Precise lattice parameter

variance, weight, mean, weighted mean
> standard deviation (σ) ; a measure of how spread out numbers are
$>$ variance $\left(\sigma^{2}\right)$; the average of the squared differences from the mean
(square of expected error)

$$
\sigma^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

$>$ weight $\left(\omega_{\mathrm{i}}\right) \quad w_{i}=\frac{1}{\sigma_{i}^{2}}$.

$$
\sigma^{2}=\frac{n}{n-1} \frac{\sum_{i=1}^{n} w_{i}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n} w_{i}}
$$

$>$ weighted mean $\bar{x}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}$,
$>$ Interpolation
\checkmark connect the data-dots.
\checkmark If data is reliable, we can plot it and connect the dots.

Depicting the trend in the data variation by assigning a single function to represent the data across its entire range

Interpolation

The goal is to identify the coefficients 'a' and ' b ' such that $f(x)$ 'fits' the data well.

Linear curve fitting, linear regression

A straight line function $f(x)=a x+b$
How can we pick the coefficients that best fits the line to the data?

First question: What makes a particular straight line a 'good' fit?
> Square the distance.
> Denote data values as (x, y) and points on the fitted line as $(x, f(x))$.
$>$ Sum the error at the four data points.

The 'best' line has minimum error between line and data points.
least square minimization
the square of the error is minimized.

> Just as was the case for linear regression;
> How can we pick the coefficients that best fit the curve to the data?
$>$ The curve that gives minimum error between data \rightarrow fit is 'best'.
>Quantify the error for these two second order curves...
\checkmark Add up the length of all the red and blue vertical lines.
\checkmark pick curve with minimum total error.

Linear least square

4 measurements (observations)
2 unknown parameters
More equations than the \# of unknowns
\rightarrow There are no values of β_{1} and β_{2} that satisfy the equations exactly.
\rightarrow can get the β_{1} and β_{2} that satisfy the equations as much as possible (best straight line thru the points).
\rightarrow best fit \equiv values of β_{1} and β_{2} that minimizes $\sum \varepsilon_{i}^{2}$ when the residual (error) $\varepsilon_{i}=y-\beta_{1}-\beta_{2} x$.
$S\left(\beta_{1}, \beta_{2}\right)=\left[6-\left(\beta_{1}+1 \beta_{2}\right)\right]^{2}+\left[5-\left(\beta_{1}+2 \beta_{2}\right)\right]^{2}+\left[7-\left(\beta_{1}+3 \beta_{2}\right)\right]^{2}+\left[10-\left(\beta_{1}+4 \beta_{2}\right)\right]^{2}$
$\begin{aligned} & \text { For errors to } \\ & \text { be minimum }\end{aligned} \frac{\partial S}{\partial \beta_{1}}=2 \beta_{1}+5 \beta_{2}-14=0$

$$
\frac{\partial S}{\partial \beta_{2}}=10 \beta_{1}+30 \beta_{2}-77=0
$$

$\beta_{1}=3.5, \quad \beta_{2}=1.4 \rightarrow y=1.4 x+3.5$
$S(3.5,1.4)=1.1^{2}+(-1.3)^{2}+(-0.7)^{2}+(0.9)^{2}=4.2$

Least square fitting

$>$ a way of finding the best curve to fit a given set of observations
$>$ it gives the best values of the constants in the equation selected.
$\checkmark \mathrm{q}$ is a function of 3 variables x, y and z .
\checkmark measurement of q at various values of x, y and z
$\checkmark 3$ unknown parameters a, b and c
\rightarrow With only 3 measurements at various x, y and $z, 3$ equations can be uniquely solved for a, b and c .
$>$ When number of measurements >3,
\rightarrow (1) We can use only 3 measurements (equations) to solve for a, b, and c.
\rightarrow (2) We can get more accurate values of a, b and c by taking advantage of the redundancy of the data; the best line that fits the experimental points.

$$
q_{j}=a x_{j}+b y_{j}+c z_{j} \quad(\mathrm{j}>3)
$$

For every measurement q_{j} the error E_{j} is given by $E_{j}=a x_{j}+b y_{j}+c z_{j}-q_{j}$

The sum of the squares of errors for all q_{j} must be minimum w.r.t. unknowns.

