.signal ()
end
function integer remove ()
begin
if (count = 0) then empty.wait();
remove = dequeue() ;
count—--;
if (count = N-1) then full.signal();
end
count = 0;

Seoul National Universit
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V. Monitor

Monitor Implementation (1)

monitor ResourceManager

boolean busy;
condition x;

procedure acquire ()

begin

if (busy) then x.wait();
busy = true;

end

procedure release ()

begin

busy = false;

x.signal () ;
end

busy = false;
end monitor
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V. Monitor

Monitor Implementation (2)

P (monitor lock);
Body of the Function;
if (sig_lock cnt > 0) {
V(sig_lock) ;

} else {

V(monitor_ lock);

}
/* x.wait */
X _cnt++;
if (sig_lock cnt > 0) {
atomically {
V(sig_lock) ;
P(x_lock);
}

} else {
atomically {

V (monitor 1lock);

/* x.signal */
if (x_cnt > 0) {
sig_lock_cnt++;
atomically {
V(x_lock) ;
P(sig_lock);
}
sig lock_cnt--;

}

Semaphore for the monitor

Semaphore for signalers

P(x_lock);
}
} monitor lock
x_cnt——; —
sig lock
x_lock

Semaphore for condition x
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What is Monitors? (4)

Disadvantages
May be less efficient than lower-level synchronization
Not available from all programming languages
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