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0. INTRODUCTION
General

_
» Three critical variables to be considered in structural design : stress,

flaw size, and toughness.

Several parameters for characterizing the fracture driving force.

v' Elastic regime : the stress-intensity factor K'and the energy release rate

G.

v’ Elastic-plastic regime : The Jintegral and crack-tip-opening

displacement (CTO.D)

This chapter focuses on fracture
initiation and instability in
structures made from linear
elastic and elastic-plastic
materials.

A number of engineering
approaches are discussed; the
basis of these approaches and
their limitations.

Only quasistatic methodologies.

Driving Force

Material Resistance

Applied :
Stress .
:_ Fracture
; Toughness
Flaw '
Size :
Chapter 9 ' Chapters 7 & 8
Relationship between the three critical

variables in fracture mechanics.

OPen INteractive Structural



1. Linear Elastic Fracture Mechanics
0. Introduction 4

_

The fracture behavior of a linear elastic structure can be inferred by
comparing the applied K(the driving force) to a critical K (K,JJor a K-R
curve (the fracture toughness).

For Mode | loading,

where
Y = dimensionless geometry correction factor
o = characteristic stress
a = characteristic crack dimension

K,=Yo\ma

A large number of stress-intensity solutions have been published over
the past 50 years.

When a published K'solution is not available, one can obtain the
solution experimentally or numerically. Nearly all new K solutions are
obtained numerically.

Deriving a closed-form solution is probably not a viable alternative,
since this is possible only with simple geometries and loading, and
nearly all such solutions have already been published.
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1. Linear Elastic Fracture Mechanics

K, for Part-Though Cracks i

“K, for Part-Though Cracks by Newman
and Raju.

= the stress normal to the flaw = bending
and membrane components

\T
K,=(0, +Ho,)F ==

W

Semielliptical surface crack

= Fand H are geometry factors and depend Z
on (a/c, alt, ¢) and obtained from finite Y Ih
element analysis. A

|- - -

» Q:the flaw-shape parameter, which is Elliptical buried flaw
based on the solution of an elliptical
integral of the second kind

1.65 I“ r
Q:1+1.464(ﬂ] fora<c d
c «—

Quarter-elliptical corner crack  [3s¢
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1. Linear Elastic Fracture Mechanics
Influence Coefficients for Polynomial Stress Distributions 6

e ———————————————————
“*The principle of superposition

= The same K for remote boundary traction P(x)
and a crack-face pressure p(x).

= Consider a surface crack of depth a with power-

law crack-face pressure. % W W

" Ta
_ X K,=Gp |
p{x} = pﬁ( H) 1 \ O KIW) — K}b) _K;c) — K;b) (since K}C) — 0)

G, is an influence coefficient

P(x) P(x)

px) -p(x)

“K, ©= 0 because the crack faces close, and the plate
= Consider a nonuniform normal stress distribution. behaves as if the crack were not present”

X X : X ’ X N
(}'(A’):O'D+O'I{—)+O',(?J +(}'q(—) +0, (?)
t - \ 1

3 4
a a a a
.. ey K, = O'G+O'G(—J+O‘G —) +(}'G[—} +J,G[—J
= The principle of superposition ! { oo TN ) Ay s g

Ta
O

A 4

p(x)=p"(§]"
=il

K

—— X

< 4 | 1
- ' e < > ;
V{{{ %
X

X
N % 7
Power-law pressure distribution Nonuniform stress distribution that can be “Hil‘:;’
along the crack face fit to a four-term polynomial %.d;g




1. Linear Elastic Fracture Mechanics

Influence Coefficients for Polynomial Stress Distributions 7
“*EX) a pressurized cylinder with an internal axial surface flaw.
= A Taylor series expansion about x = 0, Xx=r-R..
PR’ R\
Ogp = R _R? |:l+(_J }
0 }2} r 2 2
pRo Ri
2 2 ) N2 3 4 RZ_R2 [lJ{R_J }+p
» Cpe = ,f’Ro . 1+[£] —2[L]+3[L] —4[i] +5[i] + | O<xR<H | ’
R, — R’ R, R R R R pRO2 R02 + Ri2 Ro2 - Ri2
. . . __— " |'RR| R R
= Superimposing the effect of internal pressure p. oR?
2 3 4 . R? -R?
R’ a a a a a —
=% bt Lo 43| L g -4l e +5 S 6, | 2L
R-R|IC=d7( R R) - \R) " \R \ O
= A similar approach to an external surface flaw.
R? 2 3 4 —
(= Rf)—ij {2@ +2(; ]Gl +3[£ ] G, +4(; ] G, +5(; ] 0'4]"};7 _____

Internal and external axial surface flaws
in a pressurized cylinder
Dl



1. Linear Elastic Fracture Mechanics
Influence Coefficients for Polynomial Stress Distributions 8

_

“*Crack at welded joint

= The influence coefficient approach is useful for estimating K, values for
cracks that emanate from stress concentrations.

= |f the stress distribution at the weld toe for the uncracked case can be fit to
a polynomial,
X X : x . X *
olx)=0,+ G,[—) + (}'2(—J + (}'3(—} +0, (—)
t t { i

= K, can be estimated by substituting the influence coefficients and
polynomial coefficients.

I,
'
2
I,

Application of the influence coefficient approach to a
complex structural detail such as a fillet weld ok
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1. Linear Elastic Fracture Mechanics

Influence Coefficients for Polynomial Stress Distributions 9
e ————————————

“sLimitations in the application to welded joint.

