=AM ML Il =:
Deadlock

20234 43 20E

= Al
sd=

sshong@redwood.snu.ac.kr

SNU RTOSLab Xl & ==

MaUtsu MIdESSSE W=

Seoul National Universit

B RT‘/Sy Lab




Agenda

Introduction
Deadlock Prevention
Deadlock Detection and Recovery

Seoul National University
B RT@®S 1ab 2




|. Introduction

Seoul National University
RT@®S 1 2b




l. Introduction

Overview (1)

Deadlock is one area where there is a strong theory
but it is almost completely ignored in practice

Reason
« Solutions are expensive and/or require predicting the future

Definition of deadlock

A situation where each of a collection of processes is waiting
for something from other processes in the collection

Since all are waiting, none can provide any of the things
being waited for

Seoul National University

B RT@® 4




l. Introduction

Overview (2)

Deadlock example with semaphores

Process 0O:
P (semaX) ;

P (semaY) ;

Process O

£~

Process 1:
P (semaY) ;

P (semaX) ;

Process 1

_- &

Seoul National Universit

RT@®S | -



l. Introduction

Overview (3)

The previous example was relatively simple-minded

Things may be much more complicated

* In general, don’t know in advance how many resources a
process will need. Only if we could predict the future ...

« Deadlock can occur over separate resources, as in the
semaphore example, or over pieces of a single resource, as in
memory, or even over totally separate classes of resources
(tape drives and memory)

« Deadlock can occur over anything involving, for example,
messages in a pipe system

 Hard for OS to control

Seoul National University

B RT@®




Deadlock Handling (1)

Solutions to deadlock problem fall into two general
categories

Prevention

« Organize the system so that it is impossible for deadlock ever
to occur

» May lead to less efficient resource utilization in order to
guarantee no deadlocks
Detection and recovery

» Determine when the system is deadlocked, and then take
drastic action

* Requires termination of one or more processes in order to
release their resources

Seoul National University

B RT@®




Deadlock Handling (2)

Four necessary conditions for deadlock
Mutual exclusion (limited access)
* Resources cannot be shared
No preemption
« Once given, a resource cannot be taken away
Hold and wait (multiple independent requests)
* Processes don't ask for resources all at once
Circular wait

« There is a circularity in the graph of who has what and who
wants what

Seoul National University

B RT@®




ll. Deadlock Prevention

Seoul National University
B RT@®S 1 2b




ll. Deadlock Prevention

Deadlock Prevention (1)

Avoiding one of four necessary conditions

No mutual exclusion

« Don't allow exclusive access

* This is probably not reasonable for many applications
No preemption

» Allow preemption (E.g., Preempt your disk space?)

Seoul National Universit

B RT.Sy Lab 10




ll. Deadlock Prevention

Deadlock Prevention (2)

Avoiding one of four necessary conditions

No hold and wait
» Make process ask for everything at once
 Either get them all or wait for them all
« Must be able to wait on many things without locking anything

 Painful for process

— May be difficult to predict, so must make very wasteful use of
resources

— Tricky to implement
— This requires the process to predict the future

Seoul National University

B RT® 11




ll. Deadlock Prevention

Deadlock Prevention (3)

Avoiding one of four necessary conditions

No circular waiting
» Create enough resources so that there’s always plenty for all

Don'’t allow waiting
— This punts the problem back to the user (E.g., Phone company)

Make ordered or hierarchical requests
— E.g., askfor all S’s, then all T’s etc.

All processes must follow the same ordering scheme
Of course, for this you have to know in advance what is needed

Seoul National University

B RT® 12




Banker’s Algorithm (1)

Safe state

The system can allocate resources to each process up to its
maximum in some order and still avoid a deadlock

A safe sequence must exist from a safe state

Unsafe state
May lead to a deadlock

Seoul National Universit

B RT.Sy Lab 13




Banker’s Algorithm (2)

unsafe
| deadlock

Seoul National Universi

RT@S 1:b 14




Banker’s Algorithm (3)

Example: A system with 12 magnetic drives

o
Pr S \VIEXENEEGES i
oces - Allocations

P, 10 5
P, 4 2
P, 9 2

Detecting safe/unsafe state
« Safe sequence: <P,,P,,P,>
« Transition to an unsafe one: <P’,>
— By making an additional request

New
Process \VIEXENEEGES .

