Ship Stability

Ch. 7 Inclining Test

Spring 2018

Myung-II Roh

Department of Naval Architecture and Ocean Engineering
Seoul National University

Contents

V Ch. 1 Introduction to Ship Stability
V Ch. 2 Review of Fluid Mechanics
V Ch. 3 Transverse Stability Due to Cargo Movement
Ch. 4 Initial Transverse Stability
Ch. 5 Initial Longitudinal Stability

- Ch. 6 Free Surface Effect

Ch. 7 Inclining Test
Ch. 8 Curves of Stability and Stability Criteria
\square Ch. 9 Numerical Integration Method in Naval Architecture
Ch. 10 Hydrostatic Values and Curves
Ch. 11 Static Equilibrium State after Flooding Due to Damage
Ch. 12 Deterministic Damage Stability
V Ch. 13 Probabilistic Damage Stability

Ch. 7 Inclining Test

\square

The Problem of Finding an Accurate Vertical Center of Gravity (KG)

The problem of for the ship's designer.

\checkmark Any difference in the weight of structural parts, equipment, or welds in different ship will produce a different KG.

There is an accurate method of finding KG for any particular ship and that is

The purpose of the inclining test is in an accurately known condition.

Required values to find the KG

- Draft
- Total weight $\left(F_{G}\right)$
- Hydrostatic values ($K B, B M$)
- Weight (w)
- Distance (d)
- Angle of inclination $(\phi)^{\star}$

syd్ab 7
\square


```
Method of Measuring the Angle of Inclination (1/2)
```

How can you measure the angle of inclination when you perform the inclining test?

A ship is inclined by moving a weight of 40 tons a distance 8 m from the center line. A 12 m pendulum shows a deflection of 0.3 m .
Displacement of the ship is 3,700 tons. If the $K B$ is 5 m and $B M$ is 14 m , what is the $K G$?

Various Problems
 Using the Inclining Test Formula

$G M=w \cdot d \quad$ Inclinin
$G M=\frac{}{F_{\cdot} \cdot \tan \phi}$ test

The inclining test formula can be used in various problems as follows:
(1) To find the angle of heel ϕ, a ship will take by moving a weight a transverse distance d.
(2) To find the weight w necessary to remove or produce a heel by moving it a transverse distance d.
(3) To find the distance d necessary to move a weight in order to remove or produce a heel.

