eVTOL Design Short Course

by Dr. James Wang

SNUevtolclass@gmail.com

For students to use in the 2022 eVTOL Design Short Course at SNU, please do not reproduce or distribute

Course Topics

- 1. Design Phases, Different eVTOLs
- 2. Battery and Energy Source
- 3. Electric Motors and Hybrids
- 4. Weight and Performance Estimation
- 5. Rotor Design, Stability & Control, Testing
- 6. Rotor and Vehicle Performance Analysis
- 7. Benchmarking and Cost Estimation
- 8. Certification and Vertiport Operation

If it can be dreamt, it can be built

Dr James Wang

Advance Air Mobility (AAM)

NASA's Vision of AAM

- A safe, accessible, automated, and affordable air transportation system for passengers and cargo capable of serving previously hard-to-reach urban and rural locations
- by 2030 there will be as many as 500 million flights a year for package delivery services and 750 million flights a year for air metro services
- Larger air metro UAV's carry more passengers, but they fly between predetermined stops similar to how a bus or subway operates
- Urban Air Mobility (UAM) is a name given for flying in urban area

Predicted AAM Market Size (people and cargo)

USD trill	ions
\$10	
\$5	
\$1	USD 1 trillion by 2040
\$0	
	2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050
	US China Europe ROW

Source: Morgan Stanley Total Addressable Market Update 2021-05-06

Predicted eVTOL Market Size (people and cargo)

Source: Morgan Stanley Total Addressable Market Update 2021-05-06

Predicted eVTOL World Distribution 2035

Source: Porsche Consulting study

Optimistic Global eVTOL Market Forecast

0 eVTOL 0 trip/year

10,000 eVTOL 60 million trips/year

2030

2025

200,000 eVTOL 1 billion trips/year

2040

8,000,000 eVTOL 45 billion trips/year

Source: Boston Consulting Group 2018, Morgan Stanley 2018, Porsche Consulting 2018, UBS 2019, Lufthansahub 2021

My Conservative Global eVTOL Market Forecast

0 eVTOL 0 trip/year 2025 500 eVTOL 1 million trips/year 2030 20,000 eVTOL 100 million trips/year 2040 2,000,000 eVTOL 10 billion trips/year

eVTOL Is not Going to Replace All Helicopters

Helicopters

eVTOL aircraft

Pros: proven, reliable, safe, certifiable long endurance, long range, trustworthy, large payload (as much as 50% of max gross weight

Cons: mechanically complex, more parts, expensive to maintain

Pros: maybe quieter, fewer parts, lower cost of ownership, cool, hip, gamechanging idea

Cons: unproven, can not autorotate if lost power, short endurance and short range because of battery, low payload capability

1. Design Phases for a New Aircraft Program Different types of eVTOL by Dr. James Wang

SNUevtolclass@gmail.com

For students to use in the 2022 eVTOL Design Short Course at SNU, please do not reproduce or distribute

Historically it Takes 7 to 9 years to Develop a **New Aircraft**

- .
 Conceptual design phase

 1
 Preliminary design phase

 2
 Detail design, wind tunnel test

 7-9 yrs
 1

 Make protoypes, fations

 <- Start marketing <- Start selling flight test, certification, tooling 3 prepare manual, training, etc **Start delivery**
 - Average service life per aircraft. OEM will **40 yrs** continuously improve the product during first 20 years and support the spares another 20 yrs

Most eVTOL startups are trying to squeeze this into 5 to 6 years

Conceptual Design Phase

Define business needs, mission, KPP

Trade studies, competitive analysis, sketches, brainstorm

Down-select to a couple concepts

Write Down Goals & KPP for Your Aircraft

(KPP = Key Performance Requirements)

Numbers for class examples only

Maximum Never Exceed Speed (VNE)	186 mph	300 km/hr
Maximum Flight Speed (VH)	149 mph	240 km/hr
Best Range Cruise Speed (VBR)	? mph	? km/hr
Max ceiling	8,840 ft	3,000 m
Hover ceiling, in ground effect	? ft	? m
Hover ceiling, out of ground effect	? ft	? m
One motor inoperative service ceiling	? ft	? m
Range – Long range cruise at VBR at 4000		
ft		
With ? min reserve	? miles	? km
With no reserve	? miles	? km
Max takoff Gross weight	7,000 lbs	3,175 kg
Useful Load internal	800 lbs	363 kg