$$
\sum_{j} E_{j}^{2}=\sum_{j}\left(a x_{j}+b y_{j}+c z_{j}-q_{j}\right)^{2}
$$

Linear least square analysis

$\sum_{j} E_{j}^{2}=\sum_{j}\left(a x_{j}+b y_{j}+c z_{j}-q_{j}\right)^{2} \quad$ must be minimum w.r.t. unknowns.
At minimum, $\frac{\partial \sum_{j} E_{j}^{2}}{\partial a}=\frac{\partial \sum_{j} E_{j}^{2}}{\partial b}=\frac{\partial \sum_{j} E_{j}^{2}}{\partial c}=0$
$\frac{\partial \sum_{j} E_{j}^{2}}{\partial a}=2 \sum_{j} x_{j}\left(a x_{j}+b y_{j}+c z_{j}-q_{j}\right)=0$

$$
\begin{aligned}
& a \sum_{j} x_{j}^{2}+b \sum_{j} x_{j} y_{j}+c \sum_{j} x_{j} z_{j}-\sum_{j} q_{j} x_{j}=0 \\
& a \sum_{j} x_{j} y_{j}+b \sum_{j} y_{j}^{2}+c \sum_{j} y_{j} z_{j}-\sum_{j} q_{j} y_{j}=0 \\
& a \sum_{j} x_{j} z_{j}+b \sum_{j} y_{j} z_{j}+c \sum_{j} z_{j}^{2}-\sum_{j} q_{j} z_{j}=0
\end{aligned}
$$

3 equations can be solved for 3 unknowns.

```
n measurements
2 unknown parameters
```

$$
\begin{aligned}
& y_{i}=m x_{i}+c \\
& y_{1}=m x_{1}+c \\
& y_{2}=m x_{2}+c \\
& \text {----- } \\
& y_{n}=m x_{n}+c \\
& \begin{array}{c}
\left(\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
. . & . \\
x_{n} & 1
\end{array}\right) \\
\mathbf{A} \\
\end{array}\binom{m}{c}=\underset{\left(\begin{array}{c}
y_{1} \\
y_{2} \\
. \\
y_{n}
\end{array}\right)}{\mathbf{b}} \quad \begin{array}{c}
\mathbf{A x}=\mathbf{b} \\
\downarrow \\
\left(\mathbf{A}^{\top} \mathbf{A}\right) \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}
\end{array} \\
& \text { observation equation }
\end{aligned}
$$

Least square solution is that which minimizes the sum of squares of residuals of the observation equations.
w_{i}; inversely proportional to the (expected error) ${ }^{2}$ of each observation equation
W weight matrix

$$
\begin{gathered}
\text { WAx }=W b \\
\downarrow \\
\left(A^{\top} W A\right) x=\left(A^{\top} W\right) b
\end{gathered}
$$

n linear equations \& m unknown parameters

$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 m} x_{m}=y_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 m} x_{m}=y_{2}$
\ldots
$a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n m} x_{m}=y_{n}$

a_{21} \& a_{22} \& ··· \& a_{2 m}

··· \& ··· \& ··· \& ···

a_{n 1} \& a_{n 2} \& ··· \& a_{n m}\end{array}\right) ; \mathbf{x}=\left($$
\begin{array}{c}x_{1} \\
x_{2} \\
\ldots \\
x_{m}\end{array}
$$\right) ; \mathbf{y}=\left($$
\begin{array}{c}y_{1} \\
y_{2} \\
\ldots \\
y_{n}\end{array}
$$\right)\)

When $n>m$, vector x can be found, which will be the best solution for all n existing equations using the least square technique.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 m} x_{m}-y_{1}=\varepsilon_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 m} x_{m}-y_{2}=\varepsilon_{2} \\
& \ldots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n m} x_{m}-y_{n}=\varepsilon_{n}
\end{aligned}
$$

Find the minimum of

$$
\Phi\left(x_{1}, x_{2}, \ldots x_{m}\right)=\sum_{i=1}^{n} \varepsilon_{i}^{2}
$$

The best solution is found by calculating the minimum condition of

$$
\Phi\left(x_{1}, x_{2}, \ldots x_{m}\right)=\sum_{i=1}^{n} \varepsilon_{i}^{2}
$$

