
운영체제의기초:

Deadlock

2023년 4월 20일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수

2

Agenda

I. Introduction

II. Deadlock Prevention

III. Deadlock Detection and Recovery

Deadlock

I. Introduction

4

Overview (1)

❖ Deadlock is one area where there is a strong theory

but it is almost completely ignored in practice

▪ Reason

• Solutions are expensive and/or require predicting the future

❖ Definition of deadlock

▪ A situation where each of a collection of processes is waiting

for something from other processes in the collection

▪ Since all are waiting, none can provide any of the things

being waited for

I. Introduction

5

Overview (2)

❖ Deadlock example with semaphores

Process 0: Process 1:

P(semaX); P(semaY);

P(semaY); P(semaX);

I. Introduction

Process 0 Process 1

semaX semaY

6

Overview (3)

❖ The previous example was relatively simple-minded

▪ Things may be much more complicated

• In general, don’t know in advance how many resources a

process will need. Only if we could predict the future ...

• Deadlock can occur over separate resources, as in the

semaphore example, or over pieces of a single resource, as in

memory, or even over totally separate classes of resources

(tape drives and memory)

• Deadlock can occur over anything involving, for example,

messages in a pipe system

• Hard for OS to control

I. Introduction

7

Deadlock Handling (1)

❖ Solutions to deadlock problem fall into two general

categories

1. Prevention

• Organize the system so that it is impossible for deadlock ever

to occur

• May lead to less efficient resource utilization in order to

guarantee no deadlocks

2. Detection and recovery

• Determine when the system is deadlocked, and then take

drastic action

• Requires termination of one or more processes in order to

release their resources

I. Introduction

8

Deadlock Handling (2)

❖ Four necessary conditions for deadlock

▪ Mutual exclusion (limited access)

• Resources cannot be shared

▪ No preemption

• Once given, a resource cannot be taken away

▪ Hold and wait (multiple independent requests)

• Processes don’t ask for resources all at once

▪ Circular wait

• There is a circularity in the graph of who has what and who

wants what

I. Introduction

II. Deadlock Prevention

10

Deadlock Prevention (1)

❖ Avoiding one of four necessary conditions

▪ No mutual exclusion

• Don’t allow exclusive access

• This is probably not reasonable for many applications

▪ No preemption

• Allow preemption (E.g., Preempt your disk space?)

II. Deadlock Prevention

11

Deadlock Prevention (2)

❖ Avoiding one of four necessary conditions

▪ No hold and wait

• Make process ask for everything at once

• Either get them all or wait for them all

• Must be able to wait on many things without locking anything

• Painful for process

– May be difficult to predict, so must make very wasteful use of

resources

– Tricky to implement

– This requires the process to predict the future

II. Deadlock Prevention

12

Deadlock Prevention (3)

❖ Avoiding one of four necessary conditions

▪ No circular waiting

• Create enough resources so that there’s always plenty for all

• Don’t allow waiting

– This punts the problem back to the user (E.g., Phone company)

• Make ordered or hierarchical requests

– E.g., ask for all S’s, then all T’s etc.

• All processes must follow the same ordering scheme

• Of course, for this you have to know in advance what is needed

II. Deadlock Prevention

13

Banker’s Algorithm (1)

❖ Safe state

▪ The system can allocate resources to each process up to its

maximum in some order and still avoid a deadlock

▪ A safe sequence must exist from a safe state

❖ Unsafe state

▪ May lead to a deadlock

II. Deadlock Prevention

14

Banker’s Algorithm (2)

II. Deadlock Prevention

safe

unsafe

deadlock

15

Banker’s Algorithm (3)

❖ Example: A system with 12 magnetic drives

▪ Detecting safe/unsafe state

• Safe sequence: <P1,P0,P2>

• Transition to an unsafe one: < P’2>

– By making an additional request

II. Deadlock Prevention

Current

Allocations

5

Process

P0

2P1

2P2

Max Needs

10

4

9

New

Allocations

3

Process

P’2

Max Needs

9

16

Banker’s Algorithm (4)

❖ Key idea

▪ A new process must declare the maximum resource needs

▪ When a process requests resources, the algorithm checks if

the allocation will leave the system in a safe state

▪ Grant the resources, if so

▪ Otherwise, have it wait until some other process releases

enough resources

II. Deadlock Prevention

17

Banker’s Algorithm (5)

❖ Notations

▪ Available[1:m]

• The number of available resources of each type

▪ Max[1:n,1:m]

• The maximum demand of each process

▪ Allocation[1:n,1:m]

• The number of resources of each type currently allocated to

each process

▪ Need[1:n,1:m]

