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l. Introduction

Overview (1)

Deadlock is one area where there is a strong theory
but it is almost completely ignored in practice

Reason
« Solutions are expensive and/or require predicting the future

Definition of deadlock

A situation where each of a collection of processes is waiting
for something from other processes in the collection

Since all are waiting, none can provide any of the things
being waited for
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l. Introduction

Overview (2)

Deadlock example with semaphores

Process 0O:
P (semaX) ;

P (semaY) ;

Process O

£~

Process 1:
P (semaY) ;

P (semaX) ;

Process 1

_- &
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l. Introduction

Overview (3)

The previous example was relatively simple-minded

Things may be much more complicated

* In general, don’t know in advance how many resources a
process will need. Only if we could predict the future ...

« Deadlock can occur over separate resources, as in the
semaphore example, or over pieces of a single resource, as in
memory, or even over totally separate classes of resources
(tape drives and memory)

« Deadlock can occur over anything involving, for example,
messages in a pipe system

 Hard for OS to control
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Deadlock Handling (1)

Solutions to deadlock problem fall into two general
categories

Prevention

« Organize the system so that it is impossible for deadlock ever
to occur

» May lead to less efficient resource utilization in order to
guarantee no deadlocks
Detection and recovery

» Determine when the system is deadlocked, and then take
drastic action

* Requires termination of one or more processes in order to
release their resources
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Deadlock Handling (2)

Four necessary conditions for deadlock
Mutual exclusion (limited access)
* Resources cannot be shared
No preemption
« Once given, a resource cannot be taken away
Hold and wait (multiple independent requests)
* Processes don't ask for resources all at once
Circular wait

« There is a circularity in the graph of who has what and who
wants what
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ll. Deadlock Prevention
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ll. Deadlock Prevention

Deadlock Prevention (1)

Avoiding one of four necessary conditions

No mutual exclusion

« Don't allow exclusive access

* This is probably not reasonable for many applications
No preemption

» Allow preemption (E.g., Preempt your disk space?)
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ll. Deadlock Prevention

Deadlock Prevention (2)

Avoiding one of four necessary conditions

No hold and wait
» Make process ask for everything at once
 Either get them all or wait for them all
« Must be able to wait on many things without locking anything

 Painful for process

— May be difficult to predict, so must make very wasteful use of
resources

— Tricky to implement
— This requires the process to predict the future
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ll. Deadlock Prevention

Deadlock Prevention (3)

Avoiding one of four necessary conditions

No circular waiting
» Create enough resources so that there’s always plenty for all

Don'’t allow waiting
— This punts the problem back to the user (E.g., Phone company)

Make ordered or hierarchical requests
— E.g., askfor all S’s, then all T’s etc.

All processes must follow the same ordering scheme
Of course, for this you have to know in advance what is needed
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Banker’s Algorithm (1)

Safe state

The system can allocate resources to each process up to its
maximum in some order and still avoid a deadlock

A safe sequence must exist from a safe state

Unsafe state
May lead to a deadlock
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Banker’s Algorithm (2)

unsafe
| deadlock
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Banker’s Algorithm (3)

Example: A system with 12 magnetic drives

o
Pr S \VIEXENEEGES i
oces - Allocations

P, 10 5
P, 4 2
P, 9 2

Detecting safe/unsafe state
« Safe sequence: <P,,P,,P,>
« Transition to an unsafe one: <P’,>
— By making an additional request

New
Process \VIEXENEEGES .