$\boldsymbol{\sim} |$| $a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 m} x_{m}-y_{1}=\varepsilon_{1}$ |
| :--- |
| $a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 m} x_{m}-y_{2}=\varepsilon_{2}$ |
| \ldots |
| $a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n m} x_{m}-y_{n}=\varepsilon_{n}$ |

$$
\begin{array}{|l}
\begin{array}{l}
\frac{\partial \Phi\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\partial x_{1}}=0 \\
\frac{\partial \Phi\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\partial x_{2}}=0
\end{array} \\
\frac{\partial \Phi\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\partial x_{m}}=0
\end{array} \begin{aligned}
& \begin{array}{l}
x_{1} \sum_{i=1}^{n} a_{i 1}^{2}+x_{2} \sum_{i=1}^{n} a_{i 1} a_{i 2}+\ldots+x_{m} \sum_{i=1}^{n} a_{i 1} a_{i n}=\sum_{i=1}^{n} a_{i 1} y_{i} \\
x_{1} \sum_{i=1}^{n} a_{i 2} a_{i 1}+x_{2} \sum_{i=1}^{n} a_{i 2}^{2}+\ldots+x_{m} \sum_{i=1}^{n} a_{i 2} a_{i m}=\sum_{i=1}^{n} a_{i 2} y_{i} \\
\ldots \\
x_{1} \sum_{i=1}^{n} a_{i m} a_{i 1}+x_{2} \sum_{i=1}^{n} a_{m} a_{i 2}+\ldots+x_{m} \sum_{i=1}^{n} a_{i m}^{2}=\sum_{i=1}^{n} a_{i m} y_{i}
\end{array} \\
& \text { ex) } \mathrm{m}=2, \frac{\partial S}{\partial x_{1}}=a_{11}^{2} x_{1}+a_{11} a_{12} x_{2}-a_{11} y_{1}=0
\end{aligned}
$$

Linear least square analysis

$$
\begin{aligned}
& x_{1} \sum_{i=1}^{n} a_{i 1}^{2}+x_{2} \sum_{i=1}^{n} a_{i 1} a_{i 2}+\ldots+x_{m} \sum_{i=1}^{n} a_{i 1} a_{i n}=\sum_{i=1}^{n} a_{i 1} y_{i} \\
& x_{1} \sum_{i=1}^{n} a_{i 2} a_{i 1}+x_{2} \sum_{i=1}^{n} a_{i 2}^{2}+\ldots+x_{m} \sum_{i=1}^{n} a_{i 2} a_{i m}=\sum_{i=1}^{n} a_{i 2} y_{i} \\
& x_{1} \sum_{i=1}^{n} a_{i m} a_{i 1}+x_{2} \sum_{i=1}^{n} a_{m} a_{i 2}+\ldots+x_{m} \sum_{i=1}^{n} a_{i m}^{2}=\sum_{i=1}^{n} a_{i m} y_{i} \\
& \left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{n 1} \\
a_{12} & a_{22} & \ldots & a_{n 2} \\
\ldots & \ldots & \ldots & \ldots \\
a_{1 m} & a_{2 m} & \ldots & a_{n m}
\end{array}\right)\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right) \mathrm{X}=\left(\mathbf{A}^{\top} \mathbf{y}\right)
\end{aligned}
$$

$1 / \mathrm{d}^{2}=\left(\mathrm{h}^{2}+\mathrm{k}^{2}\right) / \mathrm{a}^{2}+\mathrm{l}^{2} / \mathrm{c}^{2}$
d-value of a tetragonal elementary cell

(100)

$$
\begin{equation*}
1 / d^{2}=\left(h^{2}+k^{2}\right) / a^{2}+l^{2} / c^{2} \tag{110}
\end{equation*}
$$

$1 / d^{2}=\left(h^{2}+k^{2}\right) / a^{2}+l^{2} / c^{2}$
$1 / d^{2}=\left(h^{2}+k^{2}\right) / a^{2}+l^{2} / c^{2}$
(200)
$1 / d^{2}=\left(h^{2}+k^{2}\right) / a^{2}+l^{2} / c^{2}$
(210)
$1 / d^{2}=\left(h^{2}+k^{2}\right) / a^{2}+l^{2} / c^{2}$

Evaluation of F_{N}

- 50 possible lines
- 42 have observable intensity
- $2 \theta_{\text {calk }}$; calculated 2θ values based on the known lattice parameters
- $\Delta 2 \theta=2 \theta_{\text {calc }}-2 \theta_{\text {obs }}$
$F_{N}=\frac{1}{\Delta \Delta 2 \theta} \frac{N}{N_{\text {poss }}}$
SS figure of merit

N; \# experimental lines (peaks) considered
$N_{\text {possi }}$ \# possible, space group-allowed diffraction lines
(Cont'd.)