The methodology in the previous example is only approximate.

If the influence coefficients were obtained from an analysis of a flat
plate, there may be slight errors if these G, values are applied to
the fillet weld geometry. The actual weld geometry has a relatively
modest effect on the G, values.

As long as the stress gradient emanating from the weld toe is taken
into account, computed K, values will usually be within 10% of
values obtained from a more rigorous analysis.

Since the flaw is near a weld, there is a possibility that weld residual
stresses will be present. These stresses must be taken into account
in order to obtain an accurate estimate of K,
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1. Linear Elastic Fracture Mechanics
Primary, Secondary, and Residual Stress 10

_

There are very few practical situations in which a cracked body is
subject to pure displacement control.

Some design codes for structures such as pressure vessels and
piping refer to load-controlled stresses as primary and
displacement-controlled stresses as secondary.

Hoop stress due to internal pressure in a pipe or pressure vessel is
an example of a primary stress. Thermal expansion leads to
imposed displacements, so thermal stresses are usually considered
secondary.

When plastic deformation occurs, however, secondary stresses
redistribute and may relax from their initial values.

In linear elastic analyses, primary, secondary, and residual stresses
are treated in an identical fashion. The total stress intensity is
simply the sum of the primary and secondary components:

fotal _ 1P S R
K" =K, +K; + K]

OPen INteractive Structural AM.:"



1. Linear Elastic Fracture Mechanics

A Warning about LEFM .

Performing a purely linear elastic fracture analysis and assuming
that LEFM is valid is potentially dangerous.

The user must rely on experience to know whether or not plasticity
effects need to be considered.

The safest approach is to adopt an analysis that spans the entire
range from linear elastic to fully plastic behavior. Such an analysis
accounts for the two extremes of brittle fracture and plastic
collapse.

At low stresses, the analysis reduces to LEFM, but predicts collapse
if the stresses are sufficiently high.

At intermediate stresses, the analysis automatically applies a
plasticity correction when necessary; the user does not have to
decide whether or not such a correction is needed.

The failure assessment diagram (FAD) approach, described in
Section 9.4, is an example of a general methodology that spans the
range from linear elastic to fully plastic material behavior.

OPen INteractive Structural AMX



2. The CTOD Design Curve
The CTOD Design Curve

= |n 1971, Burdekin and Dawes developed the CTOD design curve, a
semiempirical driving force relationship based on elastic-plastic driving
force relationship and an empirical correlation between small-scale CTOD
tests and wide double-edge-notched tension panels.

» The wide plate specimens were loaded to failure, and the failure strain ()
and crack size (a) of a given large-scale specimen were correlated with the

critical CTOD in the corresponding small-scale test.

L3

= Two-part relationship: 5. Design

o £ i € _ 27e a
5 ait | S for-L <0.5 :
mea | g e,

-‘L.‘

12

Lo

Experimental
Data

& : failure strain, &, : yield strain _ "
— derived from LEFM theory with a safety factor
of 2.0 on crack size. Unsafe

S5 . £ £ ‘

et =L (.25 for—L<0.5 0 03 i

drea g £ %5
&

y _1;'

— represents an upper envelope of experimental data.
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2. The CTOD Design Curve
The CTOD Design Curve .

= British Standards document (PD 6493, 1980), the maximum strain can be
estimated from the following equation

where
1 k, = elastic stress concentration factor
o= E”{" (Fy + B)+(S+R)] P,, = primary membrane stress
P, = primary bending stress
S = secondary stress
R = residual stresses

= Since the precise distribution of residual stresses was usually unknown, R
was typically assumed to equal the yield strength in an as-welded
weldment.

= Kamath estimated that the CTOD design curve method corresponds to a
97.5% confidence of survival.

= Direct evaluation of the Jintegral and the FAD approach have replaced
CTOD approach.

T

e

2=
e

OPen INteractive Structural P



3. Elastic-Plastic J-Integral Analysis

General
——————————

* The most rigorous method to compute Jis to perform an elastic-
plastic finite element analysis on the structural component that

contains a crack. (Ch.12)

» There are a number of simplified methods for estimating /in lieu of
elastic-plastic finite element analysis.

» The Electric Power Research Institute(EPRI) /estimation scheme and
the reference stress approach,

OPen INteractive Structural
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3. Elastic-Plastic J-Integral Analysis
The EPRI J-Estimation Procedure 1

_

The Jintegral was first used as a fracture toughness parameter in the early
1970s.

At that time, there was no convenient way to compute the applied /in a
structural component. Stress-intensity factor handbooks were available,
but a corresponding handbook for elastic-plastic analysis did not exist.

A series of finite element analyses were performed at General Electric
Corporation in Schenectady, New York, and the first /handbook was an
engineering handbook by EPRI in 1981.

Most of the solutions are for simple two-dimensional geometries such as
flat plates with through cracks and edge cracks. Because of these
limitations, the EPRI /handbooks are of little value for most real-world
problems.

However, the research funded by EPRI in the late 70s and early 80s did
contribute to our understanding of elastic-plastic fracture mechanics.

The elastic /is actually the elastic energy release rate G, which can be
computed from K, Fully plastic /solutions were inferred from finite
element analysis and were tabulated in a dimensionless form.

