Qualitative phase analysis (phase ID)

Jenkins & Snyder Chap 12 Krawitz Chap 8 Cullity Chap 9

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

PDF card & Quality mark

CAS; chemical	abstı	acts	servic	e regi	istry ı	numbe	er		
🔯 PDF # 050628,	Wavel	ength	= 1.540	5 (A))				- 🗆 ×
05-0628 Quality: * CAS Number: 7647-14-5 Molecular Weight: 58.44 Volume[CD]: 179.43 Dx: 2.163 Dx: 2.168 Sys: Cubic Lattice: Face-centered S.G.: Fm3m (225) Cell Parameters: a a 5.640 b Sys: Ch40 c Δ β y SS/FOM: F17=93(.0108, 17)	Fixed Slit Intensity ->			l _ı	d. (U.S.),	<u>Circ. 539, I</u>	<u>l, 41 (195</u> , 41 (195)	P - 0.8141	(?
I/Icor: 4.40 Rad: CuKa1 Lambda: 1.5405 Filter: Ni d-sp: Mineral Name: Halite syn	d(A) 3 2600 2 8210 1.9940 1.7010 1.6280 1.4100	Int-f 13 100 55 2 15 6	h k l 1 1 1 2 0 0 3 1 1 2 2 2 4 0 0	d(A) 1.2940 1.2610 1.1515 1.0855 .99690 .95330	Int-f 11 7 1 2 1	h k l 3 3 1 4 2 0 4 2 2 5 1 1 4 4 0 5 3 1	d(A) .94010 .89170 .86010 .85030 .81410	Int-f 3 4 1 3 2	h k 1 6 0 0 6 2 0 5 3 3 6 2 2 4 4 4

* Highest quality

✓ average ∆2θ < 0.03 degree, all lines
 were indexed, I measured quantitatively

NATIONAL

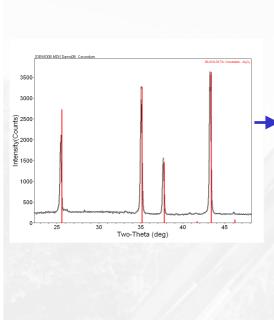
> i reasonable quality

 average Δ2θ < 0.06 degree, indexed with no more than two lines being unaccounted for, I measured quantitatively

o low quality

✓ low precision, poorly characterized, no unit cell data

- blank quality lower than o
- c calculated data
- > r d's from Rietveld refinement

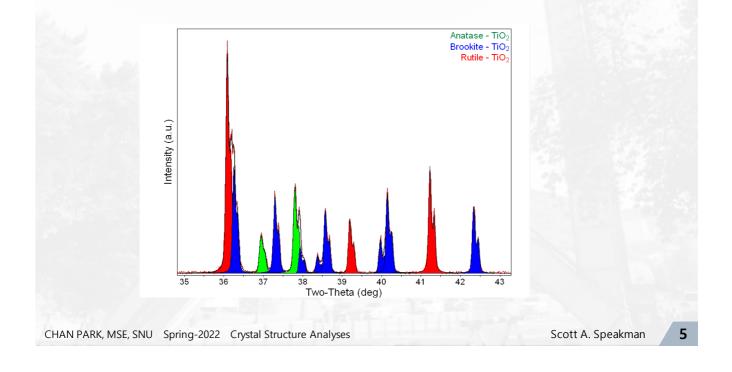

PCPDFWIN

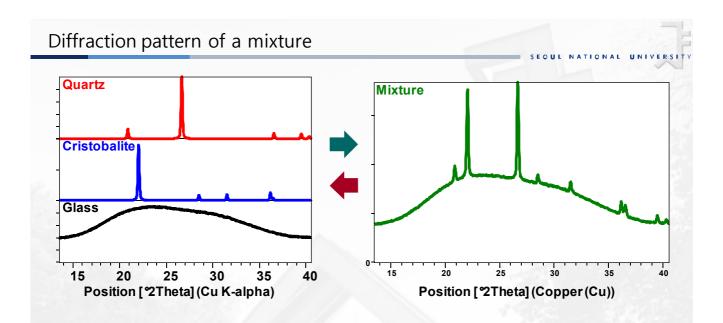
2

- Modern computer programs can help you determine what phases are present in your sample by quickly comparing your diffraction data to all of the patterns in the database.
- The PDF card for an entry contains a lot of useful information, including literature references.

