
운영체제의기초:
Dynamic Memory Allocation

2025년 5월 2, 4일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수

2

Agenda

I. Background

II. Heap

III. Dynamic Memory Allocation in Linux

IV. Garbage Collection

Dynamic Memory Allocation

3

x86-64 Linux Memory Layout

❖ Stack

▪ Runtime stack (8MB limit)

• E.g., local variables

❖ Heap

▪ Dynamically allocated as needed

• When call malloc(), calloc(), new()

❖ Data

▪ Statically allocated data

• E.g., global vars, static vars, string constants

❖ Text/Shared libraries

▪ Executable machine instructions

▪ Read-only

Dynamic Memory Allocation

0000 7FFF FFFFF000

(= 247 − 4096)

Stack

Text
Data

Heap

128 MB

Shared
Libraries

0000 7FFF F8000000

8MB

40 0000

0000
1000

randomized

randomized

%rsp

I. Background

5

Static vs. Dynamic

❖ Static X

▪ X is done at pre-runtime (or offline)

▪ X could be analysis, synthesis, allocation, scheduling, etc.

❖ Dynamic X

▪ X is done at runtime (or online)

I. Background

6

Why Dynamic Allocation?

❖ Static allocation isn’t sufficient for all…

▪ Why? – Unpredictability and thus lack of space efficiency

• Can’t predict ahead of time how much memory,

or in what form, will be needed

▪ Example of memory request unpredictability:

• Recursive procedures

– Even regular procedures are hard to predict (data dependencies)

• Complex data structures, e.g., linked lists and trees

• Lack of space efficiency

– If all storage must be reserved in advance (statically), then it will be

used inefficiently (enough will be reserved to handle the worst

possible case)

– For example, OS doesn’t know how many jobs there will be or which

programs will be run

I. Background

7

Dynamic Storage Allocation (1)

❖ Dynamic storage allocation is …

▪ Needed both for “main memory” and for “file space” on disk

▪ We’ll touch upon disk space allocation

in Lecture on File Systems

❖ Can be handled in one of two general ways

1. “Stack” allocation

• Restricted, but simple and efficient

2. “Heap” allocation

• More general, but less efficient

• More difficult to implement

I. Background

8

Dynamic Storage Allocation (2)

❖ Has two basic operations

▪ Allocate and free (or deallocate)

❖ Stack organization

▪ Memory allocation and freeing are partially predictable

• Keeps all the free space together in one place

▪ Allocation is hierarchical

• Memory is freed in opposite order from allocation

• E.g., alloc(A); alloc(B); alloc(C); free(C); free(B); free(A)

▪ Examples

• Function call frames, tree traversal, expression evaluation,

parsing statements in program

I. Background

II. Heap

10

Why Heap?

❖ We’ve discussed two types of data allocation so far:

▪ Global variables

▪ Stack-allocated local variables

❖ Not sufficient!

▪ How to allocate data whose size is only known at runtime?

• E.g., when reading variable-sized input from network, file etc.

▪ How to control the lifetime of allocated data?

• E.g., a linked list that grows and shrinks as items are

inserted/deleted

II. Heap

11

The Heap

II. Heap

0000 7FFF FFFFF000

(= 247 − 4096)

Stack

Text
Data

Heap

128 MB

Shared
Libraries

8MB

40 0000

0000
1000

randomized

randomized

%rsp

Top of the heap
(brk pointer)

12

What is Heap?

❖ Heap is …

▪ Simply a kind of data structure meant to be used

for dynamic memory allocation

• Can better be explained as an ADT

▪ Consists of “allocated” and “free” memory areas

▪ Keeps track of the list of free memory areas

• Allocated areas are accessed thru the pointers

in your program anyway

– No need for the heap to manage them

• The free memory areas is called “free list”

• Initially, the free list has only one big memory chunk

that is the entire heap

II. Heap

13

Heap Organization

❖ Allocation and free are unpredictable

▪ Heaps are used for arbitrary list structures,

complex data organizations

• Examples: new in C++, malloc() in C

❖ Heap memory consists of

▪ Allocated areas and free areas (AKA holes)

▪ Inevitably end up with lots of holes (fragmentation)

II. Heap

Free

Alloc

Free

Alloc

14

Challenge

❖ Reuse the space in holes to keep the number of

holes small, their size large

▪ Hopefully, group all the holes together into one big chunk

❖ Fragmentation

▪ Leads to inefficient use of memory due to holes

that are too small to be useful

▪ No problem in stack allocation

▪ Causes serious performance penalties

• Drastic slowdown of smartphones after a long use

▪ Anti-fragmentation approaches

• Buddy allocator, slab allocator, paging, etc.

