Motion Control of Robotic Manipulators

Dongjun Lee (이동준)

Department of Mechanical & Aerospace Engineering Seoul National University

Computed Torque Control

• Robot open-loop dynamics:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau + f$$

where $\tau \in \Re^n$ is the control torque and $f \in \Re^n$ external force.

• Trajectory tracking control: design τ s.t., with $f \approx 0$,

$$(q(t), \dot{q}(t)) \rightarrow (q_d(t), \dot{q}_d(t))$$

where $q_d(t) \in \Re^n$ is smooth joint trajectory (e.g., from IK: for WS, later).

• Computed torque control: design τ s.t.,

$$au = M(q)[\ddot{q}_d - B(\dot{q} - \dot{q}_d) - K(q - q_d)] + C(q, \dot{q})\dot{q} + g(q)$$

so that the closed-loop dynamics becomes: with $e:=q_d-q,$

$$\ddot{e} + B\dot{e} + Ke = 0$$

implying that $(\dot{e},e) \rightarrow 0$ exponentially, if $B,K \in \Re^{n \times n}$ are positivedefinite and symmetric (even for non-diagonal B, K)?.

Stabiliy of Second-Order LTI System

• Closed-loop error dynamics:

$$\ddot{e} + B\dot{e} + Ke = 0$$

• Define $x:=(\dot{e},e)\in\Re^{2n}.$ Then, the state-space representation:

$$\dot{x}=Ax=\left[\begin{array}{cc}-B&-K\\I&0\end{array}\right]x=Ax$$

with all the **eigenvalues** $\lambda(A)$ in LHP, i.e., $x \to 0$ exponentially.

• Define $V = \frac{1}{2}\dot{e}^T\dot{e} + \frac{1}{2}e^Te = \frac{1}{2}x^Tx$. Then,

$$\dot{V} = \dot{e}^T [-B\dot{e} - Ke] + \dot{e}^T Ke = -\dot{e}^T B\dot{e}$$

implying $\dot{e} \to 0$ likely (since $V \ge 0$); if so, $\ddot{e} \to 0$ likely and $e \to 0$ as well.

• This yet still implies that

$$\frac{1}{2}||x(t)||_2^2 = \frac{1}{2}\dot{e}^T\dot{e} + \frac{1}{2}e^Te = V(t) \le V(0) = \frac{1}{2}||x(0)||_2^2$$

i.e., $||x(t)|| \le ||x(0)|| \Rightarrow$ starts close, stay close (stability?).

cross-coupling term $\dot{V} = -\dot{e}^T [B - \epsilon I] \dot{e} - \epsilon e^T K e$

where $V \geq 0$ and $\dot{V} \leq 0$ with small-enough $\epsilon > 0$: likely $\dot{V} \rightarrow 0$, $e \rightarrow 0$.

• With cross-coupling $\epsilon > 0$, we have

$$V = \frac{1}{2} \begin{pmatrix} \dot{e} \\ e \end{pmatrix}^T \left[\begin{array}{cc} I & \epsilon I \\ \epsilon I & K + \epsilon B \end{array} \right] \begin{pmatrix} \dot{e} \\ e \end{pmatrix}, \quad \dot{V} = - \begin{pmatrix} \dot{e} \\ e \end{pmatrix}^T \left[\begin{array}{cc} B - \epsilon I & 0 \\ 0 & \epsilon K \end{array} \right] \begin{pmatrix} \dot{e} \\ e \end{pmatrix}$$

with $P,Q \in \Re^{2n \times 2n}$ are positive-definite with small enough $\epsilon > 0$, from

$$\left[\begin{array}{cc} A & B \\ B^* & C \end{array} \right] > 0, \quad \text{if } A = A^* = \bar{A}^T > 0, \ C > B^*A^{-1}B$$

• Thus, with small-enough $\epsilon > 0$,

$$\dot{V} = -x^T Q x \le -\lambda_{\min}[Q]||x||^2 \le -\frac{\lambda_{\min}[Q]}{\lambda_{\max}[P]} V = -\gamma V$$

implying that $V(t) \leq V(0)e^{-\gamma t}$, i.e., $(\dot{e}, e) \to 0$ exponentially.

ENGIN

Lyapunov Stability - Definition

Def. 2.1: Consider an autonomous system

$$\dot{x} = f(x), \quad f(0) = 0$$

 $f: \mathcal{D} \to \Re^n$ locally Lipschitz on \mathcal{D} and $0 \in \mathcal{D}$. Then, equilibrium x = 0 is

• Lyapunov stable, if, $\forall \epsilon > 0, \exists \delta(\epsilon) > 0 \text{ s.t.},$

$$||x(0)|| < \delta \Longrightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0$$

- unstable, if it is not stable
- asymptotically stable, if it is stable and we can find $\delta' > 0$ s.t.

$$||x(0)|| < \delta' \Longrightarrow ||x(t)|| \to 0$$

• exponentially stable if $\exists \alpha, \gamma, \delta' > 0$ s.t.,

$$||x(0)|| < \delta' \Longrightarrow ||x(t)|| \le \alpha ||x(0)|| e^{-\gamma t}$$

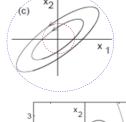
• globally asymptotically stable, if asymptotically stable for any $\forall x(0) \in \Re^n$.

