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x86-64 Linux Memory Layout

❖ Stack

▪ Runtime stack (8MB limit)

• E.g., local variables

❖ Heap

▪ Dynamically allocated as needed

• When call malloc(), calloc(), new()

❖ Data

▪ Statically allocated data

• E.g., global vars, static vars, string constants

❖ Text/Shared libraries

▪ Executable machine instructions

▪ Read-only

Dynamic Memory Allocation
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Static vs. Dynamic

❖ Static X

▪ X is done at pre-runtime (or offline)

▪ X could be analysis, synthesis, allocation, scheduling, etc.

❖ Dynamic X

▪ X is done at runtime (or online)

I. Background
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Why Dynamic Allocation?

❖ Static allocation isn’t sufficient for all…

▪ Why? – Unpredictability and thus lack of space efficiency

• Can’t predict ahead of time how much memory,

or in what form, will be needed

▪ Example of memory request unpredictability:

• Recursive procedures

– Even regular procedures are hard to predict (data dependencies)

• Complex data structures, e.g., linked lists and trees

• Lack of space efficiency

– If all storage must be reserved in advance (statically), then it will be 

used inefficiently (enough will be reserved to handle the worst 

possible case)

– For example, OS doesn’t know how many jobs there will be or which 

programs will be run

I. Background
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Dynamic Storage Allocation (1)

❖ Dynamic storage allocation is …

▪ Needed both for “main memory” and for “file space” on disk

▪ We’ll touch upon disk space allocation

in Lecture on File Systems

❖ Can be handled in one of two general ways

1. “Stack” allocation

• Restricted, but simple and efficient

2. “Heap” allocation

• More general, but less efficient

• More difficult to implement

I. Background
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Dynamic Storage Allocation (2)

❖ Has two basic operations

▪ Allocate and free (or deallocate)

❖ Stack organization

▪ Memory allocation and freeing are partially predictable

• Keeps all the free space together in one place

▪ Allocation is hierarchical

• Memory is freed in opposite order from allocation

• E.g., alloc(A); alloc(B); alloc(C); free(C); free(B); free(A)

▪ Examples

• Function call frames, tree traversal, expression evaluation, 

parsing statements in program

I. Background



II. Heap
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Why Heap?

❖ We’ve discussed two types of data allocation so far:

▪ Global variables

▪ Stack-allocated local variables

❖ Not sufficient!

▪ How to allocate data whose size is only known at runtime?

• E.g., when reading variable-sized input from network, file etc.

▪ How to control the lifetime of allocated data?

• E.g., a linked list that grows and shrinks as items are 

inserted/deleted

II. Heap
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The Heap

II. Heap
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What is Heap?

❖ Heap is …

▪ Simply a kind of data structure meant to be used

for dynamic memory allocation

• Can better be explained as an ADT

▪ Consists of “allocated” and “free” memory areas

▪ Keeps track of the list of free memory areas

• Allocated areas are accessed thru the pointers

in your program anyway

– No need for the heap to manage them

• The free memory areas is called “free list”

• Initially, the free list has only one big memory chunk

that is the entire heap

II. Heap
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Heap Organization

❖ Allocation and free are unpredictable

▪ Heaps are used for arbitrary list structures,

complex data organizations

• Examples: new in C++, malloc() in C

❖ Heap memory consists of

▪ Allocated areas and free areas (AKA holes)

▪ Inevitably end up with lots of holes (fragmentation)

II. Heap
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Challenge

❖ Reuse the space in holes to keep the number of 

holes small, their size large

▪ Hopefully, group all the holes together into one big chunk

❖ Fragmentation

▪ Leads to inefficient use of memory due to holes

that are too small to be useful

▪ No problem in stack allocation

▪ Causes serious performance penalties

• Drastic slowdown of smartphones after a long use

▪ Anti-fragmentation approaches

• Buddy allocator, slab allocator, paging, etc.