II. Heap

15

Anti-Fragmentation in Linux (1)

❖ Buddy allocator

▪ Divides memory into partitions to try to satisfy a memory

request as suitably as possible

• Splits memory into halves to try to give a best-fit

• Invented in 1963, Harry Markowitz

▪ Effectively reduces external fragmentation with small

compaction overhead

II. Heap

Harry Markowitz
American economist who won Nobel Memorial

Prize in Economic Sciences

…

16

Anti-Fragmentation in Linux (2)

❖ Slab allocator

▪ Caching frequently allocating and de-allocating data

structures

▪ Object creation and deletion are widely employed by the

kernel which outweigh the cost of allocating memory

II. Heap

17

Free List Management (1)

❖ Free list is …

▪ A list made by heap allocation schemes

to keep track of the memory that is not in use

▪ Algorithms differ in how they manage the free list

• How to find a free area that suits for the allocation request?

• What kind of data structure should be used for the free list?

II. Heap

18

Free List Management (2)

❖ Finding a free area

▪ Best-fit

• Keeps the linked list of free memory blocks

• Search the whole list on each allocation

• Choose the block that comes closest to matching

the needs of the allocation

• During release operations, merge adjacent free blocks

▪ First-fit

• Just scans the list for the first hole that is large enough

• Also merge on releases

• Most first-fit implementations are rotating first-fit

II. Heap

19

Free List Management (3)

❖ Finding a free area (cont’d)

▪ Best-fit is not necessarily better than first-fit

• Suppose memory contains 2 free blocks of size 20 and 15

• Suppose allocation ops are 10 then 20

• Suppose ops are 8, 12, then 12

▪ First-fit tends to leave “average” size holes

while best-fit tends to leave some very large ones,

some very small ones

• The very small ones can’t be used very easily

▪ How about Worst-fit?

II. Heap

20

Free List Management (4)

❖ Data structures

▪ Bitmap

• Used for allocation of storage that comes in fixed-size chunks

• Examples: disk blocks 32-byte chunks

• Keep a large array of bits, one for each chunk

• If bit is 0, it means chunk is in use

• If bit is 1, bit means chunk is free

▪ Segregated free list (seglist)

• Keep a separate free list for each popular size

• Allocation is fast, no fragmentation

• May get some inefficiency if some lists run out

while other lists have lots of free blocks

– Get shuffled between pools

II. Heap

21

Implementation (1)

❖ Dynamic memory allocator

▪ Part of user-level library

• Why not implement its functionality in the kernel?

II. Heap

Application

Dynamic Memory Allocator

OS

malloc free realloc

mmap sbrk

Allocate or free data of
arbitrary sizes

Request for or give back
large chunk of page-

aligned address space

22

Implementation (2)

❖ Changing heap size

▪ Adds incr bytes to the break value (i.e., brk pointer) and

changes the allocated space accordingly

▪ If incr is negative, the amount of allocated space is

decreased by incr bytes

▪ Returns the new value of the brk pointer

II. Heap

#include <unistd.h>

void *sbrk(int incr);

http://pubs.opengroup.org/onlinepubs/7908799/xsh/unistd.h.html

23

Implementation (3)

❖ Challenges facing a memory allocator

▪ Achieve good memory utilization

• Apps issue arbitrary sequence of malloc/free requests of

arbitrary sizes

• Utilization = sum of malloc’d data / size of heap

▪ Achieve good performance

• malloc/free calls should return quickly

• Throughput = # ops/sec

▪ Constraints:

• Cannot touch/modify malloc’d memory

• Can’t move the allocated blocks once they are malloc’d

– I.e., compaction is not allowed

II. Heap

24

Implementation (4)

❖ Fragmentation

▪ Source of poor memory utilization

• Internal fragmentation

• External fragmentation

II. Heap

25

Implementation (5)

❖ Internal fragmentation

▪ Malloc allocates data from blocks of certain sizes

▪ Occurs if payload is smaller than block size

▪ May be caused by

• Limited choices of block sizes

• Padding for alignment purposes

• Other space overheads

II. Heap

100 byte Payload

Internal
fragmentation

Block of 128-byte • Block size decided by
allocator’s designer

• Payload is the number of bytes
you want when you call malloc()

26

Implementation (6)

❖ External fragmentation

▪ Occurs when there is enough aggregate heap memory, but

no single free block is large enough

II. Heap

100 byte Payload 100 byte Payload 100 byte Payload

P1 = malloc(100);
p2 = malloc(100);
p3 = malloc(100);
free(p1);
free(p3);
malloc(200)?

p1 p2 p3

27

Heap Design Choices

❖ Questions to answer

1. How do we know how much memory to free given just a

pointer?