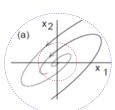
Donaius La

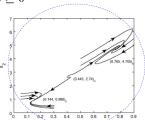
ENGINEERING

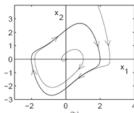
Lyapunov stable, if, for any $\epsilon > 0$, there exits $\delta(\epsilon) > 0$ s.t.,

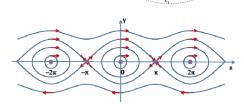
 $||x(0)|| < \delta \Longrightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0$











satisfy defintion: 1) for some ϵ or 2) $\forall \delta$, $\exists \epsilon$

Dongjun Le

ENGINEERING
COLLEGE OF INFERTING
SHOOT ANTIONAL SHEETING

Lyapunov Direct Theorem

Th. 2.1. (Lyapunov Direct): If we can find a Lyapunov function $V: \mathcal{D} \to \Re$, which is continuously differentiable and satisfies

$$V(x) \geq 0 \; ext{ in } \mathcal{D}, ext{ with } V(x) = 0 \; ext{ iff} \; \; x = 0$$

negative semi-definite $\dot{V}(x) \leq 0$ in \mathcal{D} along the solution of $\dot{x} = f(x)$

then, x = 0 is **Lyapunov stable** (ex. $V = \frac{1}{2}x^Tx$). Moreover, if

$$\dot{V}(x) \leq 0$$
 in \mathcal{D} , with $\dot{V}(x) = 0$ iff $x = 0$ \longrightarrow negative-definite

then, x = 0 is asymptotically stable (ex. $V = \frac{1}{2}x^T Px$). Furthermore, if

$$|k_1||x||^2 \le V(x) \le |k_2||x||^2$$
, with $\dot{V} \le -k_3||x||^2 \le -\frac{k_3}{k_2}V$

then, x=0 is **exponentially stable** with $||x(t)|| \leq \sqrt{\frac{V(0)}{k_1}} e^{-\frac{k_3}{2k_2}t} \to 0$.

• Here, $\dot{V}(x)$ is time differentiation of V along the solution $\dot{x} = f(x)$, i.e.,

$$\dot{V}(x) = rac{\partial V}{\partial x}\dot{x} = rac{\partial V}{\partial x}f(x) = \mathcal{L}_f V$$

Dongjun Lee

<u>Lyapunov Stability - Non-autonomous System</u>

Consider non-autonomous system

$$\dot{x} = f(t, x)$$

where $f:[0,\infty)\times\mathcal{D}\to\Re^n$ piecewise continuous in t and locally Lipschitz in x, and x=0 is an equilibrium at $t=t_o$, i.e.,

$$f(t,0) = 0, \quad \forall t \ge t_o \ge 0$$

Def. 2.2: The equilibrium x = 0 of the non-autonomous system is

• stable, if, $\forall \epsilon > 0$, $\exists \delta(\epsilon, t_o) > 0$ s.t.

$$||x(t_o)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge t_o \ge 0$$

- uniformly stable, if $\delta(\epsilon) > 0$ is independent of t_o .
- unstable, if not stable.

Ex)
$$\dot{x}=(6t\sin t-2t)x$$
 with $t_o=2n\pi$: $x(t)=e^{\int_{t_o}^t(6\tau\sin \tau-2\tau)d\tau}x(t_o)$ $x(t)=e^{6\sin t-6t\cos t-t^2-6\sin t_o+6t_o\cos t_o+t_o^2}x(t_o) \to 0$ as $t\to\infty$ when evaluated at $t=t_o+\pi$: $|x(t_o+\pi)|=|x(t_o)e^{(4n+1)(6-\pi)\pi}|\leq \epsilon$ $\delta(\epsilon,n)=\epsilon/e^{(4n+1)(6-\pi)\pi}\to 0$ as $n\to\infty$

Dongjun Lee

ENGINEERING
COLLEGE OF HEIGHTEEN

Lyapunov Direct Theorem

Th. 2.6: Consider non-autonomous system with equilibrium at $x=0\in\mathcal{D}$. Suppose we can find a continuously differentiable function V(t,x) s.t.

$$\alpha_1(||x||) \leq V(t,x) \leq \alpha_2(||x||) \frac{\mathrm{decrescent condition}}{\frac{dV}{dt}} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) \leq 0$$

 $\forall t \geq 0 \text{ and } \forall x \in \mathcal{D}, \text{ where } \alpha_i \in \mathcal{K} \text{ on } \mathcal{D}. \text{ Then, } x = 0 \text{ is } \text{uniformly stable.}$ Moreover, if $\alpha_i \in \mathcal{K} \text{ on } \mathcal{D}$ strictly-increasing with $\alpha_i(0)=0$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) \leq -\alpha_3(||x||)$$

 $\forall t \geq 0 \text{ and } \forall x \in \mathcal{D}, \text{ where } \alpha_3 \in \mathcal{K} \text{ on } \mathcal{D}, x = 0 \text{ is } \mathbf{uniformly A.S. } \text{Further, if }$

$$|k_1||x||^2 \le V(t,x) \le |k_2||x||^2, \quad \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x) \le -k_3||x||^2$$

 $\forall t \geq 0 \text{ and } \forall x \in \mathcal{D}, \text{ where } k_i, a > 0 \text{ are constants. Then, } x = 0 \text{ is } \mathbf{U.E.S.}, \text{ i.e.,}$

$$||x(t)|| \le k||x(t_o)||e^{-\lambda(t-t_o)}$$

• Quadratic LF $V=x^TPx$ with $\dot{V}=-x^TQx$ satisfies above conditions.