II. Heap
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Anti-Fragmentation in Linux (1)

❖ Buddy allocator

▪ Divides memory into partitions to try to satisfy a memory 

request as suitably as possible

• Splits memory into halves to try to give a best-fit

• Invented in 1963, Harry Markowitz

▪ Effectively reduces external fragmentation with small 

compaction overhead

II. Heap

Harry Markowitz
American economist who won Nobel Memorial 

Prize in Economic Sciences

…
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Anti-Fragmentation in Linux (2)

❖ Slab allocator

▪ Caching frequently allocating and de-allocating data 

structures

▪ Object creation and deletion are widely employed by the 

kernel which outweigh the cost of allocating memory

II. Heap
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Free List Management (1)

❖ Free list is …

▪ A list made by heap allocation schemes

to keep track of the memory that is not in use

▪ Algorithms differ in how they manage the free list

• How to find a free area that suits for the allocation request?

• What kind of data structure should be used for the free list?

II. Heap
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Free List Management (2)

❖ Finding a free area

▪ Best-fit

• Keeps the linked list of free memory blocks

• Search the whole list on each allocation

• Choose the block that comes closest to matching

the needs of the allocation

• During release operations, merge adjacent free blocks

▪ First-fit

• Just scans the list for the first hole that is large enough

• Also merge on releases

• Most first-fit implementations are rotating first-fit

II. Heap
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Free List Management (3)

❖ Finding a free area (cont’d)

▪ Best-fit is not necessarily better than first-fit

• Suppose memory contains 2 free blocks of size 20 and 15

• Suppose allocation ops are 10 then 20

• Suppose ops are 8, 12, then 12

▪ First-fit tends to leave “average” size holes

while best-fit tends to leave some very large ones,

some very small ones

• The very small ones can’t be used very easily

▪ How about Worst-fit?

II. Heap
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Free List Management (4)

❖ Data structures

▪ Bitmap

• Used for allocation of storage that comes in fixed-size chunks

• Examples: disk blocks 32-byte chunks

• Keep a large array of bits, one for each chunk

• If bit is 0, it means chunk is in use

• If bit is 1, bit means chunk is free

▪ Segregated free list (seglist)

• Keep a separate free list for each popular size

• Allocation is fast, no fragmentation

• May get some inefficiency if some lists run out

while other lists have lots of free blocks

– Get shuffled between pools

II. Heap
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Implementation (1)

❖ Dynamic memory allocator

▪ Part of user-level library 

• Why not implement its functionality in the kernel?

II. Heap

Application

Dynamic Memory Allocator

OS
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Implementation (2)

❖ Changing heap size

▪ Adds incr bytes to the break value (i.e., brk pointer) and 

changes the allocated space accordingly

▪ If incr is negative, the amount of allocated space is 

decreased by incr bytes

▪ Returns the new value of the brk pointer

II. Heap

#include <unistd.h> 

void *sbrk(int incr);

http://pubs.opengroup.org/onlinepubs/7908799/xsh/unistd.h.html
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Implementation (3)

❖ Challenges facing a memory allocator

▪ Achieve good memory utilization

• Apps issue arbitrary sequence of malloc/free requests of 

arbitrary sizes

• Utilization =  sum of malloc’d data / size of heap

▪ Achieve good performance

• malloc/free calls should return quickly

• Throughput = # ops/sec

▪ Constraints:

• Cannot touch/modify malloc’d memory

• Can’t move the allocated blocks once they are malloc’d

– I.e., compaction is not allowed

II. Heap
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Implementation (4)

❖ Fragmentation

▪ Source of poor memory utilization

• Internal fragmentation

• External fragmentation

II. Heap
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Implementation (5)

❖ Internal fragmentation

▪ Malloc allocates data from blocks of certain sizes

▪ Occurs if payload is smaller than block size

▪ May be caused by 

• Limited choices of block sizes

• Padding for alignment purposes

• Other space overheads

II. Heap

100 byte Payload

Internal 
fragmentation

Block of 128-byte • Block size decided by 
allocator’s designer

• Payload is the number of bytes 
you want when you call malloc()
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Implementation (6)

❖ External fragmentation

▪ Occurs when there is enough aggregate heap memory, but 

no single free block is large enough

II. Heap

100 byte Payload 100 byte Payload 100 byte Payload

P1 = malloc(100);
p2 = malloc(100);
p3 = malloc(100);
free(p1);
free(p3);
malloc(200)?

p1 p2 p3
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Heap Design Choices

❖ Questions to answer

1. How do we know how much memory to free given just a 

pointer?