Beference Lines(38) 🛏 🖻 Cu 💌 8 🌩 🎒 🖪 🖻 🕐 🜩 🗡	Reference Lines(38)	🕙 🛛 Cu 💌 8 🚖 🎒 🖪 🗉
Rutile, syn 🗐 🖪 ïO2 (White)	# 2-Theta d(Å) l(f) (hkl 1 27.447 3.2470 100.0 (111) Theta 1/(2d) 2pi/d n^2) 13.723 0.1540 1.9351
Radiation=CuKo:1 Lambda=1.54056 Filter= Calibration=Internal(W) 2T=27.447-155.866 I/Ic(RIR)=3.40 Ref:	2 36.086 2.4870 50.0 (10) 3 39.187 2.2970 8.0 (20) 4 41.226 2.1880 25.0 (11) 5 44.051 2.0540 10.0 (21) 6 54.323 1.6874 60.0 (21)	0) 19.594 0.2177 2.7354 1) 20.613 0.2285 2.8717 0) 22.026 0.2434 3.0590
Tetragonal - Powder Diffraction, P42/mnm (136) Z=2 mp= CELL: 4.5933 x 4.5933 x 2.9592 <90.0 x 90.0 x 90.0> P.S=tP6.00 Density(c)=4.25 Density(m)=4.23 Mwt=79.9 Vol=62.43 Ref: F(30)=107.8(0.008,32/0)	7 56.642 1.6237 20.0 (2.21 8 62.742 1.4797 10.0 (00) 9 64.040 1.4528 10.0 (31) 10 65.479 1.4243 2.0 (2.21 11 69.010 1.3598 20.0 (30) 12 69.790 1.3455 12.0 (11)) 28.321 0.3079 3.8697 2) 31.371 0.3379 4.2463 3) 32.020 0.3442 4.3249 1) 32.740 0.3510 4.4114 1) 34.505 0.3677 4.6207
Strong Lines: 3.25/X 1.69/6 2.49/5 2.19/3 1.62/2 1.36/2 0.82/1 1.35/1 (I%-Typ	13 72.409 1.3041 2.0 (31	l) 36.205 0.3834 4.8180
General Comments: Pattern reviewed by Syvinski, W., McCarthy, G., North Dakota State Univ, Fargo, North Dakota, USA, ICDD Grant-in-Aid 1990). Agrees well with experimental and calculated patterns. Additional	14 74.411 1.2739 1.0 (32) 15 76.509 1.2441 4.0 (20) 16 79.821 1.2006 2.0 (21) 17 82.334 1.1702 6.0 (32) 18 84.260 1.1483 4.0 (40)	2) 38.255 0.4019 5.0504 2) 39.911 0.4165 5.2334 1) 41.167 0.4273 5.3693

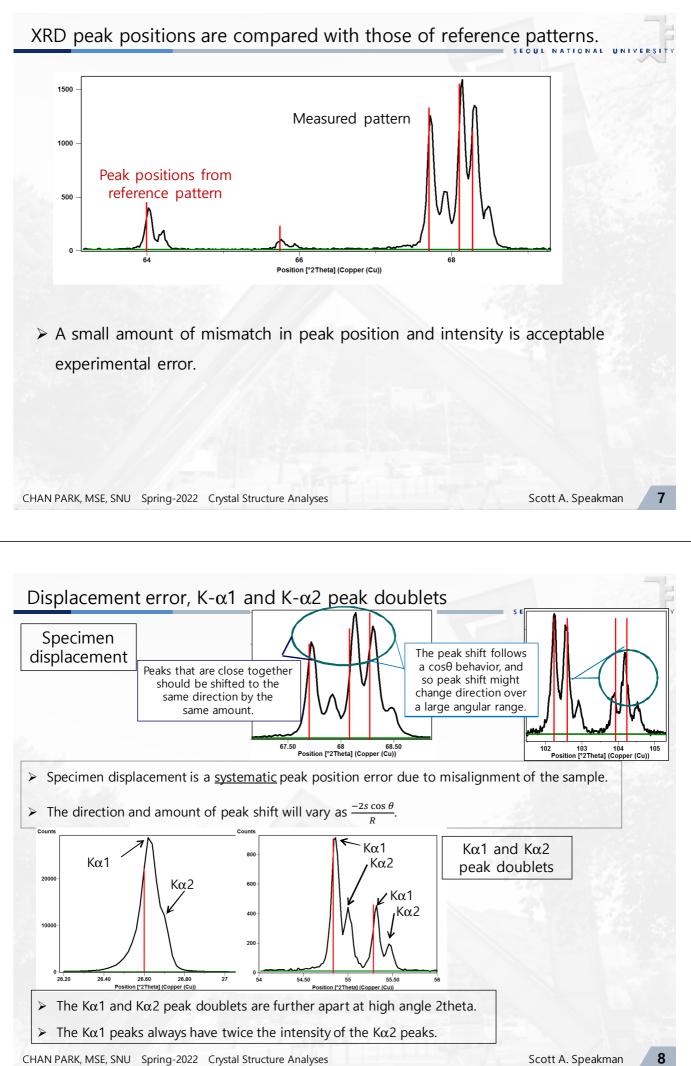
Powder diffraction data

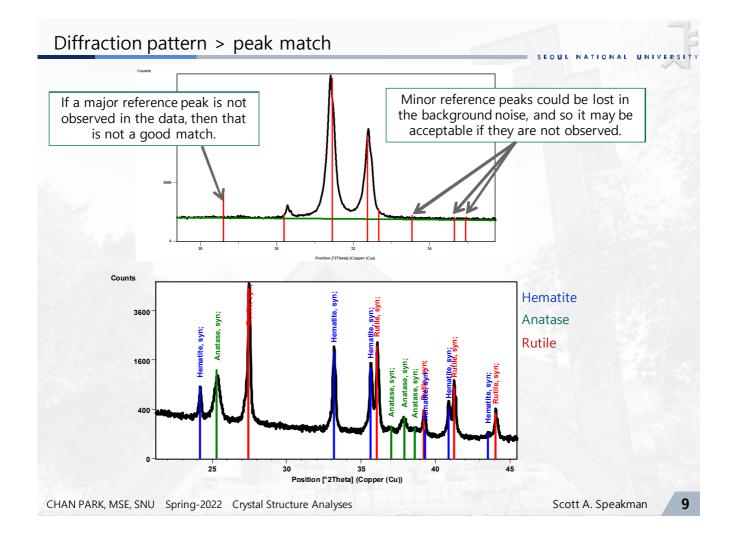



	Raw	Data	
	Position [°20]	Intensity [cts]	
	25.2000	372	
	25.2400	460	
	25.2800	576	
	25.3200	752	
	25.3600	1088	
	25.4000	1488	
/	25.4400	1892	
	25.4800	2104	
	25.5200	1720	
	25.5600	1216	
	25.6000	732	
	25.6400	456	
ſ	25.6800	380	
	25.7200	328	