Donaiun Lee

Passivity-Based Control

• Robot open-loop dynamics:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau + f$$

which is passive, i.e., $\dot{M}-2C$ is skew-symmetric, or, equivalently, $\forall T\geq 0$,

$$\int_0^T [\tau + f]^T \dot{q} dt = E(T) - E(0)$$

• Computed torque control:

$$au = M(q)[\ddot{q}_d - B(\dot{q} - \dot{q}_d) - K(q - q_d)] + C(q, \dot{q})\dot{q} + g(q)$$

which is not so robust and also cancels out nonlinear dynamics rather than utilizes it (as typical for any **feedback linearization**).

• Passivity-based control:

$$\tau = \hat{M}(q)\ddot{q}_d + \hat{C}(q,\dot{q})\dot{q}_d + \hat{g}(q) - K_d(\dot{q} - \dot{q}_d) - K_p(q - q_d)$$

feedforward (inverse dynamics) kinematic feedback with $\hat{\star}$ are estimates, $K_d, K_p \in \Re^{n \times n}$ are symmetric and PD gain matrices.

Dongjun Le

Passivity-Based Tracking Control

• Robot open-loop dynamics:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = au + f$$

with $f \approx 0$ and skew-symmetric $\dot{M} - 2C$.

• Passivity-based control:

$$\tau = M(q)\ddot{q}_d + C(q, \dot{q})\dot{q}_d + g(q) - K_d(\dot{q} - \dot{q}_d) - K_p(q - q_d)$$

• Closed-loop error dynamics: with $e = q - q_d$,

$$M(q)\ddot{e}+C(q,\dot{q})\dot{e}+K_{d}\dot{e}+K_{p}e=0$$
 \longrightarrow dynamics utilized

• Define energy-like Lyapunov function $V = \frac{1}{2}\dot{e}^T M \dot{e} + \frac{1}{2}e^T K_p e$. Then, from the skew-symmetricity,

$$\dot{V} = \dot{e}^T M \ddot{e} + \frac{1}{2} \dot{e}^T \dot{M} \dot{e} + \dot{e}^T K_p e = -\dot{e}^T K_d \dot{e}$$

implying that $(\dot{e},e)=0$ is only Lyapunov stable. However, it is observed that $(\dot{e},e)\to 0$ exponentially.

Dongjun Lee

ENGINEERI

Passivity-Based Stabilization

• Consider passivity-based stabilization control:

$$au = g(q) - K_d \dot{q} - K_p (q - q_d)$$

to achieve $(\dot{q}, q) \to (0, q_d)$.

• Then, the closed-loop dynamics becomes:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + K_d\dot{q} + K_p(q - q_d) = 0$$

which should satisfy $(\dot{q},q) \to (0,q_d)$ as it's mass-spring-damper system.

• Yet, Lyapunov analysis is inconclusive even for this simple system, i.e, if we use total energy as Lyapunov function

$$V = rac{1}{2}\dot{q}^TM\dot{q} + rac{1}{2}e^TK_pe$$

we have

$$\dot{V} = -\dot{q}^T K_d \dot{q} \le 0$$

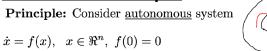
• There may be better Lyapunov function, which, yet, in general, is difficult to find (i.e., not constructive approach) ⇒ invariance principle.

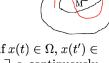
Dongjun Lee

ENGINEERING

Invariance Principle

• LaSalle's Invariance Principle: Consider autonomous system

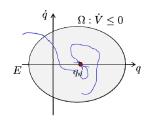




Suppose \exists compact (i.e., bounded and closed) set $\Omega \in \mathbb{R}^n$ s.t., if $x(t) \in \Omega$, $x(t') \in \Omega$ $\Omega \ \forall t' \geq t \ \overline{\text{(i.e., } \Omega \text{ positive invariant set)}}$. Suppose further \exists a continuously differentiable $V: \mathbb{R}^n \to \mathbb{R}$ s.t., $\dot{V}(x) \leq 0 \ \forall x \in \Omega$. Define

$$E := \{ x \in \Omega \mid \dot{V}(x) = 0 \}$$

and $M \subset E \subset \Omega$ be the largest invariant set in E. Then, if $x(0) \in \Omega$, $x(t) \to M$.



1. Compact and positive-invariant set Ω :

$$\frac{1}{2}\lambda_{\min}[K_p]||q - q_d||^2 + \frac{1}{2}\lambda_{\min}[M]||\dot{q}||^2 \le V(t) \le V(0)$$

- 2. The set $E = \{(q, \dot{q}) \mid \dot{V} = 0\} = \{(q, \dot{q}) \mid \dot{q} = 0\}.$
- 3. If $\dot{q} = 0$ but $q \neq q_d$, $\ddot{q} \neq 0 \Rightarrow \dot{q} \neq 0$. Thus,

$$M = \{(q, \dot{q}) = (q_d, 0)\}$$
 i.e., $(q, \dot{q}) \rightarrow (q_d, 0)$

Passivity-Based Tracking Control

• Consider passivity-based trajectory tracking control:

$$\tau = M(q)\ddot{q}_d + C(q, \dot{q})\dot{q}_d + g(q) - K_d(\dot{q} - \dot{q}_d) - K_p(q - q_d)$$

• Then, the closed-loop error dynamics becomes: with $e = q - q_d$,

$$M(q)\ddot{e} + C(q,\dot{q})\dot{e} + K_d\dot{e} + K_p e = 0$$

- This closed-loop dynamics is non-autonomous system. Thus, LaSalle's invariance principle not applicable.
- Yet, with skew-symmetricity of original dynamics, the closed-loop dynamics still behaves like mass-spring-damper system, i.e.,

$$V = \frac{1}{2}\dot{e}^T M \dot{e} + \frac{1}{2}e^T K_p e \quad \Rightarrow \quad \dot{V} = -\dot{e}^T K_d \dot{e}$$

which looks like damping dissipation.

