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Q1: Theories for the glass transition



Theories for the glass transition

A. Thermodynamic phase transition

e Glass transition
H,V,S: continuous C, a; Ky : discontinuous

— by thermodynamic origin, 2" order transition

Ak, A
— In fact, it appears on some evidences that the glass R = K AC, 71
transition is not a simple second-order phase transition. IV(Aar)
B. Entropy

e Heat capacity — dramatic change at T,

e Description of glass transition by entropy (Kauzmann)

S = j C Pd In7 | — The slow cooling rate, the lower Tg — Ty or Tg"

— Measurement of Kauzmann temp. is almost impossible.

( -.- very slow cooling rate —longer relaxation time —scrystallization )
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Theories for the glass transition
C. Relaxation behavior

Below glass transition: frozen-in liquid

— If (1) > (2) = liquid // (1)~(2) == glass transition// (1) < (2) =% glass

(A concept of glass transition based on Kinetic view point)
: property of liquid-like structure suddenly changes to that of solid-like structure

d. viscosity
» Viscosity (10'° centiPoise= 101213 Pas) at T,
» most glass forming liquid exhibit high viscosity.

 In glass transition region, viscosity suddenly changes. (fragile glass)
— Fragility concept: Strong vs Fragile

e Viscous flow — Several atomistic model [|* absolute rate model

e free volume model

e excess entropy model



Q2: Glass formation



Critical cooling rate is inversely proportional to the diameter of ingot.
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Critical cooling rates and thicknesses
for different materials

,conventional‘ _
metallic glass
B Oxide glass (ceramics)

Critical cooling rate K/s
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Critical Cooling Rates for Various Liquids

Table 3-5. Examples of Critical Cooling Rates (°C/s) for Glass Formation

Heterogeneous nucleation
contact angle (deg)

Homogeneous
Material nucleation 100 60 40
e N  N—NIE————————————————
SiO, glass* | 9x107° 1073 81072 2x107}]
GeO, glass® 3% 1073 T 3x10° 1 20
Na,0-2Si0, glass® 6 x 1073 8 x 1073 10 3x10%2
Salol 10
Water 107
Ag 101
Typical metal® ' 9 x 108 9 x 10° 101° 5 x 101°

“ After P. I. K. Onorato and D. R. Uhlmann, J. Non-Cryst. Sol., 22(2), 367-378 (1976).



Nucleation and Growth Rates Control R_

= Nucleation, the first step...

= First process is for microscopic clusters (nuclei) of atoms or ions to form
o Nuclei possess the beginnings of the structure of the crystal
o Only limited diffusion is necessary
o Thermodynamic driving force for crystallization must be present

%o |




1.2.3 Driving force for solidification

solidification Liquid 4 >

Liquid — Solid




The creation of a critical nucleus ~ thermally activated process

IAT R :
AG:T , '\ r* _ 27/SL _ 27/SLTm 1
AG, L, AT
AT —r* |
— T e
e
e

rmax®
of atomi

_ 0 ATy i+ AT

AT\ is the critical undercooling for homogeneous nucleation.

Fig. 4.5 The variation of r* and r ., with undercooling AT

max

The number of clusters with r" at AT < ATis neéﬂigible.



Barrier of Heterogeneous Nucleation

3 3 _ 3

AG* = 16&5} 5(8)2167[7/%.(2 3cosf +cos” 0)

3AG) 3AG, 4
: AG,, =S(0)AG,,

— 3

m AG., = AG,. (2 3c0os 8 +cos «9}
- 4
V ............................ _ ............................ 3 .....................
° V., _2-3cosd+cos 6?:8(9)
V, +V; 4

How about the nucleation at the crevice or at the edge?
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Growth of crystals from nuclei

= Growth processes then enlarge existing nuclei
» Smallest nuclei often redissolve
= Larger nuclei can get larger

» Thermodynamics favors the formation of larger nuclei

e




Kinetic Roughening

Rough interface -

|deal Growth — diffusion-controlled

Smooth interface - Growth by Screw Dislocation
Growth by 2-D Nucleation

@) | arge AT — cellular/dendritic growth

Small AT — “feather” type of growth

The growth rate of the singular interface
cannot be higher than ideal growth rate.

When the growth rate of the singular
Interface is high enough, it follows the
ideal growth rate like a rough interface.