Reduced d-I list

	neuuccu (a i list
hkl	d _{hkl} (Å)	Relative Intensity (%)
{012}	3.4935	49.8
{104}	2.5583	85.8
{110}	2.3852	36.1
{006}	2.1701	1.9
{113}	2.0903	100.0
{202}	1.9680	1.4


- Phases with the same chemical composition can have drastically different diffraction patterns.
- > While every diffraction pattern is different, some can be very similar.



> From the XRD pattern you can determine:

- ✓ Which crystalline phases are in a mixture (phase ID).
- ✓ The amount of each crystalline phase in the mixture (quantitative phase analysis, QPA).
- \checkmark If any amorphous material is present in the mixture (the amount of amorphous phase).

Name	Content	Center
Cambridge Structural Database (CSD)	Organic, organometallic	Cambridge, England
Inorganic Crystal Structure Database (ICSD)	Inorganic materials	Karlsruhe, Germany
NRCC Metals Data File (CRYSTMET)	Metals and alloys	Ottawa, Canada
Protein Data Bank (PDB)	Structure of macromolecules	Brookhaven, New York
NIST Crystal Data [NBS(CDF)]	Inorganic and organic unit cells	Gaithersburg, Maryland

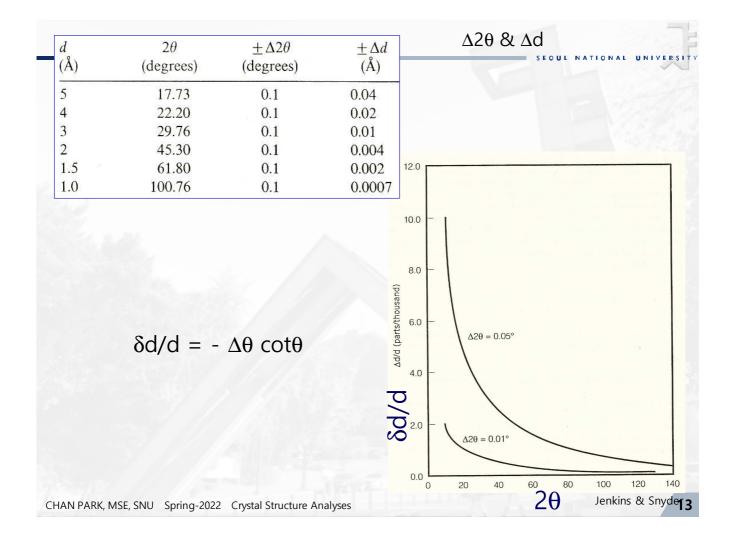
Table 12.4. Databases for X-ray Powder Diffraction

Name	Content
Master DB	Master ICDD Database—all known powder data on a single phase, plus editorial marks and comments
PDF-2	User version of the Master DB (does not contain special editorial comments)
PDF-1	Subset of PDF-2, contains d's, I's and names (designed for automated search systems)
PDF-3	Contains raw data as a digitized pattern
CDF	The Crystal Data File (contains cell data, names, and references)
EISI	The Elemental and Interplanar Spacing Index (designed for electron diffraction)

Errors in experimental d-values	←	inadequate treatment in peak pos	locating	th	ertainties in e value of avelength
Errors in experimental	←	preferred orientation	poor crystallir	nity	line broadening
intensities		partially reso waveleng	olved diffra Jth multiple		
rrors in experimental intensities ccessful qualitative phase		waveleng	ıth multiple	ets	

 \succ Figure of Merit F_N – quantitative criteria for evaluating powder patterns

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses


$\Delta 2\theta \& \Delta d$

> Typical error windows

- ✓ Debye Scherrer camera $\pm \Delta 2\theta = 0.1^{\circ}$
- ✓ diffractometer $\pm \Delta 2\theta = 0.05^{\circ}$
- ✓ diffractometer (internal standard corrected) $\pm \Delta 2\theta = 0.01^{\circ}$
- ✓ diffractometer (internal standard corrected & peaks profile fitted) $\pm \Delta 2\theta = 0.005^{\circ}$
- > $\Delta 2\theta$ d relationship is non-linear

 \checkmark Low angle (low 2 θ , large d-value) lines have large error.

Table 12.2. Errors in <i>d</i> -Values Resulting from Fixed 2θ Errors									
d (Å)	2θ (degrees)	$\pm \Delta 2\theta$ (degrees)	$\pm \Delta d$ (Å)	$\frac{\pm \Delta 2\theta}{(\text{degrees})}$	$\pm \Delta d$ (Å)				
5	17.73	0.1	0.04	0.05	0.014				
4	22.20	0.1	0.02	0.05	0.008				
3	29.76	0.1	0.01	0.05	0.005				
2	45.30	0.1	0.004	0.05	0.002				
1.5	61.80	0.1	0.002	0.05	0.0011				
1.0	100.76	0.1	0.0007	0.05	0.0004				

Phase ID & Search indexes

- Process of qualitative phase ID = search/match/identify
 - ✓ Search index
 - ✓ Match file (PDF)
- > Alphabetical index; chemistry-based index, use only elemental information.
- > Hanawalt index; intensity-driven index, use only the strongest lines.
- > Fink index; D-spacing-driven index, mainly use the largest d-values.