• This then would likely imply that $\dot{e} \to 0$ as V is lower-bounded by 0. Then, $e \to 0$? \Rightarrow Barbalat's lemma.

Barbalat's Lemma

Lem. (Barbalat's) Suppose $f(t) \to c$. Then, $\dot{f}(t) \to 0$, if $\dot{f}(t)$ is uniformly continuous, i.e., $\forall \epsilon > 0$, $\exists \delta(\epsilon) > 0$ s.t.,

$$|t_1 - t_2| \le \delta(\epsilon) \Longrightarrow |\dot{f}(t_1) - \dot{f}(t_2)| \le \epsilon, \quad \forall t_1, t_2 \ge 0.$$

- If $\ddot{f}(t)$ is uniformly bounded, $\dot{f}(t)$ is uniformly continuous (MVT)
- Applicable both to autonomous & non-autonomous systems
- $f \to c$, yet, not $\dot{f} \to 0$: $f(t) = e^{-t} \sin e^{2t}$, $\dot{f}(t) = e^{-t} \sin e^{2t} + 2e^{t} \cos e^{2t}$
- $\dot{f} \to 0$, yet, not $f \to c$: $f(t) = \sin(\ln t)$, $\dot{f}(t) = \frac{1}{4}\cos(\ln t)$

Corollary: Suppose f(t) is square-integrable (i.e., $\int_0^\infty f^2(\tau)d\tau \to c$) and $\dot{f}(t)$ is bounded. Then, $f(t) \to 0$.

(Proof) Define $g(t) = \int_0^t f^2(\sigma) d\sigma$. From the assumption, $\lim_{t\to\infty} g(t) = c$. Then, from Barbalat's, $\dot{g}(t) = f^2(t) \to 0$ if \dot{g} is UC or $\ddot{g} = 2\dot{f}f$ is bounded.

- Here, 1) \dot{f} is assumed to be bounded; and 2) f(t) cannot be unbounded, since, if so, $\int_0^t f^2(\sigma) d\sigma$ will also be unbounded (with \dot{f} bounded).
- Thus, \ddot{q} is bounded $\Rightarrow \dot{q}$ is UC $\Rightarrow f \rightarrow 0$.

Dongjun Lee

MIN ENGINEERIN

Trajectory Tracking Convergence Proof

• The closed-loop error dynamics:

$$M(q)\ddot{e} + C(q,\dot{q})\dot{e} + K_d\dot{e} + K_p e = 0$$

• Using $V = \frac{1}{2}\dot{e}^TM\dot{e} + \frac{1}{2}e^TK_pe$, $\dot{V} = -\dot{e}^TK_d\dot{e}$, i.e., $V(t) - V(0) = -\int_0^t\dot{e}^TK_d\dot{e}d\tau$, or,

$$0 \le V(t) = V(0) - \int_0^t \dot{e}^T K_d \dot{e} d\tau \le V(0)$$

implying that (\dot{e}, e) is bounded.

- From $\int_0^t \dot{e}^T K_d \dot{e} d\tau \leq V(0)$, \dot{e} is square integrable. Also, from the dynamics with bounded $(e,\dot{e},q_d,\dot{q}_d)$, if $\frac{\partial m_{ij}}{\partial q_k}$ and $M \geq \lambda_{\min} I$, \ddot{e} will also be bounded, and $\dot{e} \to 0$ from the Corollary.
- Invoking BL again, with $\dot{e} \to 0$, $\ddot{e} \to 0$ if \ddot{e} is UC or \ddot{e} is bounded. This is true if $\frac{\partial^2 m_{ij}}{\partial q_r \partial q_r}$ is also bounded, since

$$M(q)\ddot{e} + \frac{dM(q)}{dt}\ddot{e} + C\ddot{e} + \frac{dC(q,\dot{q})}{dt}\dot{e} + K_d\ddot{e} + K_p\dot{e} = 0$$

with $c_{kj}=\sum_i [rac{\partial m_{kj}}{\partial q_i}+rac{\partial m_{ki}}{\partial q_j}-rac{\partial m_{ij}}{\partial q_k}]\dot{q}_i$. This then establish e o 0 too.

ENGINEERING

Trajectory Tracking Control - Theorem

Theorem: Consider robot dynamics with passivity-based tracking control as defined above. Then, if $q_d(t)$ is \mathcal{C}^{∞} -smooth, $\frac{\partial m_{ij}}{\partial q_k}$ and $\frac{\partial^2 m_{ij}}{\partial q_p \partial q_r}$ are bounded, and $\exists \ \lambda_{\min} > 0 \text{ s.t.}, \ \lambda_{\min} I \leq M(q), \ (e, \dot{e}) \to 0.$

- The assumptions are always guaranteed for revolute joint robots.
- $(\dot{e}, e) \to 0$, yet, how fast is the convergence is not specified (may be extremely slow).
- Asymptotic stability may be fragile, that is, it may become divergent with a bit of disturbance, noise and/or uncertainty.
- Exponential convergence is always preferred to asymptotic convergence, as it automatically guarantees a level of **robustness** against external disturbances and parametric uncertainty (ultimately bounded).
- We can establish exponential convergence of the passivity-based tracking control with Lyapunov function with **cross-coupling** term as before:

$$V = \frac{1}{2}\dot{e}^T M \dot{e} + \epsilon \dot{e}^T M e + \frac{1}{2}e^T [K_p + \epsilon K_d]e$$

Dongjun Lee

Alternative Passivity-Based Control with r

• Consider again the robot dynamics:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau + f, \quad f \approx 0$$

• Alternative passivity-based control with r-variable:

$$au = M[\ddot{q}_d - \Lambda \dot{e}] + C[\dot{q}_d - \Lambda e] + g(q) - K\dot{e} - K\Lambda e + au'$$

with $K, \Lambda \in \mathbb{R}^{n \times n}$ diagonal and positive-definite (i.e., $K\Lambda = \Lambda K$).