2. How do we keep track of the free blocks?

3. What do we do with the extra space when allocating

a space that is smaller than the free block it is placed in?

4. How do we pick a block to use for allocation

• Many might fit?

5. How do we reinsert freed block?

II. Heap

28

Q1. Knowing How Much to Free

❖ Standard method

▪ Keep the length of a block in the header field preceding the

block

• Requires header overhead for every allocated block

II. Heap

p0 = malloc(4)

p0

free(p0)

block size data

5

29

Q2. Keeping Track of Free Blocks

❖ Method 1: Implicit list using length

▪ Links all blocks

❖ Method 2: Explicit list among the free blocks using

pointers

❖ Method 3: Segregated free list (seglist)

▪ Different free lists for different size classes

II. Heap

5 4 26

5 4 26

30

Method 1: Implicit List (1)

❖ Heap is divided into variable-sized blocks

❖ Each block has size and allocation status

II. Heap

Size

4-byte

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

header + payload + padding

31

Method 1: Implicit List (2)

❖ Detailed example

II. Heap

Start
of

heap

8-byte
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

special end
block

Each square represents 4 bytes

32

Method 1: Implicit List (3)

❖ Q4. Finding a free block

▪ First-fit:

• Search from the beginning, choose the first free block that fits

▪ Next-fit:

• Like first-fit, except search starts where previous search

finished

▪ Best-fit:

• Search the list, choose the best free block: fits, with fewest

bytes left over (i.e., pick the smallest block that is big enough

for the payload)

• Keeps fragments small

• Will typically run slower than first-fit

II. Heap

33

Method 1: Implicit List (4)

❖ Q3. Allocating in a free block: splitting

▪ Since allocated space might be smaller than free space,

we might want to split the block

II. Heap

4 4 26

4 24

Free block

24

After malloc(4)

34

Method 1: Implicit List (5)

❖ Q5. Freeing a free block with no coalescing

▪ Simplest implementation:

• Need only clear the “allocated” flag

• But can lead to “false fragmentation”

II. Heap

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

35

Method 1: Implicit List (6)

❖ Q5. Freeing a free block with coalescing

▪ Join (coalesce) with next/previous blocks, if they are free

• Coalescing with the next block

II. Heap

free(p)

4 4 24 2

4 24 2

p

4

4 4 26

Check if next block is
free

36

Method 1: Implicit List (7)

❖ Q5. Freeing a free block with bidirectional coalescing

▪ Boundary tags [Knuth73]

• Replicate size/allocated header at “bottom” (end) of blocks

– Allows us to traverse the “list” backward, but requires extra space

II. Heap

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

37

Method 1: Implicit List (8)

❖ Four cases of coalescing

II. Heap

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

38

Method 1: Implicit List (9)

❖ Case 1

II. Heap

m1 1

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

39

Method 1: Implicit List (10)

❖ Case 2

II. Heap

m1 1

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0

40

Method 1: Implicit List (11)

❖ Case 3

II. Heap

m1 0

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

41

Method 1: Implicit List (12)

❖ Case 4

II. Heap

m1 0

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

42

Method 1: Implicit List (13)

❖ When to coalesce?

▪ Immediate coalescing:

• Coalesce each time free() is called

▪ Deferred coalescing:

• Try to improve the performance of free

by deferring coalescing until needed

• Examples:

– Coalesce as you scan the free list for malloc()

– Coalesce when the amount of external fragmentation

reaches some threshold

II. Heap

43

Method 1: Implicit List (14)

❖ Summary

▪ Implementation: very simple

▪ Allocate cost:

• Linear time worst case

▪ Free cost:

• Constant time worst case, even with coalescing

▪ Memory usage:

• Will depend on first-fit, next-fit or best-fit

▪ Not used in practice for malloc/free because of linear-time

allocation

• Used in many special-purpose applications

II. Heap

44

Method 2: Explicit List (1)

❖ Maintain list(s) of free blocks instead of all blocks

❖ Need to store forward/back pointers in each free

block, not just sizes

▪ Because free blocks may not be contiguous in heap

II. Heap

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated block Free block

Store next/prev pointers in
“payload’’ of free block.