P, 9 3
B
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Banker’s Algorithm (4)

Key idea
A new process must declare the maximum resource needs

When a process requests resources, the algorithm checks if
the allocation will leave the system in a safe state

Grant the resources, If so

Otherwise, have it wait until some other process releases
enough resources
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Banker’s Algorithm (5)

Notations
Available[1:m]
* The number of available resources of each type
Max[1:n,1:m]
 The maximum demand of each process
Allocation[1:n,1:m]

* The number of resources of each type currently allocated to
each process

Need[1:n,1:m]
« The remaining resource need of each process
» Max[i, j] = Allocation([i, j] + Need[l, |]
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Banker’s Algorithm (6)

Notations
For two vectors X and Y-
e X<Yiffvi:l<i<n:X[]<VY[]
e X<YiffX<Yand X=zY
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Banker’s Algorithm (7)

Safety check
Step 0: Work[1:m] and Finish[1:n] are two vectors

Step 1. Work = Available and Finish][i] = false fori=1,2,...,n
Step 2: Find an i such that both
Finish[i] = false and Need]i] < Work
If no such i exists, go to Step 4
Step 3: Work = Work + Allocation[i]
Finishli] = true
Go to Step 2

Step 4: If Finish[i] = true for all i, then the system is in a safe
state
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Banker’s Algorithm (8)

Handling resource request for process P,

Step 0: Request[1:n, 1:m] is the resource request of each
process

Step 1: If Request[i] < Need]i], go to step 2
Otherwise, raise an error condition

Step 2: If Request[i] < Available, go to step 3
Otherwise, P; must wait for the resource
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Banker’s Algorithm (9)

Handling resource request for process P,

Step 3: Grant the resource request as below
Avalilable = Available — Request][i];
Allocation[l] = Allocation][i] + Request][i];
Need[i] = Need][i] — Request]i];

Step 4: If the resulting resource allocation is safe, the

transaction is completed and P; if allocated; Otherwise, P,
must wait and old resource allocation state is restored
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Banker’s Algorithm (10)

Example

A state snapshot
- Safe sequence <P,,P;,P,,P,,P,>

Processes Allocations Max Needs Avalilable

ABC ABC ABC
P, 010 753 332
P, 200 322
P, 302 902
P, 211 222
P, 002 433

NewRequest[1] = (1,0,2):
 Determine if the new state is safe Sttt vty
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lll. Deadlock Detection and Recovery
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Deadlock Detection (1)

Limitations in deadlock handling mechanisms
Prevention of deadlock is expensive and/or inefficient
Detection is also expensive and recovery is seldom possible

(What if process has things in a weird state?)
« Particularly, in a mission critical system such as a vehicle
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Deadlock Detection (2)

Detection of deadlock could be complicated

Single instance of each resource type

« Existence of cycle is a necessary and sufficient condition for a
deadlock

Multiple instances of a resource type

» Use a deadlock detection algorithm similar to the banker’s
algorithm
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Deadlock Detection Algorithm (1)

Step 0: Work[1:m] and Finish[1:n] are two vectors
Step 1: Work = Avalilable
Fori=1,2,...,n, Finish[i] = {
Step 2: Find an i such that both
Finishli] = false
Request[i] < Work

false, if Allocation[i] =0
true, otherwise

If no such exists, go to Step 4
Step 3: Work = Work + Allocation[i]; Finishli] = true
Go to Step 2

Step 4: If Finish[i] = false for some i, then the system s in a
deadlock state (Such i (i.e., P, ) is a deadlocked process
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Deadlock Detection Algorithm (2)

Example: <P,, P,, P;, P, P,> results in Finishl[i]=true

Processes Allocations Requests Available
ABC ABC ABC
P 010 000 000
P, 200 202
P, 303 000
P 211 100
P, 002 002

What will happen if P, makes an additional request for a
Instance of type C?
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Deadlock Detection Algorithm (3)

Example: Deadlock involving P4, P,, P3, P,

Processes Allocations Requests Available
ABC ABC ABC
P, 010 000 000
P, 200 202
P, 303 001
P 211 100
P, 002 002
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l1l. Deadlock Detection anc

Deadlock Recovery

Process termination
Abort all deadlocked processes

Abort processes one at a time until the deadlock cycle is
eliminated

Resource preemption
Select a victim
Rollback
Starvation
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