Start with Trade Studies

Specific Energy Data up to 2010, then Extrapolate

Propulsion Specific Power Trend up to 2010

Note, 746 watts = 1 horsepower

Conceptual Design Phase

Example Outcome: the AgustaWestland Project Zero Designed by Dr James Wang in 2010

Afterward, conduct a CoDR (Conceptual Design Review)

Preliminary Design Phase

More detailed calculation

Small flying models, wind tunnel, software simulations

Talk to potential suppliers/partners, find investors

Down-select to one concept

Build a large scale demonstrator

Project Zero technology demonstrator in 2011

Agusta Westland

Agusta Westalland

Afterward, conduct a PDR (Preliminary Design Review)

Usually this is when come out of the stealth mode

Project Zero unveiled at the 2013 Paris Airshow

Number of Media Reports on eVTOL and UAM

Airbus started eVTOL in 2015

AIRBUS

munu

Bell started Nexus in 2018

Boeing Started PAV in 2018 2018, Purchased Aurora Flight Science 2019, Start collaborate with Google, Porsche. Boeing just invested \$450 million into Wisk

Exponential Growth in eVTOL R&D

May 2015 May 2016 May 2017 May 2018 May 2020 Jun 2022

Detail Design Phase

One aircraft concept remains

Do all the detailed calculations, analysis, designing

Generate all the detailed drawings for producing

Work with suppliers, engage certification authority

Conduct laboratory tests, more flight test of demonstrator

Afterward, conduct a CDR (Critical Design Review)

Prototype

Build 3 to 4 prototypes, each at few months apart

Conduct fatigue tests, whirl test, EMI test, software test, hardware in the loop test

Fly the prototype toward type certificate

Start tooling and plant build up, work toward production certificate

FRR before flying the prototype (Flight Readiness Review)

You have decided to start an eVTOL company or program
Investment Required to Develop an eVTOL Aircraft

Note, US \$ will be used through out this short course in order to compare to other international programs

calculation by James Wang

Need > US \$1 billion from Soup to Nuts

Source: Lufthansa Hub Report 2021, numbers have gone up in 2022

Amount of Investment Worldwide on eVTOL

VC and Corporate Ventures Invest in eVTOL

These are funding and not valuation

Start-ups	Funds	Investors	
Joby	\$1,800m	Toyota, Intel, JetBlue, IPO Feb 2021	
Lillium	\$930m	Tencent, Freigest, Obvious, Atomico, Baillie Gifford, Qell, IPO Sept 2021	
Archer	\$850m	Atlas Crest Investment, IPO February 2021	
Beta technologies	\$510m	UPS, Amazon, FedEx, Fidelity, United Therapeutic,	
Eve	\$500m	Embraer, Zanite, Azorra Aviation, BAE Systems,	
WISK	\$480m	Google, Boeing, Porsche,	
Vertical Aerospace	\$380m	RR, Am Airlines, Avolon, Honeywell, IPO Dec 2021	
Volocopter	\$380m	Daimler, Geely, Intel, DB Shenker,	
		Mitsui Sumitomo, MS&AD, Translink, Blackrock,	
EHang	\$130m	United Therapeutic, Lung Biotech, IPO Dec 2019	
SkyDrive	\$40m	Suzuki, DBJ, NEC, ENEOS, Itochu Corp, Obayashi, VeriServe, Sumitomo Mitsui Finance and Leasing,	
Overair	\$25m+\$145	Hanwah Systems	

Note the numbers will change continuously

Many Cross-Industry Collaborations

- Archer + Fiat Chrysler + United Airline +...
- Boeing + Kitty Hawk + Porsche +...
- Airbus + RR/Siemens + Audi +...
- Joby + Toyota + Intel Capital + Uber + Agility Prime + Garmin +...
- Vertical + RR + Honeywell + GKN+ Solvay + Bristow + Leonardo +...
- Lilium + Ferrovial + Honeywell + ABB + Lufthansa + Customcell + Toray + City of Orlando + Azul + Aciturri + ...
- Volocopter + Mercedes + Geely + Intel +...
- EHang + United Therapeutic + Lung Biotechnology +...
- Supernal + Hyundai + Uber +...
- Beta Technologies + United Therapeutic + Agility Prime + UPS +...