2. How do we keep track of the free blocks?

3. What do we do with the extra space when allocating

a space that is smaller than the free block it is placed in?

4. How do we pick a block to use for allocation

• Many might fit?

5. How do we reinsert freed block?

II. Heap
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Q1. Knowing How Much to Free

❖ Standard method

▪ Keep the length of a block in the header field preceding the 

block

• Requires header overhead for every allocated block

II. Heap

p0 = malloc(4)

p0

free(p0)

block size data

5
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Q2. Keeping Track of Free Blocks

❖ Method 1: Implicit list using length

▪ Links all blocks

❖ Method 2: Explicit list among the free blocks using 

pointers

❖ Method 3: Segregated free list (seglist)

▪ Different free lists for different size classes

II. Heap

5 4 26

5 4 26
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Method 1: Implicit List (1)

❖ Heap is divided into variable-sized blocks

❖ Each block has size and allocation status

II. Heap

Size

4-byte
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free blocks

Payload
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Method 1: Implicit List (2)

❖ Detailed example

II. Heap

Start 
of 

heap

8-byte
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit
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block

Each square represents 4 bytes
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Method 1: Implicit List (3)

❖ Q4. Finding a free block

▪ First-fit:

• Search from the beginning, choose the first free block that fits

▪ Next-fit:

• Like first-fit, except search starts where previous search 

finished

▪ Best-fit:

• Search the list, choose the best free block: fits, with fewest 

bytes left over (i.e., pick the smallest block that is big enough 

for the payload)

• Keeps fragments small

• Will typically run slower than first-fit

II. Heap
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Method 1: Implicit List (4)

❖ Q3. Allocating in a free block: splitting

▪ Since allocated space might be smaller than free space,

we might want to split the block

II. Heap

4 4 26

4 24

Free block

24

After malloc(4)
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Method 1: Implicit List (5)

❖ Q5. Freeing a free block with no coalescing

▪ Simplest implementation:

• Need only clear the “allocated” flag

• But can lead to “false fragmentation” 

II. Heap

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!
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Method 1: Implicit List (6)

❖ Q5. Freeing a free block with coalescing

▪ Join (coalesce) with next/previous blocks, if they are free

• Coalescing with the next block

II. Heap

free(p)

4 4 24 2

4 24 2

p

4

4 4 26

Check if next block is 
free
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Method 1: Implicit List (7)

❖ Q5. Freeing a free block with bidirectional coalescing

▪ Boundary tags [Knuth73]

• Replicate size/allocated header at “bottom” (end) of blocks

– Allows us to traverse the “list” backward, but requires extra space

II. Heap

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

a
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Method 1: Implicit List (8)

❖ Four cases of coalescing

II. Heap

Allocated

Allocated
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Free

Free
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Free
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freed
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Method 1: Implicit List (9)

❖ Case 1

II. Heap

m1 1

m1 1
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Method 1: Implicit List (10)

❖ Case 2

II. Heap
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Method 1: Implicit List (11)

❖ Case 3

II. Heap

m1 0

m1 0
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Method 1: Implicit List (12)

❖ Case 4

II. Heap

m1 0

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Method 1: Implicit List (13)

❖ When to coalesce?

▪ Immediate coalescing:

• Coalesce each time free() is called 

▪ Deferred coalescing:

• Try to improve the performance of free

by deferring coalescing until needed

• Examples:

– Coalesce as you scan the free list for malloc()

– Coalesce when the amount of external fragmentation

reaches some threshold

II. Heap
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Method 1: Implicit List (14)

❖ Summary

▪ Implementation: very simple

▪ Allocate cost: 

• Linear time worst case

▪ Free cost: 

• Constant time worst case, even with coalescing

▪ Memory usage: 

• Will depend on first-fit, next-fit or best-fit

▪ Not used in practice for malloc/free because of linear-time 

allocation

• Used in many special-purpose applications

II. Heap
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Method 2: Explicit List (1)

❖ Maintain list(s) of free blocks instead of all blocks

❖ Need to store forward/back pointers in each free 

block, not just sizes

▪ Because free blocks may not be contiguous in heap

II. Heap

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated block Free block

Store next/prev pointers in 
“payload’’ of free block.

