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Computed Torque Control

e Robot open-loop dynamics:

M(q)§+C(q,¢)g+g(q) =T+ f

where 7 € R” is the control torque and f € R" external force.

e Trajectory tracking control: design 7 s.t., with f = 0,
(4(8),4(t)) — (ga(t), 4a(t))
where g4(t) € R" is smooth joint trajectory (e.g., from IK: for WS, later).

e Computed torque control: design 7 s.t.,

7= M(q)[Ga — B(¢ — 4a) — K(q — qa)] + C(g,9)¢ + 9(a)
exact dynamics cancelation
so that the closed-loop dynamics becomes: with e := ¢4 — q,

E+Bé+ Ke=0

implying that (é,e) — 0 exponentially, if B,K € R™*™ are positive-
definite and symmetric (even for non-diagonal B, K)?.
lenongiunLee E_’i:




Stabiliy of Second-Order LTI System

Closed-loop error dynamics:

é+Bé+ Ke=0

Define  := (¢é,€) € R2". Then, the state-space representation:

-B -K

.izAa:z[ 7 0

]x:Aw

with all the eigenvalues A(A) in LHP, i.e., z — 0 exponentially.

Define V = %éTé + %eTe = %.LT.E Then,
V =¢T[-Bé — Ke] + é¢TKe = —¢TBé

implying é — 0 likely (since V' > 0); if so, é — 0 likely and e — 0 as well.

This yet still implies that
3llz® = 3e"e + zeTe = V() < V(0) = 3/l=(0)[[3

ie., ||z(t)|| < ||z(0)|| = starts close, stay close (stability?).
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Cross-Coupling Term
e Define V = %éTé; eeTé + 1eT[K + eBle. Then,

cross-coupling term

V =—¢éT[B—ellée — eeTKe
where V > 0 and V < 0 with small-enough € > 0: likely V= 0,e—0.

e With cross-coupling ¢ > 0, we have

yo A1 e & o (N [B-el 0]
“2\e el K+eB e)’ — \e 0 eK | \e
with P,Q € R?"*?" are positive-definite with small enough € > 0, from
[ A B

: __ A% _ AT * A—1
I C]>0, ifA=A*=AT > 0,0 > B*A™'B

e Thus, with small-enough € > 0,

V=-2"Qz < —Amin[Q]j2]]* < 322l V = -V

implying that V (t) < V(0)e= ", i.e., (é,€) — 0 exponentially.
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Lvyapunov Stability - Definition

Def. 2.1: Consider an autonomous system

i = f(@), 1(0)=0 —

f: D — R" locally Lipschitz on D and 0 € D. Then, equilibrium z = 0 is

e Lyapunov stable, if, Ve > 0, 36(¢) > 0 s.t.,

lz(0)]] <6 = [lz(t)l| <€ VE=0

unstable, if it is not stable

asymptotically stable, if it is stable and we can find &’ > 0 s.t.

|z(0)|] < & = [lz(®)|| =0
e exponentially stable if 3, v, > 0 s.t.,
12(0)]] < 8" = [lz(t)]| < of|z(0)[]e™*

e globally asymptotically stable, if asymptotically stable for any Vz(0) € R™.
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Lvyapunov Stability - Examples

Lyapunov stable, if, for any € > 0, there exits d(e) > 0 s.t.,

|z(0)]] <& = [lz@)|l <€, VE>0

)

(0445, 274),

0 o1 ez 03 04 05 06 0768 09

satisfy defintion: 1) for some € or 2) V4, Je
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Lyapunov Direct Theorem

Th. 2.1. (Lyapunov Direct): If we can find a Lyapunov function V : D — R,
which is continuously differentiable and satisfies