No.	$2 \theta_{\text {calc }}$	$I^{\text {rel }}$	$d(\AA)$	$2 \theta_{\text {obs }}$	$\Delta 2 \theta$
40	80.253	5	1.195	80.238	-0.015
41	81.772	9	1.177	81.776	0.004
42	82.025	1	1.174	-	-
43	84.002	1	1.151	-	-
44	84.923	1	1.141	84.916	-0.007
45	85.773	3	1.132	85.770	-0.003
46	8.246	6	1.106	88.249	0.003
47	89.114	2	1.098	89.110	-0.004
48	90.002	1	1.089	-	-
49	90.734	4	1.082	90.720	-0.014
50	91.720	1	1.073	91.726	0.006
Avg 42θ	0.0066	0.0066	0.0083	0.0104	0.0084
$N_{\text {poss }}$	50	50	40	30	20
$N_{\text {obs }}$	50	42	35	27	18
FOM	151.6	127.4	104.9	86.2	107.3

${ }^{a}$ Wavelength $=1.54056$.

$$
F_{N}=\frac{1}{|\Delta 2 \theta|} \frac{N}{N_{\text {poss }}}
$$

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Accurate vs. Precise

High accuracy High precision

Low accuracy
High precision

High accuracy Low precision

Low accuracy Low precision

Measured mean Real value

Precision - reproducibility

Accuracy - approach to the "true" value
> Precision ; the degree to which further measurements show the same or similar results
> Accuracy; the degree of conformity of a measured quantity to its true value.
> How to prepare powder?
\checkmark Grind in mortar \& pestle (wet or dry)
\checkmark Crush (percussion mill)
\checkmark Cryo-grind
\checkmark Micronising mill
\checkmark Treatments/separations

Mounting specimen

\checkmark Front, side, back-loaded powders
\checkmark Films \& disks
\checkmark Diluents \& dispersants
\checkmark Adhesives
\checkmark Reactive samples (windows)
\checkmark Capillaries
\checkmark Odd shapes
\checkmark Zero-background holders (ZBH)

Panalytyical

BRUKER

BRUKER

www2.arnes.si/~sgszmera1/html/xrd/preparation2.html

Spray drying - can eliminate preferred orientation

- Specimen preparation

\checkmark Specimen should represent the bulk.
\checkmark 1um < Particle size < 15um
\checkmark Method should not distort the lattice
\checkmark Avoid solid state reactions.

Diffractometer specimen
requirements
\checkmark Flat specimen surface
\checkmark Smooth specimen surface
\checkmark Area greater than that irradiated by beam
\checkmark Specimen support gives zero diffraction or zero contribution.

Common problems in

 specimen preparation\checkmark Preferred orientation
\checkmark Crystallite statistics
\checkmark Crystallite \& particle size
\checkmark Particle morphology
\checkmark Specimen configurations
\checkmark Crystallite perfection
\checkmark Absorption effects

5 fingers of quartz

> Typical error windows

\checkmark Debye Scherrer camera $\pm \Delta 2 \theta=0.1^{\circ}$
\checkmark diffractometer $\pm \Delta 2 \theta=0.05^{\circ}$
\checkmark diffractometer (internal standard corrected) $\pm \Delta 2 \theta=0.01^{\circ}$
\checkmark diffractometer (internal standard corrected \& peaks profile fitted) $\pm \Delta 2 \theta=0.005^{\circ}$
$\Delta 2 \theta$ - d relationship is non-linear
\checkmark Low angle (low 2θ, large d-value) lines have large error.