JIOI = Jef T pr

OPen INteractive Structural w‘wﬁ



3. Elastic-Plastic J-Integral Analysis
The theoretical Background 10

_

= Assume a power-law stress-strain curve (the second term in the

Ramberg-Osgood model) "
O

2]

E
_pIF:(x'_
E

o o

» Close to the crack tip, under J-controlled conditions, the stresses
are given by the HRR singularity:

1

n+l
O'Hzﬁo[ J ] 6'{.1.(??._9)

oe o, lr
= Solving for /in the HRR equation gives

(T i+
J=aeo Ir 5';”
ga

» The local stresses must increase in proportion to the remote load P

n+l where
J = Hé‘oﬁﬂfi(—J h = dimensionless function of geometry and »
0 L = characteristic length dimension for the structure
P, = reference load

WIFEI IINTEIruCuive Jsrusturua /"—bxé';g



3. Elastic-Plastic J-Integral Analysis
Estimation Equations

_

= The fully plastic equations for J crack-mouth-opening displacement I/,

and load line displacement A, have the following form for most
geometries:

o o

n+l n n
N , e . | P
Jp!, = OCE.'OO'Obhl(G/ W.H){P} I'p = OCE.'OG;?E(G/H J?){P} Ap = O{gﬂgh}(g}ﬂjﬁ}[})]

a
where

b = uncracked ligament length|
a = crack length

hy, h,, and hy = dimensionless parameters that depend on geometry and hardening exponent

= The reference load P, normally corresponds to the load at which the net
cross section yields.

= The elastic Jis equal to ¢(a.), the energy release rate for an effective crack
length which is based on modified Irwin plastic zone correction)

0 g l l (}?l) K, )
7 |+ (P/P) Br\n+1)\ o,

= 3= 2 for plane stress and 3 = 6 for plane strain conditions

OPen INteractive Structural
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3. Elastic-Plastic J-Integral Analysis
Estimation Equations .

_

% Ex. 9.1) Consider a single-edge-notched tensile panel with W=1m, B =25

mm, and a = 125 mm, Calculate Jvs. applied load assuming plane stress
conditions. Neglect the plastic zone correction.

= Given: g,= 414 MPa, n=10, = 1.0, £= 207,000 MPa, ¢,= o,/E = 0.002
Sol) From Table A9.13, the referece load for this configuration.

-

P, =1.07210,bB ;;:1;'1+(£) —%=0.867 for alb=125/875=0.143

)]

1+l

J,=0ae,0 E;I][ﬁfﬁr.Ff}(E
P e P

o

I
e
7,, = (10X0.002)(414,000kpa) L8P W (O0-125m) [L]
10m 8.42 MN
= 2486 % 107°p" (kJ/m?), Pin MN

F Table 2.4
@], T 1000P*(0.770)

= FE  BWE '~ (0.025m)(1.0m)(207.000 MPa)

=4.584P

J=4584P* +2.486x107°P"" (kI/im?), Pin MN
(S Y
OPen INteractive Structural ﬁ-’-‘sg



3. Elastic-Plastic J-Integral Analysis
Estimation Equations

e —————————————————
“*Table 2.4 K, Solutions for Common Test Specimens

TABLE 2.4
K, Solutions for Common Test Specimens?

GEOMETRY
Single Edge Notched Tension (SENT)
! | la P :
- lIr’ I - -

—
SIE
~—

19
lﬂm T T T | T T T | T T T I T T T ! I'.I T
B Edge-Cracked Panel ' 1
W=10m B=25mm a=125mm "
- n=10 o,=414MPa &=0002 a=1.0 4 ]
800 — ] ]
- —e— Without PZ Correction ! .
- - - -B- - With PZ Correction / ]
2 B i
“gsoo — —
E, i |
8400 — =]
= I I
H
200 [— ]
0 1
0 10

Applied Load (MN)

Applied J vs. applied load in an edge-cracked panel

PP
2
OPen INteractive Structural .o ;'L"



3. Elastic-Plastic J-Integral Analysis
Estimation Equations 0

N ee—————————————————
“*Table A9.13 Fully Plastic J and Displacement for an Edge-Cracked
Tension Specimen in Plane Stress.

TABLE A9.13

Fully Plastic J and Displacement for an Edge-Cracked Tension Specimen

in Plane Stress [23]. e+l
ba, . |P

J ; = G’EEGG Fhli_ﬂ.l'r H..H][?]

a/W: n=1 n=2 n=3 n=>5 n=7 n=10 n=13 n=16 n=20 F
a2

B, 358 455 506 530 496 320 260 1.92
0125 m, 515 543 605 60l 547 446 348 274 20 "

B, 261 216 180 127 024 598 304 272 20 . | P

s v, :aEpahﬁ[afﬂ,n}[—l

n, 314 326 202 212 153 0960 0615 0400 0230 o
0250 h, 467 430 370 253 176 105 0656 0419 0237

ny 101 640 436 2 124 0630 0362 0224 0123 ( ]ﬂ

_ . o

n, 288 237 194 1.37 1.01 0677 0474 0342 0226 Apiey =€ aly(allW,m N '