• The remaining resource need of each process

• Max[i, j] = Allocation[i, j] + Need[i, j]

II. Deadlock Prevention

18

Banker’s Algorithm (6)

❖ Notations

▪ For two vectors X and Y:

• X  Y iff  i : 1  i  n : X[i]  Y[i]

• X < Y iff X  Y and X  Y

II. Deadlock Prevention

19

Banker’s Algorithm (7)

❖ Safety check

Step 0: Work[1:m] and Finish[1:n] are two vectors

Step 1: Work = Available and Finish[i] = false for i = 1,2,...,n

Step 2: Find an i such that both

Finish[i] = false and Need[i]  Work

If no such i exists, go to Step 4

Step 3: Work = Work + Allocation[i]

Finish[i] = true

Go to Step 2

Step 4: If Finish[i] = true for all i, then the system is in a safe

state

II. Deadlock Prevention

20

Banker’s Algorithm (8)

❖ Handling resource request for process Pi

Step 0: Request[1:n, 1:m] is the resource request of each

process

Step 1: If Request[i]  Need[i], go to step 2

Otherwise, raise an error condition

Step 2: If Request[i]  Available, go to step 3

Otherwise, Pi must wait for the resource

II. Deadlock Prevention

21

Banker’s Algorithm (9)

❖ Handling resource request for process Pi

Step 3: Grant the resource request as below

Available = Available – Request[i];

Allocation[I] = Allocation[i] + Request[i];

Need[i] = Need[i] – Request[i];

Step 4: If the resulting resource allocation is safe, the

transaction is completed and Pi if allocated; Otherwise, Pi

must wait and old resource allocation state is restored

II. Deadlock Prevention

22

Banker’s Algorithm (10)

❖ Example

▪ A state snapshot

• Safe sequence <P1,P3,P4,P2,P0>

▪ NewRequest[1] = (1,0,2):

• Determine if the new state is safe

II. Deadlock Prevention

Processes Allocations Max Needs Available

A B C A B C A B C

P0
0 1 0 7 5 3 3 3 2

P1
2 0 0 3 2 2

P2
3 0 2 9 0 2

P3
2 1 1 2 2 2

P4
0 0 2 4 3 3

III. Deadlock Detection and Recovery

24

Deadlock Detection (1)

❖ Limitations in deadlock handling mechanisms

▪ Prevention of deadlock is expensive and/or inefficient

▪ Detection is also expensive and recovery is seldom possible

▪ (What if process has things in a weird state?)

• Particularly, in a mission critical system such as a vehicle

III. Deadlock Detection and Recovery

25

Deadlock Detection (2)

❖ Detection of deadlock could be complicated

▪ Single instance of each resource type

• Existence of cycle is a necessary and sufficient condition for a

deadlock

▪ Multiple instances of a resource type

• Use a deadlock detection algorithm similar to the banker’s

algorithm

III. Deadlock Detection and Recovery

26

Deadlock Detection Algorithm (1)

Step 0: Work[1:m] and Finish[1:n] are two vectors

Step 1: Work = Available

For i = 1,2,...,n, Finish[i] =

Step 2: Find an i such that both

Finish[i] = false

Request[i]  Work

If no such exists, go to Step 4

Step 3: Work = Work + Allocation[i]; Finish[i] = true

Go to Step 2

Step 4: If Finish[i] = false for some i, then the system is in a

deadlock state (Such i (i.e., Pi) is a deadlocked process)

III. Deadlock Detection and Recovery

false, if Allocation[i]  0

true, otherwise

27

Deadlock Detection Algorithm (2)

❖ Example: <P0, P2, P3, P1, P4> results in Finish[i]=true

▪ What will happen if P2 makes an additional request for a

instance of type C?

III. Deadlock Detection and Recovery

Processes Allocations Requests Available

A B C A B C A B C

P0
0 1 0 0 0 0 0 0 0

P1
2 0 0 2 0 2

P2
3 0 3 0 0 0

P3
2 1 1 1 0 0

P4
0 0 2 0 0 2

28

Deadlock Detection Algorithm (3)

❖ Example: Deadlock involving P1, P2, P3, P4

III. Deadlock Detection and Recovery

Processes Allocations Requests Available

A B C A B C A B C

P0
0 1 0 0 0 0 0 0 0

P1
2 0 0 2 0 2

P2
3 0 3 0 0 1

P3
2 1 1 1 0 0

P4
0 0 2 0 0 2

29

Deadlock Recovery

❖ Process termination

▪ Abort all deadlocked processes

▪ Abort processes one at a time until the deadlock cycle is

eliminated

❖ Resource preemption

▪ Select a victim

▪ Rollback

▪ Starvation

III. Deadlock Detection and Recovery