V(z) >0 in D, with V(z)=0 if z=0

\
. <~ V() <0 in D along the solution of & = f() EZ

X
then, z = 0 is Lyapunov stable (ex. V = %xT:v) Moreover, if

V(z) <0 in D, with V(z) =0 iff 2 =0 — negative-definite
then, z = 0 is asymptotically stable (ex. V = %a:TPm). Furthermore, if
killz|* < V(z) < kollz|l?,  with V< —kslle||” < —2V
then, z = 0 is exponentially stable with ||z(t)]| < \/@e_%t — 0.
e Here, V(z) is time differentiation of V' along the solution & = f(z), i.e.,

V(a:) = %—‘;i’ = %—‘;f(x) =LV
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Lyapunov Stability — Non-autonomous System

Consider non-autonomous system
z= f(t, )

where f : [0,00) X D — R™ piecewise continuous in ¢ and locally Lipschitz in z,
and x = 0 is an equilibrium at t = £, i.e.,

f(t,0)=0, Vt>1,>0

Def. 2.2: The equilibrium z = 0 of the non-autonomous system is

e stable, if, Ve > 0, 30(e,t,) > 0 s.t.

z(o)|] < 6= |lz(t)]| <€, Vi>it,>0

e uniformly stable, if 6(¢) > 0 is independent of ¢,.

e unstable, if not stable.

Ex) £ = (6tsint — 2t)z with £, = 2nm: z(t) = elio @rsin T2 (1)
z(t) = £Bsint—6t cost—t—6sinto+6t, costa+t§m(to) 5 0ast— 0o

when evaluated at t = t, 4+ m: |z(t, + )| = |2(ty)entE-TT| < ¢

6(6, n) = e/e(4n+1)(6—7\')1r S 0asn— oo -
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Lyapunov Direct Theorem

Th. 2.6: Consider non-autonomous system with equilibrium at £ = 0 € D.
Suppose we can find a continuously differentiable function V (¢, z) s.t.

decrescent condition

ar(|lz]]) S V(L z) < ao(][=]])

v oV oV

- = — <

a ot T azf(t’x) <0
¥t > 0 and Vz € D, where a; € K on D. Then, £ = 0 is uniformly stable.
1\’101‘60V€I‘, if \ strictly-increasing with o(0)=0

B+ 9 1(t,0) < ~as(llall)
VYt > 0 and Vz € D, where ag € K on D, = 0 is uniformly A.S. Further, if
ov. oV
Billel P < V(2) S allal P, G5+ S0 0(69) < —ksllol

¥Vt > 0 and Vz € D, where k;,a > 0 are constants. Then, z =0 is U.E.S,, ie.,
lz(8)]] < Kz (to)||e=*Et)

e Quadratic LF V = z7 Pz with V = —z7 Qg satisfies above conditions.

[epongiunLee

Passivity-Based Control

e Robot open-loop dynarmics:

M(q)§+Clq,q)g+g(q) =7+ f

which is passive, i.e., M —2C is skew-symmetric, or, equivalently, V1’ > 0,
T
/ ir+ f74dt = E(T) — E(0)
0

e Computed torque control:

T = M(q)[da — B(¢ — ¢a) — K(q — ga)] + C(g,4)¢ + 9(q)

which is not so robust and also cancels out nonlinear dynamics rather than
utilizes it (as typical for any feedback linearization).

e Passivity-based control:

7 = M(g)da + C(a, d)da + (a) — Kald — da) — Kpla — 1a)
feedforward (inverse dynamics) kinematic feedback

with % are estimates, K4, K, € R"*" are symmetric and I’D gain matrices.

oy
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Passivity-Based Tracking Control

Robot open-loop dynamics:

M(q)i+Clq,q)g+g(q) =7+ f

with f &~ 0 and skew-symmetric M — 2C.