0375, 44T 343 263 160 118 0762 0524 0372 0244 I b7

Iy 5.05 2.65 1.60 0.812 0525 0328 0223  0.157 0.102
P =1.0712 nBba,

3 246 1.67 125 0776 0510 0286 0164 00956  0.0469 A p
0500 7, 437 273 101 1.00 0.694 0380 0216  0.124 0.0607
I 3.10 143 0871 0461 0286 0155 0088 00506  0.0247 T
where W
i 207 141 1105 0755 0551 0363 0248  0.172 0.107 [ >
0.625 I 430 255 1.84 1.16 0.816 0523 0353 242 0.150
it 227 1.13 0771 0478 0336 0215 0146  0.100 0.0616 = 2 4 b
p=1+(2) -2 ¥ >
s 170 1.14 0010 0624 0447 0280 0181  0.118 0.0670 1 b b
0750 Iy 424 247 181 1.15 0.798 0490 0314 0203 0.115 ! V I
it 1.08 1.00 0784 0494 0344 0211 0136 00581  0.0496 T
3 1.38 1.11 0962 0792 0677 0574
0875 I 422 268 208 1.54 1.27 1.04
I 1.97 1.25 0969 0716 0591 0483
SO l
NN
Lﬁ”’"‘!\“i
YD



3. Elastic-Plastic J-Integral Analysis
The Reference Stress Approach A

The EPRI equations assume that the material’s stress-plastic strain curve
follows a simple power law.

Many materials, however, have flow behavior that deviates considerably
from a power law. For example, most low carbon steels exhibit a plateau in
the flow curve immediately after yielding.

Ainsworth [29] modified the EPRI relationships to reflect more closely the
flow behavior of real materials.

Reference stress o =(PIP)o Oo= refgrence stress value that is usually equal
re o7 0 to the yield strength

Reference strain (g,..) the total axial strain when the material is loaded to
a uniaxial stress of ¢,.

EPRI Equation ]
o.E,
g, _Ofeodobf?l(a;’ﬁ’,n}[gl » Sy =0, ;bhy (.9 . :; ]

o

h,, the geometry factor that depends on the power-law-hardening
exponent n. relatively insensitive to n except high n values (low-hardening
materials)

OPen INteractive Structural \%\x@f



3. Elastic-Plastic J-Integral Analysis
The Reference Stress Approach 2

= He proposed the following approximation.

h(n)=h (1)

EPRI Equation

n+l 2 EE'
. P _ HK; ref
J, =oe,o,bh(al FI-,;?](P] » pr =z [ - — l]
0 ref

u = 0.75 for plane strain and i = 1.0 for plane stress.

= The above equation is not only simpler than EPRI eq., but also more widely
applicable due to thousands of stress-intensity factor solutions in
handbooks and the literature.

OPen INteractive Structural \f‘iﬁ



3. Elastic-Plastic J-Integral Analysis
The Reference Stress Approach »

= |n Ex. 9.1) P, depends on the crack length a.

P, =1.07210,bB

g

| T T T | T T T I T T T I Il. T T
Edge-Cracked '

B W=10m B=25mm a=125mm

— 10 ; n=10 o,=414MPa £=0002 a=1.0 7l
g 800 = —o&— Without PZ Correction g
~ - - -M - - With PZ Correction
- 5 -
© =
S 8, L N
3 -l
c =
8 18
o 0 200 |~ =
& 0 200 400 600 800 1000 1200

crack length (@) mm L 5

f&ppl.ied Load (MN)
= Jo be independent of Crack length, reference stress is introduced.

O, = (P/PD )O, 0.= yield strength
EPRI Equation

n+l 2
, P O HK EE’ o
S = ae o, bh(al W,;?}(P] » = Gfgfbhl(é‘,.ef T ] » J ol = EI [ —1

0 ref

LEIND
%ﬁ&ﬁ.
OPen INteractive Structural ;'L'



3. Elastic-Plastic J-Integral Analysis

Ductile Instability Analysis

= Crack growth is stable as long as the rate of change in the driving force (J)
is less than or equal to the rate of change of the material resistance (/)

Ed,
o’ da

0

app

:iz(d—‘]] and I, =
o, \da ),

A - is the remote displacement:

A, =A+C, P

= Crack growth is unstable when

I >1,

app

= The rate of change in driving force at
a fixed remote displacement

(&), (50 A5 (2) o (5

T

-1

L&

Instability in
Load Control

~ o

Crack Size

24

Schematic driving force diagram for a
fixed remote displacement.

The structure is unstable at
P;and A;in load control, but
the structure is stable in
displacement control

OPen INteractive Structural



3. Elastic-Plastic J-Integral Analysis
Ductile Instability Analysis »

= Driving force curves for this same structure, but with fixed remote
displacement A ;and finite system compliance C,, The structure is unstable
at Ap, in this case (Apy= A, + Gy Py) .

= A maximum load plateau occurs at P; and A;, and the load decreases with
further displacement

Crack
Load Growth
J, JR Instability ~ P.

| P — Load
Control Finite
| e Displacement
l Compliance Control
A7) |
AI( l ) Aal“(l\_" > I I I | b’
i A A, Aq Ay
Crack Size '
Displacement
Schema’g; d|r|V|ng force diagram for a fixed Schematic load-displacement curve for
remote displacement. the material.
D
S
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3. Elastic-Plastic J-Integral Analysis
Ductile Instability Analysis *

The applied and material tearing moduli are plotted against /and J,

respectively. Instability occurs when the 7., -/curve crosses the 7,-/, curve.
P y y app R “R

The latter curve is relatively easy to obtain, since J, depends only on the
amount of crack growth.