Table 12.7. Types of PDF Data-Searching Indexes

Index	Entry Method	Search Parameters
Alphabetic	Chemistry	Permuted elemental symbols
Hanawalt	I/d	Three strongest lines
Fink	d/I	First eight lines
EISI ^a	Chemistry/d	Low high Z elements; d-spacing
Boolean	Various	<i>d</i> -Spacings, chemistry, strong lines. CODEN, physical properties, functional groups, etc.

"Elemental and Interplanar Spacing Index.

Alphabetical index

QR	A Chemical Name	Chemical Formula	Reflections	PDF#
	Chloride : Palladium	PdCl ₂	5.30 _x 2.39 ₈ 1.64 ₄	1-228
*	Chloride : Potassium/Sylvite, syn	KCl	$3.15_x \ 2.23_4 \ 1.82_1$	41-1476
i	Chloride : Praseodymium		2.57x 2.118 3.567	12-787
*	Chloride : Rubidium		3.29_x 2.33_7 3.80_3	6-289
*	Chloride : Samarium	SmCl ₃	2.54_x 2.09_9 3.49_8	12-789
*	Chloride : Silver/Chlorargyrite, syn	AgCl	2.77x 3.205 1.965	31-1238
*	Chloride : Sodium/Halite, syn		2.82_x 1.99_6 1.63_2	5- 628
	Chloride : Sodium Platinum		8.00 _x 5.60 _x 6.50 ₇	1- 83
*	Chloride : Strontium		2.47_{x} 4.03 ₆ 2.10 ₅	6- 537
	Chloride : Tin	SnCl ₂	4.62_x 2.30_5 2.21_4	32-1359
	Chloride : Uranyl		4.78_x 3.16_4 6.05_4	20-1331
i	Chloride : Uranyl		4.69_x 5.08_6 3.94_6	
	Chloride : Zinc		3.08_x 4.79_7 1.87_5	
	Chromium :/Chromium, syn		$2.04_x \ 1.18_3 \ 1.44_2$	
С	Chromium : Aluminum	Al_8Cr_5	$2.15_x \ 6.44_9 \ 2.12_8$	29- 15
Q	м Chemical Name	Chemical Formula	Reflections	PDF#
*	Sodium Chloride :/Halite, syn	NaCl	$2.82_x 1.99_6 1.63_2$	5- 628†
	Sodium Chromium Oxide :		4.67_x 4.46_9 3.24_9	30 - 1178
*	Sodium Chromium Oxide :	Na_2CrO_4	2.90_{x} 2.737 4.077	22 - 1365
	Sodium Chromium Oxide :	Na ₃ CrO ₄	2.68_x 4.37_9 3.78_4	29-1199
*		Na ₃ CrO ₄		29-1199 25- 819†
	Sodium Chromium Oxide :	Na ₃ CrO ₄	$\begin{array}{c} 2.68_x \ 4.37_9 \ 3.78_4 \\ 2.16_x \ 5.32_7 \ 2.45_4 \end{array}$	
*	Sodium Chromium Oxide : Sodium Chromium Oxide :	Na3CrO4 NaCrO2 NaCN NaCN	$\begin{array}{c} 2.68_x \ 4.379 \ 3.784 \\ 2.16_x \ 5.327 \ 2.454 \\ 2.94_x \ 2.08_3 \ 1.70_1 \\ 2.32_x \ 1.64_4 \ 1.34_1 \end{array}$	25- 819† 37-1490 36-1455
★ ★ i	Sodium Chromium Oxide : Sodium Chromium Oxide : Sodium Cyanide : Sodium Fluoride :/Villiaumite, syn Sodium Germanium Oxide :	Na3CrO4 NaCrO2 NaCN NaF Na4GeO4	$\begin{array}{c} 2.68_x \ 4.379 \ 3.784 \\ 2.16_x \ 5.327 \ 2.454 \\ 2.94_x \ 2.08_3 \ 1.70_1 \\ 2.32_x \ 1.64_4 \ 1.34_1 \\ 6.89_x \ 3.88_x \ 5.11_8 \end{array}$	25- 819† 37-1490 36-1455 36- 62
★ ★ i	Sodium Chromium Oxide : Sodium Chromium Oxide : Sodium Cyanide : Sodium Fluoride :/Villiaumite, syn Sodium Germanium Oxide : Sodium Hydrogen Carbonate :/Nahcolite, syn	Na3CrO4 NaCrO2 NaCN NaF Na4GeO4 NaHCO3	$\begin{array}{c} 2.68_x \ 4.37_9 \ 3.78_4 \\ 2.16_x \ 5.32_7 \ 2.45_4 \\ 2.94_x \ 2.08_3 \ 1.70_1 \\ 2.32_x \ 1.64_4 \ 1.34_1 \\ 6.89_x \ 3.88_x \ 5.11_8 \\ 2.94_x \ 2.60_x \ 2.96_7 \end{array}$	25- 819† 37-1490 36-1455 36- 62 15- 700†
★ ★ i	Sodium Chromium Oxide : Sodium Chromium Oxide : Sodium Cyanide : Sodium Fluoride :/Villiaumite, syn Sodium Germanium Oxide :	Na3CrO4 NaCrO2 NaCN NaF Na4GeO4 NaHCO3	$\begin{array}{c} 2.68_x \ 4.379 \ 3.784 \\ 2.16_x \ 5.327 \ 2.454 \\ 2.94_x \ 2.08_3 \ 1.70_1 \\ 2.32_x \ 1.64_4 \ 1.34_1 \\ 6.89_x \ 3.88_x \ 5.11_8 \end{array}$	25- 819† 37-1490 36-1455 36- 62
★ ★ i	Sodium Chromium Oxide : Sodium Chromium Oxide : Sodium Cyanide : Sodium Fluoride :/Villiaumite, syn Sodium Germanium Oxide : Sodium Hydrogen Carbonate :/Nahcolite, syn Sodium Hydrogen Phosphate :	Na ₃ CrO ₄ NaCrO ₂ NaCN NaF Na ₄ GeO ₄ NaHCO ₃ Na ₂ H(PO ₃) ₃ NaH ₂ PO ₄	$\begin{array}{c} 2.68_x^{-} 4.379 & 3.784 \\ 2.16_x^{-} 5.327 & 2.454 \\ 2.94_x^{-} 2.083 & 1.701 \\ 2.32_x^{-} 1.64_4 & 1.341 \\ 6.89_x^{-} 3.88_x^{-} 5.118 \\ 2.94_x^{-} 2.60_x^{-} 2.967 \\ 5.03_x^{-} 3.119 & 3.218 \\ 3.20_x^{-} 3.947 & 3.306 \end{array}$	25- 819† 37-1490 36-1455 36- 62 15- 700†