Passivity-based control:

T = M(q)da + C(q,4)4a + 9(q) — Ka(q — da) — K,(q — qa)

Closed-loop error dynamics: with e = g — g4,

M(Q)é + C(‘L (j)é + Kgqé + er — () —* dynamicsutilized

e Define energy-like Lyapunov function V = %éTM é+ %eTer. Then, from
the skew-symmetricity,

V =e"Mé+ 16T Mé+ éTKpe = —¢TKqé

implying that (é,e) = 0 is only Lyapunov stable. However, it is observed
that (é,e) — 0 exponentially.

|epongiun Lee &

Passivity-Based Stabilization

e Consider passivity-based stabilization control:

7= g(a) — Kad — Kp(q — qa)
to achieve (¢, q) — (0, qq).
e Then, the closed-loop dynamics becomes:
M(q)qg+C(q,d)d + Kadg + Kp(g—gqq) =0
which should satisfy (¢,¢) — (0,¢q) as it’s mass-spring-damper system.

e Yet, Lyapunov analysis is inconclusive even for this simple system, i.e, if
we use total energy as Lyapnuov function

V=1¢"Mj+ leTKye

we have )
V=—¢"Ks <0

e There may be better Lyapunov function, which, yet, in general, is difficult
to find (i.e., not constructive approach) = invariance principle.

O
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Invariance Principle .
e LaSalle’s Invariance Principle: Consider autonomous system @

&= f(z), ze€®R", £(0)=0

Suppose 3 compact (i.e., bounded and closed) set Q € R” s.t.,if z(¢) € 2, x(t') €
Q vVt >t (ie, Q positive invariant set). Suppose further 3 a continuously

differentiable V : % — R s.t., V(z) < 0 Vz € (2. Define
E:={xeQ|V(z)=0}
and M C E C Q be the largest invariant set in E. Then, if z(0) € Q, z(t) - M.

1. Compact and positive-invariant set Q:

3 min [Kp]llg — gall® + 3 Amin[M]]|4][* < V(t) < V(0)

¢ 2. Theset E={(g,9) | V =0} ={(a.9) | § =0}
3. Ifg=0but ¢ #qq, § #0=¢F#0. Thus,

M ={(g,9) = (42,0} ie (0,4) = (94,0)

ya
\
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Passivity-Based Tracking Control

e Consider passivity-based trajectory tracking control:
T = M(q)da + C(q,4)da + 9(9) — Ka(d — da) — Kp(q — qa)
e Then, the closed-loop error dynamics becomes: with e = g — qq,
M(q)é+ Cl(q,q)é + Kqé + Kpe =0
e This closed-loop dynamics is non-autonomous system. Thus, LaSalle’s

invariance principle not applicable.

e Yet, with skew-symmetricity of original dynamics, the closed-loop dynam-
ics still behaves like mass-spring-damper system, i.e.,

V=1TMé+1eTKpe = V=—éTKgé
which looks like damping dissipation.

e This then would likely imply that é — 0 as V is lower-bounded by 0.
Then, e — 0?7 = Barbalat’s lemma.

lepongjunLee




Barbalat’'s Lemma

Lem. (Barbalat s) Suppose f(t) — ¢. Then, f(t) — 0, if f(t) is uniformly
continuous, i.c., Ve > 0, 3d(e) > 0 s.t.,

[ts — 2| <8(c) = [F(ta) — f(ta)| S e, Vii 12 20
o If f(t) is uniformly bounded, f(¢) is uniformly continuous (MVT)

e Applicable both to autonomous & non-autonomous systems

o f—c, yet,not f — 0: f(t) = e tsine?, f(t) = e *sine? + 2e’ cos e

e f—0,yet, not f —c: f(t) =sin(Int), f(t) = 1 cos(Int)

Corollary: Suppose f(t) is square-integrable (i.e., [;° f2(T)dr — ¢) and f(®)
is bounded. Then, f(t) — 0.

(Proof) Define g(t) = fot f?(0)de. Trom the assumption, lim;_,. g(t) = c.
Then, from Barbalat’s, §(t) = f(t) - 0if g is UC or § = 2ff is bounded.

- Here, 1) f is assumed to be bounded; and 2) f(t) cannot be unbounded, since,
if so, f(f f?(0)do will also be unbounded (with f bounded).

- Thus, § is bounded = g is UC = f — 0.