J.=J(a—-a,)
There is a unique relationship between 7, and J, For example,
~ NG
JR — ('l (l‘:»f — HG ] - A 5 Loading Path
R Follows

i i ‘e ai J-RC

The material tearing modulus is given by -~ e

app> R

) Ar=Aray
£ ('ZJR E 1€, {(C-1)/C,

]:? - 2 — 3 ('ECI “Jp <

60 (l:? - GC’ ) o Tupp

o

Ar) >
[ Inteoral

Schematic stability assessment diagram

for the material in the three previous

figures




3. Elastic-Plastic J-Integral Analysis
Ductile Instability Analysis g

= There are a number of approaches for defining the 7,,,
application.

= Method @ : Suppose that the initial crack size a, is known. Since /= J, during stable
crack growth, the applied /at a given crack size can be inferred from the J-R curve.

E dJ]
T = —F5|—
el ),

= The remote displacement A increases as the loading progresses up the J-R curve;
instability occurs at Ap,.— J = Jp T,,, =Tgfinal load, local displacement, crack size,
stable crack extension.

A

-/ curve, depending on the

(o 2 E CJ E . e (o-ic,
J,=Cla—a,) ]:?zgj(ai;o)zoz('zc‘ 2 JG e,

o

J Loading Path
A TR Follows

J-R Curve

Instability

T

app?

/)

app

Aama.\ __’l

0 Crack Size

J Integral 5@‘,‘%
OPen INteractive Structural iy



3. Elastic-Plastic J-Integral Analysis
Ductile Instability Analysis #

= Method @ : by fixing one of the loading conditions (P, A, or A,), and determining
the critical crack size at failure, as well as a,,

= For example, if we fix Azat Ay, in the structure, the same failure point can be predict

as the previous analysis but the 7,,,-/ curve would follow a different path.

E (—Y'] E ~ ~/C c,-1/C
~ PPN T.= R_= (/2T
AT =A+(,MP JR=(.1(U—UO} - R 0-2 (a—a,) o2 2 R

o

= |f, however, we fix the remote displacement at a different value, we would predict
failure at another point on the 7,-/, curve; the critical crack size, stable crack
extension, and a,would be different from the previous example.

J_., JR [nstability Loading Path
TR Follows
J-R Curve

/

app?

I

/)

app

I
I
l
|

A(Imil.\ _N

9 Crack Size

J Integral ey
OPen INteractive Structural b i



4. Failure Assessment Diagram

Ductile Instability Analysis

» The Failure Assessment Diagrams (FAD) is probably the most widely
used methodology for elastic plastic fracture mechanics analysis of
structural components.

» FAD based on the strip-yield plastic zone correction : the strip-yield
model has limitations, however. For example, it does not account
for strain hardening.

= FAD based on the elastic-plastic /-integral solution.

= Simplified FAD that account for strain hardening without a
rigorous Jintegral solution

OPen INteractive Structural
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4. Failure Assessment Diagram

Original Concept based on the strip-yield model

= The first FAD was derived from a modified version of the strip-yield model.
= The effective stress intensity factor for a through crack in an infinite plate.

g

8
——Insec

2

T

:

o

20y

I

» If o,c— o, the strip-yield model predicts failure as the applied stress

approaches the collapse stress. For a structure loaded in tension, collapse

occurs when the stress on the net cross-section reaches the flow stress
(stress required to continue plastically deforming the material) of the

material.

= Thus o,.depends on the tensile properties of the material and the flaw size

relative to the total cross section of the structure.

O

c

8

o}

|

T

2

lnsec(
2

O

T O

c

I

K,=0.\na

OPen INteractive Structural
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4. Failure Assessment Diagram

Original Concept based on the strip-yield model .
K O_ K 1/2
K =— Sr =— T = O-C[ 82 In sec[ﬂa]jl
K c. K, o|n 2 o,
~1/2 .
8 T "Applied stress ¢ =
K, =S, | —Insec| =S, ZFX| 2t crack length
T 2 aZt AM K7F Ko 2 "Applied stress 7t
2 39" collapse strength2
= Fracture is predicted when K= K .., \ o 714 collapse &|
where K., is the fracture toughness in 12— == ‘
terms of stress intensity units. [ e[| \

* |n intermediate cases, collapse and fractureK’o8 — ~ | |
interact, and both K,and S, are less than 1.0 i |
at failure. 06 - X \\\

K 0.4 g
K =—1 K, =Yo<ra
Kmaf 02 el
ollapse
0
0 0.2 0.4 0.6 0.8 1 1.2
Sr

The strip-yield failure assessment diagram

OPen INteractive Structural .o ;'aag



4. Failure Assessment Diagram

Original Concept based on the strip-yield model .

“EX 9.2) A middle tension (MT) panel 1 m wide and 25 mm thick with a 200
mm crack must carry a 7.00 MN load. For the material K, = 200 MPa, o, =
350 MPa, and o;¢ = 450 MPa.

at

Sol) assuming a flow stress that is the average of yield and tensile strength,
Chow = O, = 400 Mpa.
b4

3
J\‘-ﬂ 2W >

P = (400 MPa)(0.025 m)(I m—-0.200 m) =8.00 MN

7.00 MN
S =————=0.875
8.00 MN < ] -
: | 20
K, = 7.00 MN m(0.100 m)sec 720100 m) | 161 MPa+y'm
(0.025 m)(1.0 m) 1.00 m

\

ool [omte oel] o

negligible middle tension (MT) specimen

r 161

. =0.805
T 200
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4. Failure Assessment Diagram

Original Concept based on the strip-yield model =

“*EX 9.2) A middle tension (MT) panel 1 m wide and 25 mm thick with
a 200 mm crack must carry a 7.00 MN load. For the material K _, =
200 MPa, oy = 350 MPa, and ;¢ = 450 MPa.