Does this increase space 
overhead?
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Method 2: Explicit List (2)

❖ Where in the free list to put a newly freed block?

▪ Insert freed block at the beginning of the free list (LIFO)

• Pro: simple and constant time

▪ Insert freed blocks to maintain address order:

• addr(prev) < addr(curr) < addr(next)

• Pro: may lead to less fragmentation than LIFO

II. Heap



46

Method 2: Explicit List (3)

❖ Summary

▪ Allocation is linear time in # of free blocks instead of all 

blocks

▪ Still expensive to find a free block that fits

▪ How about keeping multiple linked lists of different size 

classes?

II. Heap
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Method 3: Segregated List (1)

❖ Seglist

▪ Multiple free lists each linking free blocks of similar sizes

II. Heap

1-2
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{9-inf}
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Method 3: Segregated List (2)

❖ Seglist

▪ Given an array of free lists, each one for some size class

▪ To allocate a block of size n:

• Search in appropriate free list containing size n

• Split found block and place fragment on appropriate list

• Try next larger class if no blocks found

▪ If no block is found:

• Request additional heap memory from OS

• Allocate block of n bytes from this new memory

• Place the remainder as a single free block in

the largest size class

II. Heap
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Method 3: Segregated List (3)

❖ Seglist

▪ To free a block:

• Coalesce and place on the appropriate list

▪ Advantages of seglist allocators

• Fast allocation

• Better memory utilization

– First-fit search of segregated free list approximates

a best-fit search of the entire heap

II. Heap



III. Dynamic Memory Allocation

in Linux
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VMA and Memory Objects

❖ Virtual memory area (VMA)

▪ Logical memory region

that consists of a set of contiguous pages

▪ Unit of virtual memory management in the Linux kernel

▪ Created by an mmap() system call

❖ Memory object

▪ Unit of dynamic memory allocation

▪ Created by malloc() call

III. Dynamic Memory Allocation in Linux
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Virtual Address Space Layout

III. Dynamic Memory Allocation in Linux
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malloc() in Linux

❖ malloc() is serviced differently

according to the size of the requested memory object

▪ Heap vs. anonymous memory object (AMO)

III. Dynamic Memory Allocation in Linux
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Heap vs. Anonymous Memory Object

❖ Heap

▪ Heap is used when the size of requested memory object is 
smaller than mmap threshold

▪ There is only one heap for each process

▪ Heap is the VMA created by mmap()

during the process is created by fork()

III. Dynamic Memory Allocation in Linux
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Heap vs. Anonymous Memory Object

❖ Anonymous memory object (AMO)

▪ Anonymous mmap() is invoked when the size of requested 

memory object is equal to or greater than mmap threshold

• An independent VMA serves exactly one AMO

• Anonymous mmap() creates a VMA which consists of 

anonymous pages

▪ When an anonymous page is created

• It has neither a page table entry nor a physical frame yet

• These are allocated to the page later via a minor page fault

III. Dynamic Memory Allocation in Linux
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Two Types of Page Faults

❖ Major page fault

▪ Page fault that incurs page mapping and page read (disk I/O) 

from disk

❖ Minor page fault

▪ Page fault that incurs page mapping only without disk I/O

▪ Used for anonymous pages

▪ Steps for minor page fault handling

III. Dynamic Memory Allocation in Linux

1. Process attempts to access an anonymous page

2. If a corresponding page table entry is empty, then a minor page fault occurs

3. Get a physical frame from dynamic memory allocator of kernel

4. Restart the instruction that was interrupted by the page fault
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Why Two Mechanisms for Servicing 
One API (malloc)?