— kinetic roughening

Growth rate, v

— dendritic growth

Continuous
growth 2~/ .
(rough interface) ' v K3(AT)? l
"""""" Spglral growth

(smdoth interface)

Sul:face nucleation
(smooth interface)

Interface undercooling, ATi
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Nucleation and Growth Control R,

Poor glass formers:

o Liquids which quickly form large numbers of nuclei close to T,
o That grow very quickly

Good glass formers

o Liquids that are sluggish to form nuclei even far below T
o That grow very slowly




Nucleation and Growth Rates — Poor Glass Formers

m
Rate
m Strong overlap of growth
Growth Rate (m/sec) and nucleation rates
= Nucleation rate is high
m  Growth rate is high
T

m Both are high at the same
temperature

Nucleation Rate (#/cm?>-sec)




Nucleation and Growth Rates - Good Glass Formers

T >
- Rate
= No overlap of growth
Growth Rate (m /sec) and nucleation rates
m  Nucleation rate is small
m  Growth rate is small
T

= At any one temperature one
of the two is zero

Nucleation Rate (#/cm?>-sec)




Q3: Classical Nucleation Theory-TTT diagram



Nucleation Rate Theory

Rate at which atoms or ions in the liquid organize into
microscopic crystals, nuclei

I = number of nuclei formed per unit time per unit volume of liquid

Nucleation Rate (I) o  number density of atoms x

fastest motion possible x

thermodynamic probability of
formation x

diffusion probability




Nucleation Rate Theory

| = nvexp(-NW'/RT)exp(-AEy/RT)

Number density Fastest motion Thermodynamic probability Diffusion probability

n = number density of atoms, molecules, or
formula units per unit volume
= p N/Atomic, molecular, formula weight

\Y = vibration frequency ~ 1013 sec!

N = Avogadro’s number
= 6.023 x 1023 atoms/mole

w* = thermodynamic energy barrier to form nuclei

AE, = diffusion energy barrier to form nuclei
~ viscosity activation energy




Nucleation Rate — Thermodynamic barrier W*

W*
""""""" W = 4nr’o, surface
= G is the surface energy
= Wy = 437 AG o, (T), bulk
AGy«(T), the Gibb’s Free-Energy

of Cryst. per unit volume, V

Wit = Wg + Wy

= Atr’, (6W(r)/ or),.-=0
=T =- 26/ AGcryst(T)
s W(r) =W = 161 63/3(AG5(T))?




Nucleation

Rate I(T)

| = nvexp(-N

AG'cryst(-l-) = AHcryst(Tm )(1 — T/Tm)/vm = AH

1671 6%/3(AG 4e,1(T))? IRT)exp(-AE/RT)
T AT/ Tr)

cryst(

+ A(}cryst(T)

/ Liquid is Stable
Approx. for G:

\ o~ 1/3AH, .,/N 1/3V 2/3
note AH - AH

melt

| /

Crystal 1s Stable L

cryst
Liquid and Crystal are in equilibrium

(167AH, (T V _AE
: [ = nvexps > m_ | exXp =
; RIRT N\ AT RT

n
S EEEEEEEEEEEEEEEEEER




Growth Rates - u(T)

= Crystal growth requires
o Diffusion to the nuclei surface
o Crystallization onto the exposed crystal lattice

Vis. = vexp(-AE/RT)
Ves1— VeXp('(AED_ A(}cryst) / RT)

Viet — Vioe =~ Vo1 =

vexp(-AE,/RT) -
vexp(-(AEp- AG,s) /RT)

AE,,
AG

n=av,, =avexp(-AEy/RT) x
<t (1 o eXp(AGcryst) / RT)




Growth Rates - u(T)

Diffusion coefficient, D

D(T)=azvexp[_AED}= JRT
RT 3Nman(T)

Stokes-Einstein relation between D and n

Hence: - fRT B _(AH’"] £ |
2 (T){stzn(T)][l TN URr (TU




Nucleation and Growth Rates

Nucleation and Growth Rates for Water
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Nucleation and Growth Rates

1.E+08

8.E+07

Nucleation Rate (sec'1)

0.E+00 =

1.E+08 -

1E+08 -

6.E+07 |
4E+07 |

2E+07 |

Nulceation and Growth for Silica
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Time-Temperature-Transformation Curves (TTT)

How much time does it take at any one temperature
for a given fraction of the liquid to transform
(nucleate and grow) into a crystal?

f(t,T) ~ml(T)u(T)°t*/3

where f1is the fractional volume of crystals formed,
typically taken to be 10-%, a barely observable crystal

volume.