• The closed-loop dynamics becomes:

$$M(q)\dot{r} + C(q,\dot{q})r + Kr = \tau'$$

where $r := \dot{e} + \Lambda e$ serves now as velocity, defining new passivity inputoutput pair (τ', r) : with $V := \frac{1}{2}r^T M r$,

$$\dot{V} = r^T M \dot{r} + \tfrac{1}{2} r^T \dot{M} r = \tau'^T r - r^T K r$$

• With $\tau' = 0$, we have $\dot{V} = -r^T K r$ with $V = \frac{1}{2} r^T M r$, implying that $r = \dot{e} + \Lambda e \to 0$ exponentially (i.e., $(\dot{e}, e) \to 0$ exponentially too).

Dongjun Lee

ENGINEERING

Effect of Uncertainty - I

• Consider the robot dynamics:

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = \tau + f, \quad f \approx 0$$

under passivity-based control with parametric uncertainty:

$$au_o = \hat{M}(q)[\ddot{q}_d - \Lambda \dot{e}] + \hat{C}(q, \dot{q})[\dot{q}_d - \Lambda e] + \hat{g}(q) - K\dot{e} - K\Lambda e$$

where $\hat{\star}$ is estimate of \star and $e = q - q_d$.

• From linearity in inertial parameters, $\forall y_1, y_2 \in \mathbb{R}^n$,

$$M(q)y_1 + C(q, \dot{q})y_2 + g(q) = Y(q, \dot{q}, y_1, y_2)\theta$$

where $Y \in \Re^{n \times l}$ (known) regressor; $\theta \in \Re^{l}$ (uncertain) inertia parameters.

• Since the estimated dynamics has the same structure,

$$\tau_o = Y(q, \dot{q}, \dot{\nu}, \nu)\hat{\theta} - K\dot{e} - K\Lambda e, \quad \nu = \dot{q}_d - \Lambda e$$

• Augment nominal control τ_o with $\delta \tau$ to address uncertainty:

Dongiun Lee

 $au = au_o + \delta au$

ENGINEERI

Effect of Uncertainty - II

• Closed-loop dynamics:

$$M\ddot{q} + C\dot{q} + g = \hat{M}[\ddot{q}_d - \Lambda \dot{e}] + \hat{C}[\dot{q}_d - \Lambda e] + \hat{g} - K[\dot{e} + \Lambda e] + \delta \tau$$

• Substracting $M[\ddot{q}_d - \Lambda \dot{e}] + C[\dot{q}_d - \Lambda e] + g$ from both sides, we obtain:

$$\begin{split} M[\ddot{e} + \Lambda \dot{e}] + C[\dot{e} + \Lambda e] + K[\dot{e} + \Lambda e] &= Y(q, \dot{q}, \nu, \dot{\nu}) \hat{\theta} - Y(q, \dot{q}, \nu, \dot{\nu}) \theta + \delta \tau \\ &= Y(q, \dot{q}, \nu, \dot{\nu}) [\hat{\theta} - \theta] + \delta \tau \end{split}$$

or, using $r := \dot{e} + \Lambda e$,

$$M\dot{r}+Cr+Kr=Y[\hat{ heta}- heta]+\delta au$$
 \longrightarrow matching uncertainty: appears in same channel with control

• Define Lyapunov function as before: $V = \frac{1}{2}r^TMr$ (or $V = \frac{1}{2}r^TMr + e^TK\Lambda e$),

 $rac{dV}{dt} = -r^T K r + r^T Y [heta - \hat{ heta}] + r^T \delta au$ negative-definite want to make still negative

- Robust control: large-enough $\delta \tau$ to absorb the uncertainty effect
- Adaptive control: adaptively change estimate $\hat{\theta}$ by seeing error r.

Dongjun Lee

ENGINEERING
COLLEGE OF INSERTED RES

Passivity-Based Robust Control

- Closed-loop dynamics: $M\dot{r} + Cr + Kr = Y[\hat{\theta} \theta] + \delta\tau$.
- Using $V=rac{1}{2}r^TMr, rac{dV}{dt}=-r^TKr+r^TY[heta-\hat{ heta}]+r^T\delta au.$ ightharpoonup matched uncertainty
- Suppose $\exists \rho \geq 0$ s.t., $||\hat{\theta} \theta|| \leq \rho$ (i.e., θ estimation error bounded). Then,

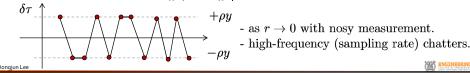
$$r^T Y(\theta - \hat{\theta}) + r^T \delta \tau \leq ||Y^T r|| \cdot ||\hat{\theta} - \theta|| + r^T \delta \tau \leq ||Y^T r|| \rho + r^T \delta \tau$$

• Thus, if we choose the robust control term $\delta \tau := -\rho \frac{YY^Tr}{||Y^Tr||}$, we have

$$\tfrac{dV}{dt} \leq -r^T K r + ||Y^T r|| \rho + r^T \left[-\rho \tfrac{YY^T r}{||Y^T r||} \right] \leq -r^T K r$$

implying that $(e, \dot{e}) \to 0$ exponentially even under certainty.