1.2

Sol) s = 7.00 MN — 0875 Protre /'
" 8.00 MN K" e / |
161 ~~_ |
K =——=0.805 o T
200 X
0.6 |

0.4

0.2

0

= This point falls outside of the failure assessment diagram, the panel
will fail before reaching 7 MN.
P

OPen INteractive Structural .o ;'».lwg'.



4. Failure Assessment Diagram

J-Based FAD 3

_

= The shape of the FAD curve is a function of plasticity effects.
= The applied Jcan be converted to an equivalent K'through the following relationship.
c - | JE _K,2+77pUp , E

IS 2 J=J. +J. =  E'=———— iIn3.25
V1=V pl E’ Bb (1—1/2)

= |n the linear elastic range, K, = K, and stresses near the crack tip are characterized by
a singularity.

= |n the elastic-plastic range, the plot of K, vs. stress deviates from linearity and a
stress singularity no longer exists. Horizontal axis = L,

el

'\
K}' — & LI’ — Gref : Gref e E O-O K.f
K, Oys R

where o ,(is the reference stress.

= 7 'tCl\'\.-‘I“:\C\
S u\“(k'.

. -‘“gﬁ \'.‘\-;\$l\": o ¢ ! w\)

» The reference stress has been based on yield
load or limit load solutions for the
configuration of interest.

>
Applied Stress

Schematic plot of crack driving force
vs. applied stress.

Y|
i
=3
g «éta

55
25

}%\g,. _.
[
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4. Failure Assessment Diagram

J-Based FAD *
= |t needs to incorporate the fracture
toughness into the analysis.
,
KH?HF
= Fracture toughness is usually characterized b A
either Jor CTOD. 1.0 _ Lincar Elastic Fracture Mechanics (LEFM) _
| K
| i K =1 Plastieity Effects
_ JC}'HE — }:G}’S(SCJ'HE " K,
mat , | — V2 mar nﬁ | — V2
= where X is a constraint factor, which typically
ranges from 1.5 to 2 for most geometries and >
materials. Applied Stress
Driving force curve, K, vs. applied
stress
LED
. g,:i%
OPen INteractive Structural Yy



4. Failure Assessment Diagram

J-Based FAD

= Provided L, < L., the failure criterion in the FAD method can be inferred

K K K
K_: ! :—I
= | K, 0> e

mat K T
mar
1 0‘ _ Linear Elastic Fracture Mechanics (LEFM)_
K ¢ o s
i Plasticity Fffects
K.i

Applied Stress

Driving force curve, K, vs. applied stress

1.0

Brittle Fracture

Assessment
Point

I » K

J=J4+J,

Safe
K, <K
J mat Plastic
Collapse
1.0 r{max)
L

>

Failure assessment diagram (FAD), which spans th

=%
mvvv—:’gj }
3l

range of fully brittle to fully ductile behavior

36



4. Failure Assessment Diagram
Approximations of FAD Curve

= The most rigorous method to determine a FAD curve for a particular

37

application is to perform an elastic-plastic /integral analysis and define X..

K

K

J

K =—L

= Simplified approximations of the FAD curve are available.

= Method 1) the material dependent, geometry independent using reference

stress. ; i P
Ee Lo _ O, = —O0,
K =|=—2¢ 4 =0 for L <L 067 | ™ P °
? ‘Ergﬁ 2 E‘Er@f
&,6¢15 inferred from the true stress — true strain curve at o,
= Method 2) Material & geometry independent
K =[1-0.14(L, Y 1{0.3 + 0.7exp[-0.65(L, 1} for L <L, (9.68a)
K, =[1+0.5(L)1"{0.3+0.7exp[-0.6(L,)°]} forL <L (9.68b)
an empirical fit of FAD curves generated with Equation ( 9.67)
(EIND
OPen INteractive Structural \f‘iﬁ



4. Failure Assessment Diagram
Approximations of FAD Curve

38

» As strain-hardening increases (i.e., as n decreases), there is a more gradual
“tail” in the FAD curve. The material dependence in the FAD curve
manifests itself primarily in the fully plastic regime (£, > 1).

n
Efpf B O
1 — =0 —
Ramberg-Osgood Stress-Strain Law E O

a =10 ¢ =0.002

0.8

“n decreases —
strain hardening

0‘6 M n
INCreases
04
Eq. (9.68a)
----- Eq. (9.68b)
—e&—Eq. (9.67),n=5 E 3 —1/2
Eq. (9.67).n=10 £ -
0.2 —®—Eq. (967).n=20)  \ \Seaseo._ K — ref + L?' U}'—S
S . __} N
‘Erg}'s = Ee ref
0
0 0.5 | 1.5 2

Comparison of simplified FAD

expressions (Eq (9.67)) and Eq (9.68)).

OPen INteractive Structural



4. Failure Assessment Diagram
Estimating the Reference Stress *
e —————————————————
= Most FAD approaches normalize the x axis by the limit load or yield load
solution. Unfortunately, this practice can lead to apparent geometry
dependence in the FAD curve.