©Dongjun Lee

Trajectory Tracking Convergence Proof

o The closed-loop error dynamics:

M(q)é+ C(q,4)é+ Kqé+ Kpe =0

o UsingV = 1e"MétLeTKpe, V = —6TKyé, ie., V(1) -V(0) = — [} ¢TKqédr,
or,

t
0< V() =V(0) - / T K gedr < V(0)
0
implying that (é,e) is bounded.

e From f(f ¢TKyédr < V(0), é is square integrable. Also, from the dynamics

with bounded (e, €, ¢4, 4a), if f’a_’;lzz and M > Anpin!, € will also be bounded,
and é — 0 from the Corollary.

. Invoking BL again, with é — 0, € = 0 if € is UC or ¢ is bounded. This is

m”

true 1f is also bounded, since

M(q)é + Wi | 04 €D 4 e 4 Kpe =0

with cx; =3, [a(’;;f” Om;.“ am” “]¢i- This then establish e — 0 too.
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Trajectory Tracking Control - Theorem

Theorem: Consider robot dynamics with passivity-based tracking control as

P 2 .
-smooth, &7 and 2 are bounded, and

defined above. Then, if g4(t) is C*° ' D B0y 00-

I Anin > 0 8.ty Amind < M(q), (e, €) — 0.
The assumptions are always guaranteed for revolute joint robots.

(é,e) — 0, yet, how fast is the convergence is not specified (may be ex-
tremely slow).

Asymptotic stability may be fragile, that is, it may become divergent with
a bit of disturbance, noise and/or uncertainty.

Exponential convergence is always preferred to asymptotic convergence,
as it automatically guarantees a level of robustness against external dis-
turbances and parametric uncertainty (ultimately bounded).

We can cstablish cxponential convergence of the passivity-based tracking

fepongjun Lee

control with Lyapunov function with cross-coupling term as before:

V =1¢"Mé+e¢" Me + $e' [K, + eKgle

lepongjunLee

Alternative Passivity-Based Control with r

Consider again the robot dynamics:

M(q)i+C(q,q9)g+g(@) =7+, [f=0

Alternative passivity-based control with r-variable:
7= Mljy — Aé] + Clga — Ae] + g(q) — Ké — KAe + 7'
with K, A € R**" diagonal and positive-definite (i.e., KA = AK).
The closed-loop dynamics becomes:
M(g)r +C(q, @)r + Kr=1'

where 7 := ¢ + Ae serves now as velocity, defining new passivity input-
output pair (7/,7): with V := 3rTMr,

V=r"Mi+ 2T Mr=1Tr —rTKr
With 7/ = 0, we have V = —rTKr with V = %rTMr, implying that

r = é+ Ae — 0 exponentially (i.e., (é,e) — 0 exponentially t0o).




Effect of Uncertainty - |

e Consider the robot dynamics:

M(q)ij+C(q,d)g+g(q) =7+ f, f=0

under passivity-based control with parametric uncertainty:
To = M(q)[da — Aé] + C(q,d)[da — Ae] + §(q) — Ké — K e
where * is estimate of x and e = ¢ — gq.

e From linearity in inertial parameters, Yy1,y2 € R",

M(@)yr + C(a,9)y2 + 9(a) = Y (a,4,y1,%2)0
where Y € %! (known) regressor; 6 € R (uncertain) inertia parameters.

e Since the estimated dynamics has the same structure,

7o =Y(q,4,7,0)0 — Ké — KAe, v =gg—Ae

e Augment nominal control 7, with §7 to address uncertainty:

[epongiun Lee T="T,+ or o)

Effect of Uncertainty - Il

e Closed-loop dynamics:

MG+ Cq+g = MlGs— Aé]+ Clga — Ae] + § — K[é + Ae] + 67
e Substracting M[§s — Aé] + C[¢q — A¢] + g from both sides, we obtain:

MI[é+ Aé] + Clé + Ae] + K[é + Ae] = Y (q, 4, v, )0 — Y (q, ¢, v, 0)0 + 67
=Y(g,4,v,)[6 — 6] + 67

Uncerta\nty
or, using r := é + Ae,

e Define Lyapunov function as before: V = §r"Mr (or V = LrTMr +
el KAe),
¥ = rTKr+r7Y[0 — 0] +rTor
negative-definite want to make still negative
as before even with uncertainty
e Robust control: large-enough d7 to absorb the uncertainty effect
e Adaptive control: adaptively change estimate 0 by seeing error r.
lenongiunLee E_’i:

Mi+Cr+ Kr — Y[é— 0] +6r — matching uncertainty: appears

in same channel with control
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Passivity-Based Robust Control
e Closed-loop dynamics: M7 + Cr + Kr = Y[0 — 6] + ér.

e Using V = 15’!‘1‘]\4'7‘, % = —rTKr+ TTY[H -0+ rT8T. —»matched uncertainty

e Suppose 3p > 0 s.t., ||§ —6]| < p (i.e., 6 estimation error bounded). Then,

rTY (0 — 60) +rTor <||YTr||- 1|10 = 0|| + 67 < [|[YTr||p+rTor
e Thus, if we choose the robust control term 47 := —p%, we have

T
&< —rTKr+|[Yr|lp+ 1" [—p—f—ﬁ’J ,.ﬂ <—rTKr
implying that (e,é) — 0 exponentially even under certainty.

e Chattering: control pushes r — 0, yet, as r — 0, 67 becomes un-defined.
2
For scalar case, 6T = —pﬁ = py% = —pysgn(yr)

oT
+py
.\ /.\ [\ /\ 7\ - as r — (0 with nosy measurement.

lepongjunLee ‘ &)

\ ] \/ \/ \./ \. - high-frequency (sampling rate) chatters.
—PY )

Boundary-Layer Approximation

e To avoid chattering problem, instead of discontinuous control 7 = — pﬁ/—}}éuﬁ,
we use its boundary-layer approximation:

sgn(yr)
T,. .
sy — —pYﬁ if ||[YTr|| > e —1—4 —
—pyXIr i Y Tr|| < e
€ C yr
—
e Then, if [|[YT7|| > ¢, 2¥ < —rTKr. Also, if ||[YTr|| < €, /‘

T T
% < —rTKr +p||YTr|| — pr XX YEY r
_ _,T T HyZr|
= —rTKr + pl[Y || - plZLE
= rI'Kpr— f [Hy'l'r” — 5]2 + % < 'Ky + % —— holdforallt

e Here, if ||r|| increases, V will become negative — ||r|| starts to decrease
— V will be bounded. In other words,

av 2 € Amin K € treach
G < A [K]|Ir|]"+ F < AV AT
C s . Amax[M] pe
i.c., V(t) is ultimately bounded by =7+ % V< Aman[M] e
[epongiun Lee = el E_’J:

11



Ultimate Boundedness
YYZr

e To avoid chattering problem, instead of discontinuous control 67 = pH_Y"TH
we use its boundary-layer approximation:

P pY”YT'rH if [[YTr|| > e >
—py Xx if [|[YTr|| <e —

sgn(yr)

e V(t) is ultimately bounded by m—“%%, since

min [K 13 t
B < A K| + £ < —Jmnlly 4 e cench

e 7(t) eventually enters into the bounded set

L Amax[M B.(e)
By = Ar | Irll </ st 21

e U.B. set B; gets smaller if p is small (i.e., good estimtion of #) or € is small
(i.e., tigher approximatoin) or Anyin[K] is large (i.e., large feedback gain).

o Note that B, is positive-invariant, i.e., r(t) may start outside, yet, even-
tually enters into it, and, once in it, r(¢) will stay in Bs afterward.

[epongiunLee

Passivity-Based Adaptive Control
Robot dynamics: M(q)§d+ C(q,4)d+g(g) =7+ f, f=0.