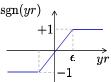
• Chattering: control pushes $r \to 0$, yet, as $r \to 0$, $\delta \tau$ becomes un-defined. For scalar case, $\delta \tau = -\rho \frac{y^2 r}{|yr|} = \rho y \frac{yr}{|yr|} = -\rho y \operatorname{sgn}(yr)$



Boundary-Layer Approximation

• To avoid chattering problem, instead of discontinuous control $\delta \tau = -\rho \frac{YY^Tr}{||Y^Tr||}$, we use its boundary-layer approximation:

$$\delta \tau = \begin{cases} -\rho Y \frac{Y^T r}{||Y^T r||} & \text{if } ||Y^T r|| > \epsilon \\ -\rho Y \frac{Y^T r}{\epsilon} & \text{if } ||Y^T r|| \le \epsilon \end{cases}$$



• Then, if $||Y^Tr|| > \epsilon$, $\frac{dV}{dt} \leq -r^T Kr$. Also, if $||Y^Tr|| \leq \epsilon$.

$$\begin{split} \frac{dV}{dt} & \leq -r^T K r + \rho ||Y^T r|| - \rho \frac{r^T Y Y^T r}{\epsilon} \\ & = -r^T K r + \rho ||Y^T r|| - \rho \frac{||Y^T r||^2}{\epsilon} \\ & = -r^T K r - \frac{\rho}{\epsilon} \left[||Y^T r|| - \frac{\epsilon}{2} \right]^2 + \frac{\rho \epsilon}{4} \leq -r^T K r + \frac{\rho \epsilon}{4} \longrightarrow \text{ hold for all } t \end{split}$$

• Here, if ||r|| increases, \dot{V} will become negative $\rightarrow ||r||$ starts to decrease $\rightarrow V$ will be bounded. In other words,

$$\frac{dV}{dt} \leq -\lambda_{\min}[K]||r||^2 + \frac{\rho\epsilon}{4} \leq -\frac{\lambda_{\min}[K]}{\lambda_{\max}[M]}V + \frac{\rho\epsilon}{4}$$

i.e., V(t) is ultimately bounded by $\frac{\lambda_{\max}[M]}{\lambda_{\min}[K]} \frac{\rho \epsilon}{4}$.

Ultimate Boundedness

• To avoid chattering problem, instead of discontinuous control $\delta \tau = -\rho \frac{YY^Tr}{||Y^Tr||}$, we use its **boundary-layer approximation**:

$$\delta \tau = \begin{cases} -\rho Y \frac{Y^T r}{||Y^T r||} & \text{if } ||Y^T r|| > \epsilon \\ -\rho Y \frac{Y^T r}{\epsilon} & \text{if } ||Y^T r|| \le \epsilon \end{cases}$$

• V(t) is ultimately bounded by $\frac{\lambda_{\max}[M]}{\lambda_{\min}[K]} \frac{\rho \epsilon}{4}$, since

$$\frac{dV}{dt} \leq -\lambda_{\min}[K]||r||^2 + \frac{\rho\epsilon}{4} \leq -\frac{\lambda_{\min}[K]}{\lambda_{\max}[M]}V + \frac{\rho\epsilon}{4}$$

• r(t) eventually enters into the bounded set

$$B_s := \{r \mid ||r|| \leq \sqrt{rac{\lambda_{\max}[M]}{\lambda_{\min}[M]\lambda_{\min}[K]} rac{
ho\epsilon}{4}} \}$$

- U.B. set B_s gets smaller if ρ is small (i.e., good estimation of θ) or ϵ is small (i.e., tigher approximation) or $\lambda_{\min}[K]$ is large (i.e., large feedback gain).
- Note that B_s is positive-invariant, i.e., r(t) may start outside, yet, eventually enters into it, and, once in it, r(t) will stay in B_s afterward.

Donaiun Lee

ENGINEERIN

Passivity-Based Adaptive Control

- Robot dynamics: $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau + f$, $f \approx 0$.
- Tracking control: $\tau = \hat{M}(q)[\ddot{q}_d \Lambda \dot{e}] + \hat{C}(q, \dot{q})[\dot{q}_d \Lambda e] + \hat{g}(q) K\dot{e} K\Lambda e$. Here, we **adaptively change** $\hat{\theta}(t)$ instead of large-action $\delta \tau$.
- Closed-loop dynamics:

$$M\dot{r} + Cr + Kr = Y[\hat{ heta} - heta] = Y\tilde{ heta}$$

where $\tilde{\theta} = \hat{\theta}(t) - \theta$ is parameter estimation error for constant θ . Note that $\hat{\theta}$ consitutues another state vector, since it has its own dynamics.

• Define $V = \frac{1}{2}r^TMr + \frac{1}{2}\tilde{\theta}^T\Gamma\tilde{\theta}$ with symmetric and pd $\Gamma \in \Re^{l \times l}$. Then,

$$\frac{dV}{dt} = -r^TKr + r^TY\tilde{\theta} + \dot{\tilde{\theta}}^T\Gamma\tilde{\theta} = -r^TKr + \tilde{\theta}^T[Y^Tr + \Gamma\dot{\tilde{\theta}}]$$
 passivity (cf. CLF)

• This then suggests the following adaptation law

$$\dot{ ilde{ heta}} = rac{d\hat{ heta}}{dt} = \Gamma^{-1} Y^T(q,\dot{q},
u,\dot{
u}) r(t), \quad
u = \dot{q}_d(t) - \Lambda e(t)$$

with which we have $\frac{dV}{dt} = -r^T K r$, i.e., $(r, \tilde{\theta})$ is Lyapunov stable.