Nucleation rates Growth rates




Time Transformation Curves for Water

T-T-T Curve for water
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-
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Time Transformation Curves for Silica

T-T-T Curve for Silica
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TTT curves and the critical cooling rate, R_

time

i R, very fast
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Time-temperature-transformation (T-T-T) curves (solid lines) and the corresponding contin-
uous cooling transformation curves (dashed lines) for the formation of a small volume fraction
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Q4: Overall Transformation Kinetics-TTT diagram

“Johnson-Mehl-Avrami Equation”



5.4 Overall Transformation Kinetics — TTT Diagram

If isothermal transformation,

The fraction of Transformation as a function of Time and Temperature

— f(t,T)

/— —
F———— = —— — =
Plot / vs logt. 1%/ 99%
- isothermal transformation ( (
- f~ volume fraction of f at any time; O~ 1 \i-.._

(a)

logt —

Plot the fraction of

7~ "
transformation (1%, 99%) T
in T-log t coordinate. f g
T,
(b) o —

logt —

Fig. 5.23 The percentage transformation versus time
for different transformation temperatures.
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Influence factors for f(t,T): nucleation rate, growth rate, density and distribution of
Example nucleation sites, impingement of adjacent cells

Three Transformation Types

Wide range of particle sizes

(a) continuous nucleation
Metastable a phase with many

e "‘*O:. . ) @ | ® nucleation sites by quenching to T,
—» | . © — | . O — f'depends on the nucleation
' . ., © rate and the growth rate.
. o O
(a) Beginning End

(b) all nuclei presentatt=0
. ’ o _© 0O — fdepends on the number
of nucleation sites and the

.t — o) —
0 o O growth rate.
. o) O
~ o ° o ©
!
(b) Nucleation sites (c) AII of the parent phase
Is consumed by the
] . transformation product.
) Transformation terminate by the
- ! 0(—43. O - impingement of adjacent cells growing
. « |or O with a constant velocity.
) a—B+y

— pearlite, cellular ppt,

massive transformation,
Fig. 5.24 (a) Nucleation at a constant rate during the whole transformation. tallizati
(b) Site saturation — all nucleation occurs at the beginning of transformation. recrystallization
(c) A cellular transformation. a— B

(c) Cellular transformation



Transformation Kinetics

» Avrami proposed that for a three-dimensional nucleation and
growth process kinetic law

f — 1 - exp (_ ktn ) Johnson-Mehl-Avrami equation

Volume of new phase

f:volume fraction transformed = :
Volume of specimen

» Assumption :
V reaction produces by nucleation and growth
V' nucleation occurs randomly throughout specimen
V reaction product grows rapidly until impingement



Constant Nucleation Rate Conditions

Nucleation rate (/) is constant. r = 0T 1)

Growth rate (v) is constant. : -1

No compositional change

v

Vol. of one particle nucleatedj (number of nuclei j
X

during dz measured at time t formed during dr

a’fez(

Volume of specimen

4
L ble o) <) e
dfe = E:frr = gn v

V' = % v (t— 1)’

4 1 t :'i """"" I - do not consider impingement
—J '—7ZV3|: (t _ z.)“il _i 344 & repeated nucleation

- only true for f <« 1

As time passes the B cells will eventually impinge on one another and the rate of transformation will decrease again.



Constant Nucleation Rate Conditions
consider impingement + repeated nucleation effects

d
A
fe - —11’1(1 B f) * Short time:
T 1-exp(2)~Z (z <1)
f@®=1- exp(— fe(t)) =1-exp _§]V3t4 * Long time:
t—oo, f—1
Johnson-Mehl-Avrami Equation

oct4

before |
impingement,

[ =1-exp(-kt")
T, 3
k: T sensitive I, v) = 511’
n: 1 ~ 4 (depend on nucleation mechanism)

) Growth controlled. Nucleation-controlled.

If no change of nucleation mechanism during phase transformation, n is not related to T.