Table 12.2. Errors in \boldsymbol{d}-Values Resulting from Fixed 2 $\boldsymbol{\theta}$ Errors					
d	2θ	$\pm \Delta 2 \theta$ (degrees)	$\pm \Delta d$ (\AA)	$\pm \Delta 2 \theta$ $($ degrees $)$	$\pm \Delta d$ (\AA)
(\AA)	17.73	0.1	0.04	0.05	0.014
5	22.20	0.1	0.02	0.05	0.008
4	29.76	0.1	0.01	0.05	0.005
3	45.30	0.1	0.004	0.05	0.002
2	61.80	0.1	0.002	0.05	0.0011
1.5	100.76	0.1	0.0007	0.05	0.0004

$\Delta 2 \theta \& \Delta \mathrm{~d}$

Spectral dispersion; peak breadth increases with 2θ

Line (peak) profile analysis

Smith \& Snyder FOM

$$
F_{N}=\frac{1}{|\Delta 2 \theta|} \frac{N}{N_{\text {poss }}}
$$

De Wolff FOM

$$
M_{20}=\frac{\mathbf{d}_{20}^{* 2}}{2\left|\Delta \mathbf{d}^{* 2}\right|} \frac{1}{N_{\text {poss }}}
$$

Jenkins \& Snyder, page 316

Intensity FOM

$$
R_{I}=\sum \frac{I_{\mathrm{obs}}-I_{\mathrm{calc}}}{I_{\mathrm{obs}}}
$$

Precise lattice parameter

> Composition of a solid solution
> Thermal expansion coefficients
> Solubility limit
> -----

In cubic,
$>$ measure θ for $\mathrm{hkl} . \rightarrow$ determine $\mathrm{d} . \rightarrow$ calculate a .

$>$ Precision in d or a depends on precision in $\sin \theta$, not on θ.
$>$ Accurate value of $\sin \theta \leftarrow$ measurement of θ near 90°
$>$ Differentiation of Bragg's law w.r.t. $\theta \rightarrow \Delta \mathrm{d} / \mathrm{d}=-\Delta \theta \cot \theta=\Delta \mathrm{a} / \mathrm{a}$
$>\Delta$ a caused by a given $\Delta \theta \rightarrow$ zero as $\theta \rightarrow 90^{\circ}$.
\Rightarrow precision when using peaks in $2 \theta \sim 180^{\circ}$
\Rightarrow precision of 0.001 Å possible

Internal standard method
$\checkmark \Delta 2 \theta=0.01$ Sample +
Standard powder

\checkmark Can eliminate both displacement and transparency errors.
\checkmark Both instrument \& specimen errors are corrected.

External standard method

$\checkmark \Delta 2 \theta=0.25$
\checkmark Do not correct displacement errors.

\checkmark With ZBK holder, can correct all errors $\rightarrow \Delta 2 \theta=0.01$.

Zero background holder method
Standard powder
Sample

Profile fit peak positions

Zero Background Holder

$>$ A single crystal of quartz that is cut and polished in an orientation such that it produces no diffraction peaks.

Thick specimens
\checkmark Good intensity...but problems defining depth (position)
\square
Thin specimens
\checkmark No penetration depth effect (good position)... but low intensity

Internal Standard Calibration

> Mix sample powder and silicon SRM.

Sample + Silicon SRM

이 Calibration curve

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Errors removed by calibration

Effectiveness of Standards for the Correction of 2θ Errors

Use of Standard	Type of Standard				
	None	External (2 θ)	Internal (2 θ)	$\begin{gathered} \text { ZBH } \\ (2 \theta) \end{gathered}$	External (Intensity)
Instrument misalignment	No	Yes	Yes	Yes	(Yes)
Inherent aberrations	No	Yes	Yes	Yes	No
Specimen transparency	No	No	Yes	Yes	No
Specimen displacement	No	No	Yes	Yes	No
Instrument sensitivity	No	No	No	No	Yes

$>$ None on a random instrument $=0.1^{\circ}$
> None on a well-aligned instrument $=0.05^{\circ}$
External standard method $=0.025^{\circ}$
$>$ Internal standard method $=0.01^{\circ}$
$>$ Zero background holder method $=0.01^{\circ}$
Profile fit peak positions $=0.005^{\circ}$

Calibration - quartz crystal

TABLE II. ZBH (mounted quartz crystal) calibrated data.