★ ★ i ★	Sodium Chromium Oxide : Sodium Chromium Oxide : Sodium Cyanide : Sodium Fluoride :/Villiaumite, syn Sodium Germanium Oxide : Sodium Hydrogen Carbonate :/Nahcolite, syn Sodium Hydrogen Phosphate : Sodium Hydrogen Phosphate : Sodium Hydrogen Phosphate :	Na ₃ CrO4 NaCrO2 NaCN Na4GeO4 NaHCO3 Na ₂ H(PO3)3 Na ₂ H(PO3)3 NaH ₂ PO4 Na ₂ H ₂ P207	$\begin{array}{c} 2.68_x^{} \ 4.379 \ 3.784 \\ 2.16_x^{} \ 5.327 \ 2.454 \\ 2.94_x^{} \ 2.08_3^{} \ 1.70_1 \\ 2.32_x^{} \ 1.64_4^{} \ 1.34_1 \\ 6.89_x^{} \ 3.88_x^{} \ 5.11_8 \\ 2.94_x^{} \ 2.60_x^{} \ 2.96_7 \\ 5.03_x^{} \ 3.11_9^{} \ 3.21_8 \\ 3.20_x^{} \ 3.94_7^{} \ 3.30_6 \\ 2.93_x^{} \ 3.09_7^{} \ 3.43_6 \end{array}$	25-819† 37-1490 36-1455 36-62 15-700† 9-101 11-659 10-192
★★i★ iiii	Sodium Chromium Oxide : Sodium Chromium Oxide : Sodium Cyanide : Sodium Fluoride :/Villiaumite, syn Sodium Germanium Oxide : Sodium Hydrogen Carbonate :/Nahcolite, syn Sodium Hydrogen Phosphate : Sodium Hydrogen Phosphate : Sodium Hydrogen Sulfate :	$\begin{array}{c} Na_3CrO_4\\ NaCrO_2\\ NaCrO\\ NaCrO_2\\ NaCrO_2\\ NaCrO_2\\ Na_4GeO_4\\ NaHCO_3\\ Na_2H(PO_3)_3\\ Na_2H(PO_3)_3\\ NaH_2PO_4\\ Na_2H_2P_2O_7\\ Na_3H(SO_4)_2\\ Na_3H(SO_4)_2\\ \end{array}$	$\begin{array}{c} 2.68_x \ 4.379 \ 3.784 \\ 2.16_x \ 5.327 \ 2.454 \\ 2.94_x \ 2.08_3 \ 1.70_1 \\ 2.32_x \ 1.64_4 \ 1.34_1 \\ 6.89_x \ 3.88_x \ 5.118 \\ 2.94_x \ 2.60_x \ 2.96_7 \\ 5.03_x \ 3.119 \ 3.218 \\ 3.20_x \ 3.94_7 \ 3.306 \\ 2.93_x \ 3.09_7 \ 3.436 \\ 3.95_x \ 2.89_x \ 2.73_x \end{array}$	$\begin{array}{r} 25-819 \\ 37-1490\\ 36-1455\\ 36-62\\ 15-700 \\ 9-101\\ 11-659\\ 10-192\\ 32-1090\\ \end{array}$
★★i★ iii★	Sodium Chromium Oxide : Sodium Chromium Oxide : Sodium Cyanide : Sodium Fluoride :/Villiaumite, syn Sodium Germanium Oxide : Sodium Hydrogen Carbonate :/Nahcolite, syn Sodium Hydrogen Phosphate : Sodium Hydrogen Phosphate : Sodium Hydrogen Sulfate : Sodium Hydrogen Sulfate :	Na ₃ CrO ₄ NaCrO ₂ NaCN NaF Na ₄ GeO ₄ Na ₄ GeO ₄ Na ₂ H(PO ₃) ₃ Na ₂ H(PO ₃) ₃ Na ₄ H ₂ PO ₄ Na ₂ H ₂ PO ₂ O ₇ Na ₃ H(SO ₄) ₂ β-NaHSO ₄	$\begin{array}{c} 2.68_x & 4.37_9 & 3.78_4 \\ 2.16_x & 5.32_7 & 2.45_4 \\ 2.94_x & 2.08_3 & 1.70_1 \\ 2.32_x & 1.64_4 & 1.34_1 \\ 6.89_x & 3.88_x & 5.11_8 \\ 2.94_x & 2.60_x & 2.96_7 \\ 5.03_x & 3.11_9 & 3.21_8 \\ 3.20_x & 3.94_7 & 3.30_6 \\ 2.93_x & 3.09_7 & 3.43_6 \\ 3.95_x & 2.89_x & 2.73_x \\ 3.50_x & 3.74_9 & 2.94_9 \end{array}$	$\begin{array}{c} 25-819 \\ 37-1490\\ 36-1455\\ 36-62\\ 15-700 \\ 9-101\\ 11-659\\ 10-192\\ 32-1090\\ 26-960\\ \end{array}$
★★i★ iii★	Sodium Chromium Oxide : Sodium Chromium Oxide : Sodium Cyanide : Sodium Fluoride :/Villiaumite, syn Sodium Germanium Oxide : Sodium Hydrogen Carbonate :/Nahcolite, syn Sodium Hydrogen Phosphate : Sodium Hydrogen Phosphate : Sodium Hydrogen Sulfate :	Na ₃ CrO ₄ NaCrO ₂ NaCN NaF Na ₄ GeO ₄ Na ₄ GeO ₄ Na ₂ H(PO ₃) ₃ Na ₂ H(PO ₃) ₃ Na ₄ H ₂ PO ₄ Na ₂ H ₂ PO ₂ O ₇ Na ₃ H(SO ₄) ₂ β-NaHSO ₄	$\begin{array}{c} 2.68_x \ 4.379 \ 3.784 \\ 2.16_x \ 5.327 \ 2.454 \\ 2.94_x \ 2.08_3 \ 1.70_1 \\ 2.32_x \ 1.64_4 \ 1.34_1 \\ 6.89_x \ 3.88_x \ 5.118 \\ 2.94_x \ 2.60_x \ 2.96_7 \\ 5.03_x \ 3.119 \ 3.218 \\ 3.20_x \ 3.94_7 \ 3.306 \\ 2.93_x \ 3.09_7 \ 3.436 \\ 3.95_x \ 2.89_x \ 2.73_x \end{array}$	$\begin{array}{r} 25-819 \\ 37-1490\\ 36-1455\\ 36-62\\ 15-700 \\ 9-101\\ 11-659\\ 10-192\\ 32-1090\\ \end{array}$