ENGINEERIN

- Define $V=\frac{1}{2}r^TMr+\frac{1}{2}\tilde{\theta}^T\Gamma\tilde{\theta}$. Then, with adaptation law $\frac{d\hat{\theta}}{dt}=\Gamma^{-1}Y^Tr$, we have $\frac{dV}{dt} = -r^T K r$, i.e., $(r, \tilde{\theta}) = 0$ is only Lyapnuv stable.
- Integrating this, we have, $\forall T \geq 0$,

$$V(T) = V(0) - \int_0^T r^T K r dt \le V(0)$$

implying that $r \in \mathcal{L}_2$. Also, if $|\frac{\partial m_{ij}}{\partial q_k}|$ is bounded, $\dot{r} \in \mathcal{L}_{\infty}$. Then, from the Corollary of Barbalat's lemma, $r \to 0$.

- We now have $(e, \dot{e}) \to 0$. Then, $\tilde{\theta}(t) = \hat{\theta}(t) \theta \to 0$ as well? When this parameter convergence possible? \Rightarrow persistency of excitation.
- With $r \to 0$, we have $\tilde{\theta} \to 0$ from adaptation. We also have $Y^T\tilde{\theta} \to 0$ from C.L. dynamics. This then collectively defines LTV dynamics

$$\dot{\tilde{\theta}} = 0, \quad y = Y^T(q, \dot{q}, \nu, \dot{\nu})\tilde{\theta} = Y^T(q_d, \dot{q}_d, \ddot{q}_d)\tilde{\theta}$$

with the output $y \to 0$. Does this then also implies $\tilde{\theta} \to 0$?

Observability of LTV Systems

• LTV dynamics of parameter estimation error $\tilde{\theta}$:

$$\dot{\tilde{\theta}} = 0, \quad y = Y^T(q_d, \dot{q}_d, \ddot{q}_d)\tilde{\theta}$$

with the output $y \to 0$. If $Y \in \Re^{n \times l}$ is rich enough (e.g., non-singular square), $y \to 0$ would imply $\theta \to 0$. However, if Y is not rich enough (e.g., constant fat), $y \to 0$ wouldn't imply $\tilde{\theta} \to 0$.

- **Definition:** A LTV system $\dot{x} = A(t)x$, y = C(t)x is **observable** if, $\forall t' > 0$, the initial state x(0) is uniquely determined by y(t), t = [0, t'].
- Theorem: LTV system $\dot{x} = A(t)x$, y = C(t)x is observable on $[t_o, t_f]$ iff

 $W_o(t_o, t_f) = \int_t^{t_f} \Phi(t, t_o) C^T(t) C(t) \Phi(t, t_o) dt \ge \sigma_o I$

where $\sigma_o > 0$, $\Phi(t, t_o)$ is the transition matrix with $x(t) = \Phi(t, t_o)x(0)$, and W_o is observability grammian.

Observability Grammian

• Theorem: LTV system $\dot{x} = A(t)x$, y = C(t)x is observable on $[t_o, t_f]$

 $W_o(t_o, t_f) = \int_{t_o}^{t_f} \Phi(t, t_o) C^T(t) C(t) \Phi(t, t_o) dt \ge \sigma_o I$

where $\sigma_o > 0$, $\Phi(t, t_o)$ is the transition matrix with $x(t) = \Phi(t, t_o)x(0)$, and W_o is observability grammian.

(Proof) From $y = C(t)x = C(t)\Phi(t,t_o)x(0)$, we have

$$\int_{t_o}^{t_f} \Phi^T(t,t_o) C^T(t) y(t) dt = \int_{t_o}^{t_f} \Phi^T(t,t_o) C^T(t) C(t) \Phi(t,t_o) dt \cdot x(0)$$

thus, if the above condition holds, x(0) is uniquely determined by

$$x(0) = W_o^{-1}(t_o, t_f) \int_{t_o}^{t_f} \Phi^T(t, t_o) C^T(t) y(t) dt$$

Persistency of Excitation
• Theorem: LTV system $\dot{x} = A(t)x, \ y = C(t)x$ is observable on $[t_o, t_f]$

$$W_o(t_o,t_f) = \int_{t_o}^{t_f} \Phi(t,t_o) C^T(t) C(t) \Phi(t,t_o) dt \geq \sigma_o I$$

with

$$x(0) = W_o^{-1}(t_o, t_f) \int_{t_o}^{t_f} \Phi^T(t, t_o) C^T(t) y(t) dt$$

• Consider the LTV dynamics of parameter estimation error $\tilde{\theta}$:

$$\dot{\tilde{\theta}} = 0, \quad y = Y^T(q_d, \dot{q}_d, \ddot{q}_d)\tilde{\theta}$$

with $\Phi(t_o, t_f) = I$. Then, with the output $y \to 0$, we will have $\tilde{\theta} \to 0$, if

$$W_o(t+T,t) = \int_t^{t+T} Y^T(q_d,\dot{q}_d,\ddot{q}_d) Y(q_d,\dot{q}_d,\ddot{q}_d) dt \geq \sigma_o I, \quad orall t \geq 0$$

for some positive constants T > 0 and $\sigma_o > 0$.

• This condition is referred to (uniform) persistency of excitation, i.e., the signal q_d is righ enough and persistently exciting the system so that $Y^T(q_d, \dot{q}_d, \ddot{q}_d, \ddot{q}_d)\tilde{\theta} \to 0$ should necessarily imply $\tilde{\theta} \to 0$ as well.

Workspace EF Control

Consider the robot dynamics

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + q(q) = \tau + \tau_e$$

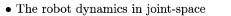
where $q \in \mathbb{R}^n$ is joint configuration and $\tau_e \in \mathbb{R}^n$ is external wrench effect.