Does this increase space
overhead?

45

Method 2: Explicit List (2)

❖ Where in the free list to put a newly freed block?

▪ Insert freed block at the beginning of the free list (LIFO)

• Pro: simple and constant time

▪ Insert freed blocks to maintain address order:

• addr(prev) < addr(curr) < addr(next)

• Pro: may lead to less fragmentation than LIFO

II. Heap

46

Method 2: Explicit List (3)

❖ Summary

▪ Allocation is linear time in # of free blocks instead of all

blocks

▪ Still expensive to find a free block that fits

▪ How about keeping multiple linked lists of different size

classes?

II. Heap

47

Method 3: Segregated List (1)

❖ Seglist

▪ Multiple free lists each linking free blocks of similar sizes

II. Heap

1-2

3

4

{5-8}

{9-inf}

48

Method 3: Segregated List (2)

❖ Seglist

▪ Given an array of free lists, each one for some size class

▪ To allocate a block of size n:

• Search in appropriate free list containing size n

• Split found block and place fragment on appropriate list

• Try next larger class if no blocks found

▪ If no block is found:

• Request additional heap memory from OS

• Allocate block of n bytes from this new memory

• Place the remainder as a single free block in

the largest size class

II. Heap

49

Method 3: Segregated List (3)

❖ Seglist

▪ To free a block:

• Coalesce and place on the appropriate list

▪ Advantages of seglist allocators

• Fast allocation

• Better memory utilization

– First-fit search of segregated free list approximates

a best-fit search of the entire heap

II. Heap

III. Dynamic Memory Allocation

in Linux

51

VMA and Memory Objects

❖ Virtual memory area (VMA)

▪ Logical memory region

that consists of a set of contiguous pages

▪ Unit of virtual memory management in the Linux kernel

▪ Created by an mmap() system call

❖ Memory object

▪ Unit of dynamic memory allocation

▪ Created by malloc() call

III. Dynamic Memory Allocation in Linux

52

Virtual Address Space Layout

III. Dynamic Memory Allocation in Linux

Anonymous

Memory

Objects

Kernel

Space

User

Space

Code

Heap

Stack

Data

Virtual Memory Area

Memory Object

Legends

Virtual

address

53

malloc() in Linux

❖ malloc() is serviced differently

according to the size of the requested memory object

▪ Heap vs. anonymous memory object (AMO)

III. Dynamic Memory Allocation in Linux

LibC

Dynamic

Memory

Allocation

Application

Kernel

malloc()

brk() mmap()

Heap
Anonymous

Memory Objects

54

Heap vs. Anonymous Memory Object

❖ Heap

▪ Heap is used when the size of requested memory object is
smaller than mmap threshold

▪ There is only one heap for each process

▪ Heap is the VMA created by mmap()

during the process is created by fork()

III. Dynamic Memory Allocation in Linux

55

Heap vs. Anonymous Memory Object

❖ Anonymous memory object (AMO)

▪ Anonymous mmap() is invoked when the size of requested

memory object is equal to or greater than mmap threshold

• An independent VMA serves exactly one AMO

• Anonymous mmap() creates a VMA which consists of

anonymous pages

▪ When an anonymous page is created

• It has neither a page table entry nor a physical frame yet

• These are allocated to the page later via a minor page fault

III. Dynamic Memory Allocation in Linux

56

Two Types of Page Faults

❖ Major page fault

▪ Page fault that incurs page mapping and page read (disk I/O)

from disk

❖ Minor page fault

▪ Page fault that incurs page mapping only without disk I/O

▪ Used for anonymous pages

▪ Steps for minor page fault handling

III. Dynamic Memory Allocation in Linux

1. Process attempts to access an anonymous page

2. If a corresponding page table entry is empty, then a minor page fault occurs

3. Get a physical frame from dynamic memory allocator of kernel

4. Restart the instruction that was interrupted by the page fault

57

Why Two Mechanisms for Servicing
One API (malloc)?