❖ Trade-off between memory efficiency & performance

▪ Heap

• Good for performance because page mappings of a memory 
object can be reused after it is free()-ed (avoids minor page 

faults)

• Bad for memory efficiency (physical frames of free()-ed

memory objects cannot be returned to the kernel)

▪ AMO

• Bad for performance because page mappings of a memory 

object cannot be reused

• Good for memory efficiency (physical frames of free()-ed

memory objects are immediately returned to the kernel)

III. Dynamic Memory Allocation in Linux
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In Memory-Constrained Devices

❖ AMOs are favored over heap

▪ Typically, the mmap threshold in smartphones is much 

smaller than that of desktops/servers

• In Android Jellybean, mmap threshold = 64 KB (16 pages)

• In Ubuntu 12.04 (64 bits), mmap threshold = 4 MB

III. Dynamic Memory Allocation in Linux



IV. Garbage Collection
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Why Garbage Collection? (1)

❖ Memory reclamation

▪ Act of collecting and freeing unused memory

▪ Very important in dynamic memory management

▪ How do you know when dynamically allocated memory

can be freed?

• It’s easy when the chunk is used only in one place

• Reclamation is hard when the chunk is shared

– It can’t be recycled until all the sharers are finished

– Sharing is indicated by the presence of pointers to the chunk

– Without a pointer, can’t access or can’t find it, anyway

IV. Garbage Collection
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Why Garbage Collection? (2)

❖ Memory reclamation (cont’d)

▪ What will happen if unused memory is not reclaimed?

• Memory leak

▪ Who should perform memory reclamation?

▪ How about automatic memory reclamation,

instead of manual one?

• Automatic garbage collection

IV. Garbage Collection
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Automatic Garbage Collection (1)

❖ Garbage is …

▪ Data objects in program that can’t be accessed in the future

❖ Garbage collection (from Wikipedia)

▪ Attempts to reclaim garbage

▪ A form of automatic memory management in comparison 

with manual management

▪ Invented by John McCarthy around 1959 to solve problems 

in Lisp

IV. Garbage Collection
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Automatic Garbage Collection (2)

❖ How GC works

▪ When available memory goes low,

the garbage collector searches through all of the pointers 

and collects unused or unreached data objects

• Must be able to find as many pointers as possible in code

❖ Pros and cons

▪ Makes life easier on application programmers

▪ Garbage collectors are difficult to program and debug, 

especially if compaction is also done

IV. Garbage Collection
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Automatic Garbage Collection (3)

❖ GC and programming language support

▪ GC must have the ability to find pointer variables in code

• Needs runtime supports from your programming language

▪ There even exist garbage collected languages 

• They require GC to be part of the language specification

• E.g., Java, Python, C#, most scripting languages

IV. Garbage Collection
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Automatic Garbage Collection (4)

❖ Benefits of GC 

▪ Can eliminate certain types of potentially serious bugs

• Memory leaks

– Program fails to free memory occupied by objects that have become 

unreachable, which can lead to memory exhaustion

– Can causes shutdown of essential national infrastructures like 

telephony switching systems

• Dangling pointers bugs

– A piece of memory is freed while there are still pointers to it, and 

one of those pointers is dereferenced

– By then the memory may have been re-assigned to another use, 

with unpredictable results

• Double free bugs

– Program tries to free a region of memory that has already been 

freed, and perhaps already been allocated again

IV. Garbage Collection
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Finding Garbage (1)

❖ Mark-and-sweep approach

▪ Preconditions

• Must be able to find all objects

• Must be able to find all pointers to objects

▪ Pass 1:  Mark

• Go through all global and local variables, looking for pointers

• Mark each object pointed to and recursively mark all objects it 

points to

• Compiler has to cooperate by saving information about

where the pointers are stored

▪ Pass 2: Sweep

• Go through all objects, free up those that aren’t marked

IV. Garbage Collection
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Finding Garbage (2)

❖ Reference counter approach

▪ Preconditions

• Must be able to find all objects

• Must be able to find all pointers to objects

▪ Operations

• Keep track of the number of outstanding pointers

to each chunk of allocated memory

• When it goes to zero, free the memory

▪ Reference counters must be managed carefully by the GC

• No mistakes during incrementing and decrementing them

• Problems with circular data structures

▪ Example: File descriptors in Unix

IV. Garbage Collection
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Problems with Garbage Collection

❖ Garbage collection is often expensive

▪ 20% or more of all CPU time in systems that use it

❖ Resulting in stalls scattered throughout a session

▪ The moment when the garbage is actually collected

can be unpredictable

▪ Unpredictable stalls can be unacceptable in real-time 

environments, in transaction processing, or

in interactive programs

IV. Garbage Collection