- In most applications, tasks are specified for the end-effector $x \in f(q) \in$ \Re^m , not for the joint configuration $q \in \Re^n$, thus, want to control x directly.
- Let $f(q) \in \Re^m$ be a minimal representation of EF motion for the task. Assume n=m and $J(q)=\frac{\partial f}{\partial q}\in\Re^{n\times n}$ locally full-rank (i.e., f also locally
- For instance, $(x, y, z, \phi, \theta, \psi)$ for EF in SE(3) with $\tau_e = J^T(q) f_e$, where $f_e \in se^*(3)$ is wrench, i.e., force and torque.
- We then have the following kinematics relations:

$$\dot{x} = \frac{\partial f}{\partial q} \dot{q} = J(q) \dot{q} \quad \to \quad \dot{q} = J^{-1}(q) \dot{x}$$
$$\ddot{q} = \frac{d}{dt} [J^{-1}(q) \dot{x}] = \frac{dJ^{-1}(q)}{dt} \dot{x} + J^{-1}(q) \ddot{x}$$

where $\frac{d}{dt}[J^{-1}(q)] = -J^{-1}(q)\dot{J}(q)J^{-1}(q)$.

Workspace Dynamics



$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau + J^{T}(q)f_{e}$$

• Using $\dot{q} = J^{-1}(q)\dot{x}$ and $\ddot{q} = \frac{dJ^{-1}}{dt}\dot{x} + J^{-1}(q)\ddot{x}$, can rewirte joint-space dynamics:

$$\begin{split} &M(q)[J^{-1}\ddot{x}+\frac{dJ^{-1}}{dt}\dot{x}]+C(q,\dot{q})J^{-1}\dot{x}+g(q)=\tau+J^{T}f_{e}\\ &\Rightarrow\ J^{-T}M(q)J^{-1}\ddot{x}+J^{-T}[M(q)\frac{dJ^{-1}}{dt}+C(q,\dot{q})J^{-1}]\dot{x}+J^{-T}g(q)=J^{-T}\tau+f_{e} \end{split}$$

from which we can obtain the robot workspace dynamics:

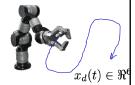
$$D(x)\ddot{x} + Q(x,\dot{x})\dot{x} + g_x(x) = u + f_e$$

- $D(x) = J^{-T}M(q)J^{-1} \in \Re^{n \times n}$ is symmetric and positive-definite. $Q(x, \dot{x}) = J^{-T}[M(q)\frac{dJ^{-1}}{dt} + C(q, \dot{q})J^{-1}]$ is workspace Corilois matrix.
- $\dot{D}(x) 2Q(x,\dot{x})$ is skew-symmetric.
- $g_x(x) = J^{-T}g(q)$ is workspace gravity.
- $u = J^{-T}\tau$ is workspace control.
- J(q) is analytic Jacobian with representation singularity.

Workspace Control

• Consider the robot workspace dynamics:

$$D(x)\ddot{x} + Q(x, \dot{x})\dot{x} + g_x(x) = u + f_e$$



• Workspace EF trajectory tracking control objective:

$$(x(t), \dot{x}(t)) \rightarrow (x_d(t), \dot{x}_d(t))$$

• Passivity-based trajectory tracking control with r-variable:

$$u = D[\ddot{x}_d - \Lambda(\dot{x} - \dot{x}_d)] + Q[\dot{x}_d - \Lambda(x - x_d)] - K(\dot{x} - \dot{x}_d) - K\Lambda(x - x_d) + g_x - f_e$$

which results in exponentially-stable system

$$D(x)\dot{r} + Q(x,\dot{x})r + Kr = 0$$
, $r := \dot{e} + \Lambda e$, $e = x - x_d$

• Real joint torque control: with $e = x(q(t)) - x_d(t)$,

$$\tau = J^T u = J^T(q) \cdot [D(q)(\ddot{x}_d - \Lambda \dot{e}) + Q(q, \dot{q})(\dot{x}_d - \Lambda e) - Kr] + g(q) - J^T(q)f_e$$

wrench sensing

Dongiun Lee

Workspace Control: Example

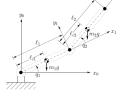
• Robot workspace dynamics:

$$D(q)\ddot{x} + Q(q,\dot{q})\dot{x} + g_x(q) = u$$

where $q = (\theta_1, \theta_2)$.

• We want to control the EF position in plane. Then,

$$f(q) = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} l_1 c_1 + l_2 c_{12} \\ l_1 s_1 + l_2 s_{12} \end{pmatrix} \in \Re^2$$



• Jacobian relation

$$\frac{df(q)}{dt} = J(q)\dot{q} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{bmatrix} -l_1 \, \mathbf{s}_1 - l_2 \, \mathbf{s}_{12} & -l_2 \, \mathbf{s}_{12} \\ l_1 \, \mathbf{c}_1 + l_2 \, \mathbf{c}_{12} & l_2 \, \mathbf{c}_{12} \end{bmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix}$$

with $J(q) \in \Re^{2 \times 2}$ is full-rank if $\theta_2 \neq n\pi$.

• Workspace trajectory tracking control: with $e = x(q) - x_d(t)$,

$$\tau = J^{T}(q) \cdot [D(q)(\ddot{x}_d - \Lambda \dot{e}) + Q(q, \dot{q})(\dot{x}_d - \Lambda e) - Kr] + g(q)$$

Dongjun Le

ENGINEERING
COLLEGE OF INSERTED RES