P, 9 3
B

Seoul National University

RT@®S 1:b 15




Banker’s Algorithm (4)

Key idea
A new process must declare the maximum resource needs

When a process requests resources, the algorithm checks if
the allocation will leave the system in a safe state

Grant the resources, If so

Otherwise, have it wait until some other process releases
enough resources

Seoul National University

B RT@®

16



Banker’s Algorithm (5)

Notations
Available[1:m]
* The number of available resources of each type
Max[1:n,1:m]
 The maximum demand of each process
Allocation[1:n,1:m]

* The number of resources of each type currently allocated to
each process

Need[1:n,1:m]
« The remaining resource need of each process
» Max[i, j] = Allocation([i, j] + Need[l, |]

Seoul National Universit

BN RTO®S

17



Banker’s Algorithm (6)

Notations
For two vectors X and Y-
e X<Yiffvi:l<i<n:X[]<VY[]
e X<YiffX<Yand X=zY

Seoul National Universit

BN RT@®S 1:h 18




Banker’s Algorithm (7)

Safety check
Step 0: Work[1:m] and Finish[1:n] are two vectors

Step 1. Work = Available and Finish][i] = false fori=1,2,...,n
Step 2: Find an i such that both
Finish[i] = false and Need]i] < Work
If no such i exists, go to Step 4
Step 3: Work = Work + Allocation[i]
Finishli] = true
Go to Step 2

Step 4: If Finish[i] = true for all i, then the system is in a safe
state

Seoul National University

B RT.S

19



Banker’s Algorithm (8)

Handling resource request for process P,

Step 0: Request[1:n, 1:m] is the resource request of each
process

Step 1: If Request[i] < Need]i], go to step 2
Otherwise, raise an error condition

Step 2: If Request[i] < Available, go to step 3
Otherwise, P; must wait for the resource

Seoul National University

B RT.S

20



Banker’s Algorithm (9)

Handling resource request for process P,

Step 3: Grant the resource request as below
Avalilable = Available — Request][i];
Allocation[l] = Allocation][i] + Request][i];
Need[i] = Need][i] — Request]i];

Step 4: If the resulting resource allocation is safe, the

transaction is completed and P; if allocated; Otherwise, P,
must wait and old resource allocation state is restored

Seoul National University

B RT.S

21



Banker’s Algorithm (10)

Example

A state snapshot
- Safe sequence <P,,P;,P,,P,,P,>

Processes Allocations Max Needs Avalilable

ABC ABC ABC
P, 010 753 332
P, 200 322
P, 302 902
P, 211 222
P, 002 433

NewRequest[1] = (1,0,2):
 Determine if the new state is safe Sttt vty
B RT@S 1:b 22




lll. Deadlock Detection and Recovery

Seoul National University
'y
B RT@®S 1.ab




Deadlock Detection (1)

Limitations in deadlock handling mechanisms
Prevention of deadlock is expensive and/or inefficient
Detection is also expensive and recovery is seldom possible

(What if process has things in a weird state?)
« Particularly, in a mission critical system such as a vehicle

Seoul National University

B RT@® 24




Deadlock Detection (2)

Detection of deadlock could be complicated

Single instance of each resource type

« Existence of cycle is a necessary and sufficient condition for a
deadlock

Multiple instances of a resource type

» Use a deadlock detection algorithm similar to the banker’s
algorithm

Seoul National Universit

B RT®S 1 :b 25




Deadlock Detection Algorithm (1)

Step 0: Work[1:m] and Finish[1:n] are two vectors
Step 1: Work = Avalilable
Fori=1,2,...,n, Finish[i] = {
Step 2: Find an i such that both
Finishli] = false
Request[i] < Work

false, if Allocation[i] =0
true, otherwise

If no such exists, go to Step 4
Step 3: Work = Work + Allocation[i]; Finishli] = true
Go to Step 2

Step 4: If Finish[i] = false for some i, then the system s in a
deadlock state (Such i (i.e., P, ) is a deadlocked process

Seoul National University

B RT@S 26




Deadlock Detection Algorithm (2)

Example: <P,, P,, P;, P, P,> results in Finishl[i]=true

Processes Allocations Requests Available
ABC ABC ABC
P 010 000 000
P, 200 202
P, 303 000
P 211 100
P, 002 002

What will happen if P, makes an additional request for a
Instance of type C?

Seoul National Universit

B RT.Sy

27



Deadlock Detection Algorithm (3)

Example: Deadlock involving P4, P,, P3, P,

Processes Allocations Requests Available
ABC ABC ABC
P, 010 000 000
P, 200 202
P, 303 001
P 211 100
P, 002 002

Seoul National University

B RT@®S 1 2b

28



l1l. Deadlock Detection anc

Deadlock Recovery

Process termination
Abort all deadlocked processes

Abort processes one at a time until the deadlock cycle is
eliminated

Resource preemption
Select a victim
Rollback
Starvation

Seoul National Universit

B RT.Sy Lab 29