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Alphabetical index

- ➤ End of proper name :
 - ✓ Chloride: Sodium
 - ✓ Sodium Chloride:
- \geq 2.82_x X stands for 100 (intensity).
- > $1.99_6 6$ stands for 60 (intensity).

→ ★ Sodium Chloride :/Halite, syn ★ Sodium Chromium Oxide :	$\begin{array}{c} 2.82_x \ 1.99_6 \ 1.63_2 \\ 4.67_x \ 4.46_9 \ 3.24_9 \end{array}$	
 ★ Chloride : Silver/Chlorargyrite, →★ Chloride : Sodium/Halite, syn 	$\begin{array}{c} 2.77_x \ 3.20_5 \ 1.96_5 \\ 2.82_x \ 1.99_6 \ 1.63_2 \end{array}$	31-1238 5- 628†

16

Krawits

Hanawalt index

											2.84	4 - 2.80	(± .01
QM			Str	ongest	Reflect	ions			PSC	Chemical Formula	Mineral Name;Common Name or Chemical Name	PDF#	1/1
* *	2.81 ₈ 2.81 _x 2.82 _x	2.30 _x 2.23 ₉ 1.99 ₆	2.04x 4.56s 1.63	5.139 2.307 3.261	3.366 6.207 1.261	1.685 2.856 1.151	3.145 3.366 1.411	4.444 2.475 0.891	oP16	Ca ₃ Al ₂ (OH) ₁₂ Sr(OH) ₂ •H ₂ O NaCl	Katoite, syn Halite, syn	24- 217 28-1222 5- 628	0.80
i *	2.83 x 2.81 x	1.973 1.90a	2.892	1.7725	1.702	2.601	2.931 3.223	1.991	nR20	Mg3Ca(CO3)4 CuS	Covellite, syn	6- 464	
*	2.81 _x 2.84 _x	1.82 ₈ 1.75 ₃	4.157	3.056 2.432	3.095 3.712	$\frac{1.53_5}{2.39_1}$ 1.93_2	6.04_4 2.411 2.462	2.484 2.291 1.451	tP24	CrBr ₃ Ca ₂ Al ₂ SiO ₇ Sc ₂ O ₃	Gehlenite, syn	43-937 35-755 5-629	
*	2.84 _x 2.80 _x 2.83 _x	1.74_8 1.73_4 1.71_8	1.483 1.743 1.094	4.023 3.593 2.005	2.10_3 2.35_2 2.54_4	2.13_2 2.32_4	1.97 ₂ 1.00 ₄	1.511	hR10	FeCO ₃ NiS ₂	Siderite Vaesite	29- 696 11- 99	
i	2.85 _x 2.85 _x 2.82 _y	1.679 1.679 1.679	2.37 ₈ 2.36 ₈ 2.25 ₈	1.82_7 1.82_7 2.87_5	3.35_6 3.34_6 2.50_5	0.975 0.965 2.085	1.23_3 0.91_4 1.30_3	1.18_3 1.23_3 1.89_2	cF56	Ni3S4 Co3S4 Al4C3	Polydymite Linnaeite	43-1469 42-1448 35- 799	
я	2.85	1.58.	2.55	1.10-	1.08.	1.03.	1.474	1.254		U ₂ C ₃		6-709	

FIGURE 8.4. Hanawalt search index entry for NaCl. Since the ratio $l_2/l_1 < 0.75$, this is the only entry. (From the ICDD Powder Diffraction File.)