= The EPRI /handbook procedure was used to generate FAD curves for
various normalized crack lengths in a middle tension (MT) specimen, When
the applied load is normalized by the yield load P, on the xaxis, the
resulting FAD curves depend on the relative crack length.

“*An alternative approach for normalizina the x axis of the FAD

u Setting LI’= 1 in thiS equation and Middle Tension (MT) Panel |
. . EPRI J Handbook Solutions
solving for the ratio of the total /to K Plane Strcss
the elastic component.

n=10

0.8
T |

elastic

0002 1. 0002E) K [3
i +—]1+ K =—= —e— AW=0.125
KJ J [l BL2

r
L-1 Oy Oys 0.6 | ,
| —8— a/lW=10250

=]

elastic

——— /W= 0500

0.4 B a/W=0750

EPRI handbook ~integral solutions for b 05 5
middle tension panels P/P y

Q
Uren INteractive tructural st




4. Failure Assessment Diagram

Estimating the Reference Stress

_

40

» The reference stress, which is used to compute L, is proportional
to the nominal applied stress: where Fis a geometry factor.

O =0 F | = O ref _ O hominal

F

ref nominal ~ r
Oys Oys

F=— 5
O

nominal L=l

= This method forces all curves to pass
through the same pointat £, = 1.

Middle Tension (MT) Panel

EPRI J Handbook Solutions |
Plane Stress

n=10

0.8 |

—=—a/W=0.125
0.6
—— a/W=0.250
———a/W=10.500

0.4 B a/W=0.750

ref  ¥S§

FAD curves with reference stress
defined according to the procedure in
Equation (9.69) to Equation (9.71).
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4. Failure Assessment Diagram
Estimating the Reference Stress .

_
%+ lllustration of the estimation of reference stress

K 1 K l
r r _ .
0.002E 1 [ 0.0025]
=l+—t |l +——
08 ! 08 ! O-IS' 2 O-I“S
[--------- =W =0125 7 [--------- =W =S YT o
0.6 —— a/W=0.250 0.6 —o— a/W=0.250
——a/W=0.500 ——a/W=0.500
04 | aW=075 04 W aW=075
0.2 0.2
) o . o
Applied stress ~ Znom Ovs Applied stress nom. Fret
= o, —Oys
F=— 95
O

nominal L1

)%A
&

B
2=
Ze g
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4. Failure Assessment Diagram

Estimating the Reference Stress

e ————————————
= Equation (9.67) : material-specific and geometry-independent FAD
expression.

= The three curves are in precise agreement at £, = 1. At other L, values, there
is good agreement.

= Therefore, the shape of the FAD curve is relatively insensitive to geometry,
and the material-specific FAD expression (9.67) agrees reasonably well with
a rigorous Jsolution, provided the reference stress is defined by the
procedure in the last slides.

J

slastic |[ -

=1

0.002E 1 [ 0.002E ]"
+—t ] +—
Oys Oys

Comparison of the simplified material-
dependent FAD (Equation (9.67)) with Jbased

FAD curves for two geometries.

42
1.2
Ramberg-Osgood Material
n=10
r
Equation (9.67)
a —@— Middle sension specimen, a/W = 0.5
0.2 EPRI J handbook solution
Semi-elliptical surface crack, a/t = 0.5, c/a=4
Elastic-plastic finite element analysis
0
0 0.5 1 1.5
o Jo
ref YS £
W
(g8
° R i
OPen INteractive Structural Yy



4. Failure Assessment Diagram

Estimating the Reference Stress

J

elastic

=1+
L=l

0.002E 1( 0.0025]_l
1+ 43

+ J—
Oys 2 Oys

= The reference stress solution is relatively insensitive to the location on the
crack front angle ¢. but Fis a strong function of the hardening exponent.

Reference Stress Geometry Factor (F)

(1+2n;-’-“ )

F(n,)=F
(n_} (n]J l+2n:]_ﬂl)

A Semi-Elliptical Surface Crack in a Flat Plate
Subject to Membrane Stress
alt=0.5, cla=4

| n=3
. /\

1.6

(=]

1.4
— n=10

M — n=® 7
0 02 0.4 0.6 0.8

2;?5”2’

0.8

0.7

0.6

Reference Stress Geometry Factor (F)

05 |

Semi-Elliptical Surface Crack in a Flat Plate

Subject to Bending Stress
alt=0.5, cla=4, ¢= n2
o /E=0.002

Prediction

Finite Element Results

8

12 16 20

Strain Hardening Exponent ()

Reference stress geometry factor as a function
of crack front position and hardening
exponent for a semielliptical surface crack in a
flat plate.

Correlation between the reference stress
geometry factor and the hardening exponent
for a semielliptical surface crack in a plate
subject to a bending stress. 1




4. Failure Assessment Diagram

Application to Welded Structures .

* The welding process creates residual stresses in and around the weld.

Geometric anomalies(# %) such as weld misalignment create additional
local stresses.

The weld metal and heat-affected zone (HAZ) typically have different
material properties than the base metal.

The toughness properties of the weld must, of course, be taken into
account in the material resistance.

The different stress-strain responses of the weld metal and base metal can
have a significant effect on the crack driving force.