❖ Trade-off between memory efficiency & performance

▪ Heap

• Good for performance because page mappings of a memory
object can be reused after it is free()-ed (avoids minor page

faults)

• Bad for memory efficiency (physical frames of free()-ed

memory objects cannot be returned to the kernel)

▪ AMO

• Bad for performance because page mappings of a memory

object cannot be reused

• Good for memory efficiency (physical frames of free()-ed

memory objects are immediately returned to the kernel)

III. Dynamic Memory Allocation in Linux

58

In Memory-Constrained Devices

❖ AMOs are favored over heap

▪ Typically, the mmap threshold in smartphones is much

smaller than that of desktops/servers

• In Android Jellybean, mmap threshold = 64 KB (16 pages)

• In Ubuntu 12.04 (64 bits), mmap threshold = 4 MB

III. Dynamic Memory Allocation in Linux

IV. Garbage Collection

60

Why Garbage Collection? (1)

❖ Memory reclamation

▪ Act of collecting and freeing unused memory

▪ Very important in dynamic memory management

▪ How do you know when dynamically allocated memory

can be freed?

• It’s easy when the chunk is used only in one place

• Reclamation is hard when the chunk is shared

– It can’t be recycled until all the sharers are finished

– Sharing is indicated by the presence of pointers to the chunk

– Without a pointer, can’t access or can’t find it, anyway

IV. Garbage Collection

61

Why Garbage Collection? (2)

❖ Memory reclamation (cont’d)

▪ What will happen if unused memory is not reclaimed?

• Memory leak

▪ Who should perform memory reclamation?

▪ How about automatic memory reclamation,

instead of manual one?

• Automatic garbage collection

IV. Garbage Collection

62

Automatic Garbage Collection (1)

❖ Garbage is …

▪ Data objects in program that can’t be accessed in the future

❖ Garbage collection (from Wikipedia)

▪ Attempts to reclaim garbage

▪ A form of automatic memory management in comparison

with manual management

▪ Invented by John McCarthy around 1959 to solve problems

in Lisp

IV. Garbage Collection

63

Automatic Garbage Collection (2)

❖ How GC works

▪ When available memory goes low,

the garbage collector searches through all of the pointers

and collects unused or unreached data objects

• Must be able to find as many pointers as possible in code

❖ Pros and cons

▪ Makes life easier on application programmers

▪ Garbage collectors are difficult to program and debug,

especially if compaction is also done

IV. Garbage Collection

64

Automatic Garbage Collection (3)

❖ GC and programming language support

▪ GC must have the ability to find pointer variables in code

• Needs runtime supports from your programming language

▪ There even exist garbage collected languages

• They require GC to be part of the language specification

• E.g., Java, Python, C#, most scripting languages

IV. Garbage Collection

65

Automatic Garbage Collection (4)

❖ Benefits of GC

▪ Can eliminate certain types of potentially serious bugs

• Memory leaks

– Program fails to free memory occupied by objects that have become

unreachable, which can lead to memory exhaustion

– Can causes shutdown of essential national infrastructures like

telephony switching systems

• Dangling pointers bugs

– A piece of memory is freed while there are still pointers to it, and

one of those pointers is dereferenced

– By then the memory may have been re-assigned to another use,

with unpredictable results

• Double free bugs

– Program tries to free a region of memory that has already been

freed, and perhaps already been allocated again

IV. Garbage Collection

66

Finding Garbage (1)

❖ Mark-and-sweep approach

▪ Preconditions

• Must be able to find all objects

• Must be able to find all pointers to objects

▪ Pass 1: Mark

• Go through all global and local variables, looking for pointers

• Mark each object pointed to and recursively mark all objects it

points to

• Compiler has to cooperate by saving information about

where the pointers are stored

▪ Pass 2: Sweep

• Go through all objects, free up those that aren’t marked

IV. Garbage Collection

67

Finding Garbage (2)

❖ Reference counter approach

▪ Preconditions

• Must be able to find all objects

• Must be able to find all pointers to objects

▪ Operations

• Keep track of the number of outstanding pointers

to each chunk of allocated memory

• When it goes to zero, free the memory

▪ Reference counters must be managed carefully by the GC

• No mistakes during incrementing and decrementing them

• Problems with circular data structures

▪ Example: File descriptors in Unix

IV. Garbage Collection

68

Problems with Garbage Collection

❖ Garbage collection is often expensive

▪ 20% or more of all CPU time in systems that use it

❖ Resulting in stalls scattered throughout a session

▪ The moment when the garbage is actually collected

can be unpredictable

▪ Unpredictable stalls can be unacceptable in real-time

environments, in transaction processing, or

in interactive programs

IV. Garbage Collection