- > 8 most intense lines are listed.
- > d's of three strongest lines
- > 2 listings if $I_2/I_1 > 0.75$, $I_3/I_1 < 0.75$; d_1 , $d_2 \& d_2$, d_1
- > 3 listings if $I_3/I_1 > 0.75$, $I_4/I_1 < 0.75$; d_1 , $d_2 \& d_2$, $d_1 \& d_3$, d_1
- ▶
- > In case of NaCl, one listing $\leftarrow I_2/I_1 < 0.75$
- > Multiple listing \leftarrow to minimize problems of preferred orientation.

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

	Table 8.3. <i>d</i> -Spacing Groups for the Indexes	e Hanawalt and Fink Search
Groups of	<i>d</i> -Spacing Group (Å)	d-Spacing Group (Å
Hanawalt index	999.99–10.00 (Fink only)	3.04-3.00
hanawait index	999.99–8.00 (Hanawalt only)	2.99-2.95
& Fink index	9.99-8.00 (Fink only)	2.94-2.90
	7.99–7.00	2.89-2.85
	6.99–6.00	2.84-2.80
	5.99-5.50	2.79-2.75
	5.49-5.00	2.74-2.70
	4.99-4.60	2.69-2.65
	4.59-4.30	2.64-2.58
	4.29–4.10	2.57-2.51
	4.09–3.90	2.50-2.44
	3.89–3.75	2.43-2.37
	3.74–3.60	2.36-2.30
	3.59–3.50	2.29-2.23
	3.49–3.40	2.22-2.16
	3.39–3.32	2.15-2.09
	3.31–3.25	2.08-2.02
	3.24–3.20	2.01-1.86
	3.19–3.15	1.85-1.68
	3.14–3.10	1.67-1.38
	3.09-3.05	1.37-0.00

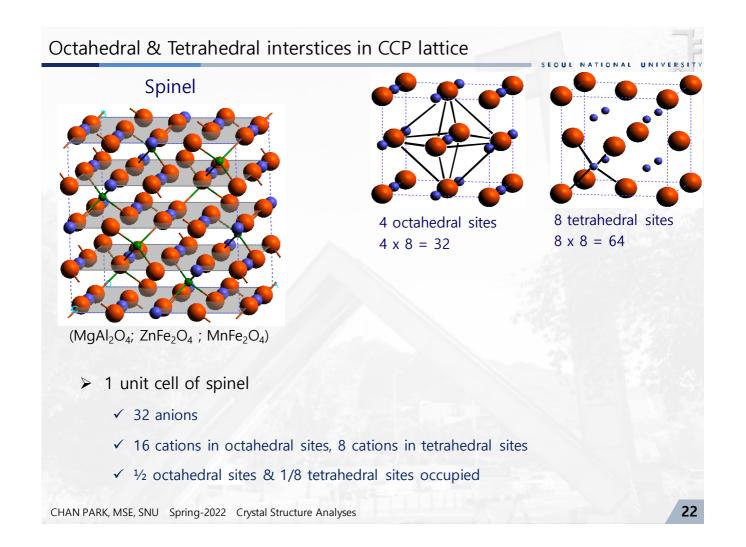
CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