B 0.7 %Iv3 0.9

— { =
1/ 0.5 1/4_3/4
gn = N4
Rapid transformations are associated with (large values of k),
or (rapid nucleation and growth rates)

i.e. 50% transform
Exp (-0.7) = 0.5

ktys =0.7 1y



Q5: Measurement of TTT diagram



Measurement of TTT Diagram during Heating by DSC/DTA

I |
Metals Tech Vol. 5 October 1978 I
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Measurement of TTT Diagram during Heating by DSC/DTA

Appl. Phys. Lett., vol. 77, No. 8, 32 August 2000

Temperature(K)

Measuring upper part of TTT diagram
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Calculation of Time-Temperature-Transformation Diagram

Growth rate
p=avexp(- AED/RT) x(1- exp(AGcryst)/RT)
D : diffusion coefficient E, :diffusion energy barrier to form nuclei
W* = 1616°/3(AG ys(T))? D(T)= a?vexp(- AE,/RT) =fRT/3Nrna’n(T))

I=nv exp(-161w3/3 (AGcryst(T))Z/RT) eXp(-AED/RT) Stokes-Einstein relation between D and 1
w(T)= (fRT/3Nma’n(T)) (1 - exp(AG,ys)/RT)

Nucleation Rate
I = nvexp(-NW*/RT)exp(-AE,/RT)

A

Rate

Growth

Nucleation

<€
Temperature T,



Calculation of Time-Temperature-Transformation Diagram

Nucleation Rate Growth rate

I = nvexp(-NW*/RT)exp(-AE,/RT) u=avexp(- AEp/RT) x (1 - exp(AG,,ys) /RT)

D : diffusion coefficient E, :diffusion energy barrier to form nuclei

D(T)= a?vexp(- AE,/RT) =fRT/3Nrna’n(T))
I=nvexp(-16mc3/3 (AGcryst(T))Z/RT) exp(-AED/RT) Stokes-Einstein relation between D and n
u(T)= (fRT/3Nma’n(T)) (1 - exp(AG,,y)/RT)

W* = 1610%/3(AGys(T))?

0.0000004
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w [ 0.0000003 —=
€ I M ] o
= n £
> = =
3 m - T
® " -
e ® | 0.0000002 8
E d :
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> Crystallization m- £
— (33
*‘3 . 0.0000001 ¢
7)) ml- 0. C
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o X(t,T) ~ml(T)pu(T)3t4/3 ‘.‘ 3

[ | N

X is the fractional volume of crystals formed ﬁ
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TTT Diagrams of Pd,,Cu;,Ni,,P,,

Appl. Phys. Lett., Vol. 77, No. 5, 31 July 2000
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Measurement of TTT Diagram by Drop Tube Technique

Solidification of containerless undercooled Melts, edited by Dieter M. Herlach and Douglas M. Matson, 2012, p.1-7
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Electrostatic Levitation in KRISS

. " o~ o
HV (z-axis) ; : ~310(:)'9Tgrr
Sample condition : ~20mg

Feedback

. KRISS material : Dr. G.W.Le

W



Electrostatic Levitation in KRISS
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Measurement of TTT Diagram by ESL Technique

* Isothermal annealing in containerless condition

1200 [ 1. Turning off the laser over 250K T,
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Q 1000
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v "
=
2
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&
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Q. L
E 300 L Onset of crystallization time
I SSmeemmr——cmmrrmooeoreonn---. 3. Averaging out the temperature
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Time(sec.)



TTT Diagram of Pd,, <Ni- -Cu,,P,,

Temperature(K)
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TTT Diagram of Pd,,Cu;,Ni,,P,,

T [K]

Appl. Phys. Lett., Vol. 77, No. 5, 31 July 2000
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Comparison of TTT Diagrams : ZAC > ZCAAB > VIT1 > PNCP
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* Time-Temperature-Transformation diagrams
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TT diagrams
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FIGURE 10.11 A more complete TTT diagram for eutectoid steel than was given in
Figure 10.7. The various stages of the time-independent (or diffusionless) martensitic
transformation are shown as horizontal lines. M represents the start, Msy represents
50% transformation, and Mo represents 90% transformation. One hundred percent
transformation to martensite is not complete until a final temperature (My) of —46°C.
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* Continuous Cooling Transformation diagrams

OC =
- CCT diagrams
{7 TN T = = 71 Ao . e Continuous cooling
L == _::"_.. T transformation
/gp-:———___
. —— = e = = = = . Isothermal
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500 i\ ], s i Rapid cooling rate
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FIGURE 10.14 A continuous cooling transformation (CCT) diagram is shown

superimposed on the isothermal transformation diagram of Figure 10.11. The general

effect of continuous cooling is to shift the transformation curves downward and toward 50
the right. (After Atlas of Isothermal Transformation and Cooling Transformation

Diagrams, American Society for Metals, Metals Park, OH, 1977.)