Eh\
(i)
%
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4. Failure Assessment Diagram

Incorporating Weld Residual Stresses 45

=  Weld residual stress is usually not considered in most design codes because it does
not have a significant effect on the tensile strength of the welded joint, provided the

material is ductile.

= When a crack is present, however, residual stresses must be included in the crack
driving force. Under linear elastic conditions, residual stresses are treated the same

as any other stress.

= At intermediate applied stresses, the K, vs. stress curve is nonlinear because the
combination of primary and residual stresses result in crack-tip plasticity.

= At higher applied stresses, global plasticity results in relaxation of residual stresses.

[\

Ky

Primary + Residual

Primary Only

>
Primary Stress (o?)

Schematic plot of crack driving force vs.
applied primary stress, with and without an
imposed residual stress.

* When the applied primary stress is zero, K, >0
due to the contribution of the residual
stress.

= At higher applied stresses, global
plasticity results in relaxation of residual
stresses — mechanical stress relief.

= At intermediate applied stresses, the K, vs.
stress curve is nonlinear because the
combination of primary and residual
stresses result in crack-tip plasticity.

OPen INteractive Structural P



4. Failure Assessment Diagram

Incorporating Weld Residual Stresses 46
= For primary stresses alone, the FAD curve is defined as
KP
K =—1=1f(L)
-

J
= When residual stresses are present, the shape of the FAD curve is a

function of the magnitude of the residual stresses:

. K[ +K]
K =— 1L =1f(L,K
1.0
K, accounts for residual stress K

/ Primary Only
K."
.
K, = ¥
J

» The unusual shape of the FAD curve for = fi(L,)

the weld with residual stress is due to e
crack-tip plasticity at intermediate L, K’ _ KK
values and mechanical stress relief at high K

L, values.

Driving force curves plotted in FAD
coordinates
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4. Failure Assessment Diagram
Incorporating Weld Residual Stresses

= |t is not particularly convenient to apply a FAD curve whose shape is a
function of residual stress
= An alternative formulation, where the residual stress effects are decoupled
from the FAD curve. @ : plasticity adjustment.
* P
_ Klp"'(DKlR D = fl(Lr)KJ _KI
K, Ky
= The ® factor can be derived from elastic-plastic finite element analysis.

Various initial residual stress distributions are imposed on a finite element
model that contains a crack, and then primary loads are applied.

. )
Pt

47

K = fl(Lr)

r

1.0

« K/ +OK?

*

Only

= f, (Lr) Kr

K, ;
K

mary
P
I}
K J

Primary + Residual

K = KM +K!
r K"]“
>
L, -
' L,.
gg’;g%ateffrce curves  plotted in  FAD Effect of the plasticity adjustment factor ®
on the FAD curve for a weldment with ,L";.;‘g
residual stress. £ Y




4. Failure Assessment Diagram
Incorporating Weld Residual Stresses

» As L, increases, the crack-tip plasticity o 4 %
magnifies the total driving force, so @ > 1.
= Eventually @ reaches a peak and then 1 ks el
decreases due to mechanical stress relief.
0 >
» The ycoordinate of the assessment point on ..
the FAD. Schematic plot of the plasticity adjustment

factor on residual stress, @, vs. applied
s KIP -I-CDKf f K|P -I—CI)K,R primary stress.
ro K Kr = 1(Lr) = K*

mar

J

= Plasticity adjustment is made to K (without
residual stress) using ©.

P R P R
K = f,(L)= K, +EI)KI K* — K, +®K,

—
K] S A (1

» The failure criterion : K;">K_ ..

pola. Y
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4. Failure Assessment Diagram

Weld Misalignment 49

= When plates or shells are welded, there is invariably some degree of
misalignment. The misalianment creates a local bending stress.

be
O.E;!’ofm _(Tmmwe (_J
f

= This local stress usually does not make a significant contribution to static
overload failure, provided the material is ductile.

= Misalignment stresses can, however, increase the risk of brittle fracture and
shorten the fatigue life of a welded joint.

» When applying the FAD method, it is
“ customary to treat misalignment

b stresses in the same way as weld
residual stresses.

9 » That is, they are not included in the
calculation of L, and the applied

o) stress-intensity factor due to
misalignment stresses is multiplied
Examples of weld misalignment: (a) by .

centerline offset and (b) angular
misalignment
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4. Failure Assessment Diagram

) J |, 00mE 1, 0002E)
Weld Strength MlsmatCh I astic L=t o Oys +_[ " Oys ] >0
" The weld metal is typically stronger than the base metal, but there are instances
where the weld metal has lower strength.
= Weldment is said to be overmatched when the weld metal has higher strength than
the base metal. The reverse situation is known as an undermatched weldment.
= Mismatch in strength properties affects the crack driving force in the elastic-plastic
and fully plastic regimes.
= Mismatch in properties is normally not a significant issue in the elastic range
because the weld metal and base metal typically have similar elastic constants.
= The effect of weld strength mismatch can be taken into account in the FAD method
through an appropriate definition of L.
» The reference stress for a
weldment should be defined 7/ A ﬁ» 7/ /@9/ ﬁ»
from the elastic-plastic / T cnckinBuse Mo ~Lcuenwid N7
solution using the approach. ’
Effect of weld strength mismatch on crack
driving force. In this schematic, weld residual
stress is neglected, and the weld and base
metal are assumed to have similar hardening
characteristics.
Applied Load I “’,103,'
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