Tracking control: 7 = M(q)[Ga — Aé]+C(g,4)[da — Ac] + §(q) — Ké— KAe.
Here, we adaptively change 6(t) instead of large-action 7.

Closed-loop dynamics:
Mi+Cr+Kr=Y[f—0]=Y8

where = 6(t) — 6 is parameter estimation error for constant f. Note that
@ consitutues another state vecotr, since it has its own dynamics.

Define V = %TTM T+ %F}TI‘é with symmetric and pd T' € %!, Then,

& TRr 4 rTY0 + 0700 = —rTKr + 67y Tr + T0)
N passivity (cf. CLF)
This then suggests the following adaptation law

B=2L =17YT(q,4,v,0)r(t), v=dalt) - Ae(t)

with which we have ‘gt/ = —rTKr, ie., (r,0) is Lyapunov stable.

lepongjunLee ‘Tl__é'
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Convergence Proof
e Closed-loop dynamics: M7+ Cr + Kr =Y[f — 6] = Y4.

Define V = 1rT M7 + 167T9. Then, with adaptation law & _ p-1y Ty

h dt
we have 4 = —rTKr, ie., (r,0) = 0 is only Lyapnuv stable.

Integrating this, we have, VI' > 0,
T
V(T)=V(0) - / rT Krdt < V(0)
0

implying that r € Ly. Also, if | 522| is bounded, 7 € Loo. Then, from the
Corollary of Barbalat’s lemma, r — 0.

We now have (e,é) — 0. Then, 6(t) = 8(t) — 8 — 0 as well? When this
parameter convergence possible? = persistency of excitation.

With » — 0, we have 5 — 0 from adaptation. We also have Y76 — 0
from C.L. dynamics. This then collectively defines LTV dynamics

é = 0’ Y= YT(q: q; v, V)é = YT(qd7 de qd)g

with the output y — 0. Does this then also implies § — 0? )

fepongjun Lee

Observability of LTV Systems

e LTV dynamics of parameter estimation error 6:

0=0, y=Y7T(qu da,da)0

with the output y — 0. If Y ¢ ®™*! is rich enough (e.g., non-singular
square), y — 0 would imply § — 0. However, if Y is not rich enough (e.g.,
constant fat), y — 0 wouldn’t imply 6 — 0.

o Definition: A LTV system © = A(t)z, y = C(t)r is observable if,
Vt' > 0, the initial state £(0) is uniquely determined by y(t), t = [0,¢].

e Theorem: LTV system & = A(t)z, y = C(¢)z is observable on [i,, ¢]
iff
Ly
Wo(to, tf) = / ®(t,t,)CT(H)C(t)D(t, t,)dt > ool

Jt,
where o, > 0, ®(¢,%,) is the transition matrix with z(t) = ®(¢,t,)z(0),
and W, is observability grammian.

O
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Observability Grammian

e Theorem: LTV system & = A(t)z, y = C(t)z is observable on [t,, ]
iff

Wo(to,ts) = /tf (L, t,)CT(H)C(t)D(t, t,)dt > ool

Lo
where o, > 0, ®(t,t,) is the transition matrix with z(t) = ®(¢,t,)z(0),
and W, is observability grammian.

(Proof) From y = C(t)x = C(t)D(¢,%,)x(0), we have
tf tf
|t tc e = [ 870, 1)CT (OB o)t - 5(0)
to to

thus, if the above condition holds, z(0) is uniquely determined by

2(0) = Wi (b, t) / " 9T (1, 1,)C7 )y 1)t

fepongjun Lee

Persistency of Excitation
e Theorem: LTV system & = A(t)z, y = C(t)x is observable on [t,, ]
iff

ty
Wo(to,tys) :/ B(t,t,)CT () C)D(t,t,)dt > ool
to

with
o(0) = W, (tarty) | 97 (6£)CT (OO

to

e Consider the LTV dynamics of paramcter estimation crror 6:

0= 07 Y= YT(qd7 Qdy Qd)é
with ®(t,,%) = I. Then, with the output y — 0, we will have 6 — 0, if
t+T
Wo(t+T.t) = Y7 (4, 4a, Ga)Y (44, 4a, Ga)dt > 001, VE>0
t

for some positive constants T > 0 and ¢, > 0.

e This condition is referred to (uniform) persistency of excitation, i.e.,
the signal g is righ enough and persistently exciting the system so that
YT (qq, 44, d4)8 — 0 should necessarily imply 8 — 0 as well.

lepongjunLee
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Workspace EF Control

Consider the robot dynamics

M(q)i+C(q,q)i+9(q) =7+
where g € R" is joint configuration and 7, € R" is external wrench effect.

e In most applications, tasks are specified for the end-effector z € f(q) €
R™, not for the joint configuration ¢ € R", thus, want to control z directly.

e Let f(g) € R™ be a minimal representation of EF motion for the task.
Assume n =m and J(q) = %5 € R™>*™ locally full-rank (i.e., f also locally

invertible).

e For instance, (z,y, 2, ¢,0,1) for EF in SE(3) with 7. = JT(q)f., where
fe € se*(3) is wrench, i.e., force and torque.

e We then have the following kinematics relations:
t=%i=Jq - ¢=J"(92
.. - . dJ (q) . - .
i= gl N @)d] = Y59+ TN g)E

Lo Where G171 @)] = =T 0)(9)T ().

Workspace Dynamics

e The robot dynamics in joint-space

M(q)i+C(g,9)q+g(q) =7+ J"(q)fe

M(q)[J7'% + ¢d] + C(q, §)J i+ glg) = 7+ JT fe
= JTTM(q)J i+ JTIM(q) 2 + Clg,9)J i + T Tg(q) = J T + [

from which we can obtain the robot workspace dynamics:
D(x)i + Q(z, )% + gz(2) = u+ fe

- D(z) = JTM(q)J~! € R™*" is symmetric and positive-definite.

- Q(m,x) = J*T[M(q)d{l—;1 + C(q,4)J 1] is workspace Corilois matrix.
- D(z) — 2Q(z, %) is skew-symmetric.

- g2(x) = J Tg(q) is workspace gravity.

- u = J T7 is workspace control.

- J(g) is analytic Jacobian with represcntation singularity.

.
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e Using ¢ = J!(q)Z and § = %.’b+ J~1(q)#, can rewirte joint-space dynamics:
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Workspace Control

e Consider the robot workspace dynamics:

D(z)i + Q(z,2)E + go(z) = u + fe

e Workspace EF trajectory tracking control objective:

(z(t), 2(8)) — (za(t), £a(t))

e Passivity-based trajectory tracking control with r-variable:
u = D[Eg—AiE—%4)|+Q[Ea— Az —14)| - K(i—q) — KAz —14)+gs— fe
which results in exponentially-stable system

D(z)r 4+ Q(z,2)r + Kr=0, r:=é+Ae, e=z—1x4

e Real joint torque control: with e = z(q(t)) — z4(t),

T=J"u = J"(q)[D(g)(Ea—Aé)+Q(qg, q')(:i:d—Ae)—KT]+g(q)—JT(Q)fe\

wrench sensing|

[epongiunLee &)

Workspace Control: Example

e Robol workspace dynamics:

D(g)i + Qg 9)& + gu(q) = v
where ¢ = (61, 62).

e We want to control the EF position in plane. Then,

_fz\ _ (liciHlacre 2
@)= (y) B <l1 s1+l2 512) €%

e Jacobian rclation
df(q) (x| —lisi—las1a —l2s12 0
dt Ja)a= 9] | hetlce lacn 0
with J(q) € R2%2 is full-rank if 0y # nnx.

e Workspace trajectory tracking control: with e = z(q) — z4(t),

T =JT(q) - [D(q)(Eq — Aé) + Q(q,4) (4 — Ae) — K7] + g(q)

R
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