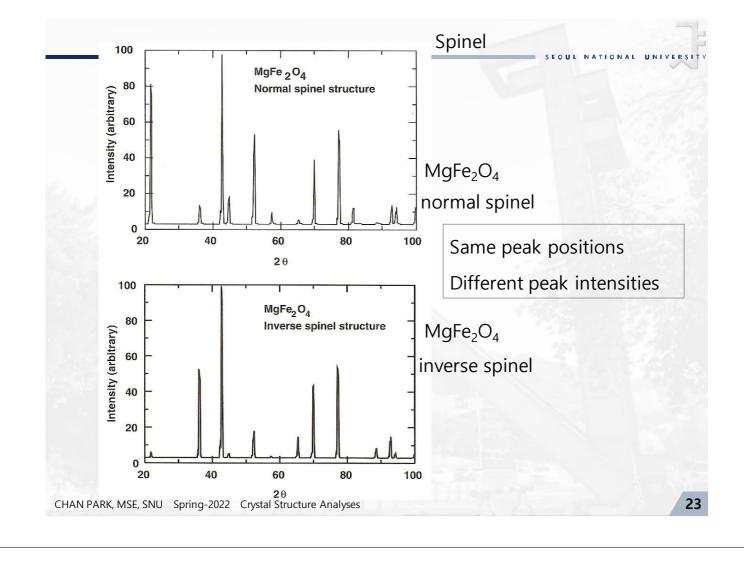
Krawi¶z7

Hanawalt group

QM Strongest Reflections					PSC	Chemical Formula	Mineral Name:Common Name or Chemical Name	3.31 - 3.25 PDF# 1/k					
*	3.30 ₈ 3.29,	2.824	2.755	2.664 2.715	5.48 ₆ 2.424	4.73, 1.824	3.99 ₆ 1.81 ₄	3.719 1.644	aP42	CuSO4*5H2O Sn3O4	Chalcanthite, syn	11- 646 16- 737	
* *	3.26 3.267 3.261	2.82 ₂ 2.82 _x 2.82 _x	6.79 ₁ 2.00 ₅ 1.99 ₆	5.17_2 1.70_3 1.63_2	$\frac{4.84_2}{1.63_1}$ 1.41_1	$4.11_1 \\ 1.41_1 \\ 1.26_1$	$\frac{4.05_2}{1.30_1}$ 1.15_1	3.95 ₃ 1.26 ₁ 0.89 ₁	oP84 cF8 cF8	C₅H ₆ O₃•2H₂O RbF NaCl	Phloroglucinol dihydrute Halite, syn	40-1632 22-886 5-628	4.40
	- 2.80)											
<u>am</u>	2.824	2.002	5tr 1.844	ongest	Reflec	3.53 ₂	3.08,	2.98-	PSC 0C172	Chemical Formula Cas(OH):SicO16*4H2O	Mineral Name:Common Name or Chemical Name Tobermorite-11A, syn	PDF#	-
* 1 *	2.82, 2.81; 2.82, 2.80,	2.00 ₅ 2.00 ₂ 1.99 ₆	1.70 ₃ 1.84 ₂ 1.63 ₉	1.631 11.3 ₁ 1.411	1.411 5.454 1.261	1.301 3.513 1.151	1.26 ₁ 3.08 ₉ 0.89 ₁	3.267 2.977 3.261	oC176 cF8	RbF CasSis(O.OH,F) ₁₈ •5H ₂ O NaCl	Tobermorite-O, 11A Halite, syn	22-886 45-1480 5-628	
F	2.004	1.98¢	1.696	1.284	1.14-	1.08-	0.95-	3.23*	cF12	ThO ₂	Thorianite, syn;thoria	4- 556	
.01 – 1.94 QM Strongest Reflections					PSC	Chemical Formula	Mineral Name;Common Name or Chemical Name	PDF#	1/1				
I	1.985 1.944 1.943	1.65 1.65 1.65	7.15 _x 1.58 ₁ 1.49 ₂	4.127 1.371 1.402	3.80 ₆ 1.26 ₁ 1.38-	3.58x 1.231 2.852	2.515 5.701 2.634	2.339 2.75 _x 2.52	mC68 hP2	AlzSizOv(OH)4 Na4Fe(CN)5 Se	Dickite-2M	10- 446 1-1026 17- 714	
¥.	1.94 ₈ 1.99 ₈	1.65_{2} 1.63_{2}	1.26_7 1 41 ₁	1.23 ; 1.26 ₁	$\frac{1.127}{1.151}$	1.06s 0.891	3.16 _x 3.26 ₁	2.747 2.82	cF4 cF8	Yb NaCl	Halite, syn	2-1367 5- 628	4.40
.67 -	- 1.58	3											
QM	Strongest Reflections					PSC	Chemical Formula	Mineral Name;Common Name or Chemical Name	PDF#	l/lc			
☆	1.58_1 1.63_1	1.42) 1.41)	4.36 ₂ 1.30 ₁	3.45 a 1.26 i	2.521 3.267	2.36	2.181 2.005	1.88 ₁ 1.70 ₃	hP18 cF8	FePO4 RbF		29. 715 22. 886	
*	1.63 ₂ 1.64 ₄ 1.60 ₈	1.411	1.26_1 1.34_1 1.37_5	1.151 1.161 3.48s	0.891 1.041 2.559	3.26 0.95 2.384	2.82, 2.681 2.09,	1.996 2.32x 1.745	cF8 cF8	NaCl NaF AlgO3	Halite, syn Villiaumite, syn Corundum, syn;alumina	5- 628 36-1455 10- 173	4.40
1	121000210040	1.403				1000000000							
	tion F		k sea	rch in	dex e	ntries	for N	aCI. S	Short s	egments of eight entries	containing NaCl (halite) are shown. (From	the ICI	DD Powde
innac	,uon r	ne.)											
	\triangleright	8 li	stin	as									
				9-									

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses


Factors affecting PDF search


- > Preferred orientation I
- ➤ solid solution d (mostly)
- Impurities d (mostly)
- ➢ Defect − d, I
- > Site occupancy d, l; e.g. spinel
- > Order/disorder
- > Knowledge of possible elements present \rightarrow elemental analysis

Krawi

- Spinel AB₂O₄; MgAl₂O₄, MgFe₂O₄, Fe₃O₄
- ➤ Cubic close packed anion
- > 2 x 2 x 2 ccp cells = 1 unit cell
 - \checkmark Z (# formula units per unit cell) = 8
- 1 unit cell; 32 anions, 16 cations in octahedral sites, 8 cations in tetrahedral sites
 - ✓ 1/2 octahedal sites & 1/8 tetrahedral sites occupied
- > MgFe₂O₄ ; Mg tetra, Fe octa \rightarrow normal spinel
- > MgFe₂O₄; Fe tetra, Mg/Fe octa \rightarrow inverse spinel

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