Good Time to Start eVTOL

2019 Dyson wanted to invest US\$4.3B, but Dyson cancelled because that is a drop in the ocean compared to the wealth of the automotive giants who are waking up to the epochal shift away from internal combustion engines.

Volkswagen alone has announced plans to invest US\$50 billion in electrification as it targets production of at least two million electric vehicles a year by 2025.

Look at 2019 Frankfurt Autoshow, its all about Electric.

Old Fashion Manufacturing in Small Quantity

Automatic Automotive Style Manufacturing

Gartner's Hype Cycle

Requirements for Success

Primary

- Seed money (savings, or know rich friends)
- Leadership (Is that you?)
- Technical team (Hire the best experts, advisors)

Secondary

 Proprietary technologies, geography, partnerships, etc...

Requirements to Continue the Program

- More funding
- Testing and data for validation
- Grow certification expertise
- Grow manufacturing expertise

You Will Need More **\$\$\$** Investors will evaluate you on

- Leadership and technical team
- Your financial situation
- Design matureness
- Airworthiness/certification
- Business and industrial plan

It takes longer than expected

Example of an Ambitious Schedule

Example: an eVTOL from Emotion of Germany

Example of the Schedule from Emotion

Three eVTOL Niches

- Personal eVTOL (GoFly competition)
- Short haul point-to-point business and inter-city (XTI TriFan)
- Public transport urban air mobility (UAM)

First eVTOL Niches

Personal eVTOL (GoFly competition)

- Short haul point-to-point business and inter-city (XTI TriFan)
- Public transport urban air mobility (UAM)

GoFly Final Flyoff at NASA Ames Feb 2020

No team completed the \$1m prize requirements !

Team Tetra from Japan won Disruptor Award

Second eVTOL Niches

- Personal eVTOL (GoFly competition)
- Short haul point-to-point business and inter-city (XTI TriFan, Pegasus)
- Public transport urban air mobility (Uber)

Trifan from XTI, USA

1. Aluminum and composite Structure

Lighter weight

Greater design flexibility

2. Hybrid Energy System (HES)

- Hydrogen fuel cell
- Electric motor

3

Cruise on H2 – no emission

5. Efficient turboshaft engine

- 100% Sustainable Aviation Fuels (SAF) compatible
- Fuel efficient, highly reliable
- Supplemental power in vertical mode

3. Embedded Solar Film

- For ground power
- No noise pollution
- Zero emissions
- Low operating cost

4. Garmin 3000 Avionics

- Certified for single pilot operation
- Installed in hundreds of aircraft

7. 'Fly by wire' Flight Controls

- Reduced pilot workload
- Stability enhancement

6. Digital Engineering

- 3D modeling
- Product Lifecycle Management
- Agility, efficiency

Source: from XTI public release 2022-02

Trifan from XTI, USA

Source: from XTI public release 2022-02

Example: Pegasus Universal Aerospace

Example: Eviation Alice Electric Airplane (Non-VTOL)

Example: Zunum Hybrid-Electric Airplane

Source: https://spectrum.ieee.org/aerospace/aviation/zunum-aeros-hybrid-electric-airplane-aims-to-rejuvenate-regional-travel

Third eVTOL Niches

- Personal eVTOL (GoFly competition)
- Short haul point-to-point business and inter-city (XTI TriFan)
- Public transport urban air mobility (UAM)

This is the Most Competed Niche

Often called Urban Air Mobility, it includes air taxi, shared ride, VIP transport, cargo delivery, organ transport, emergency services...

Why Share Ride Car is Successful?

- They provide additional transportation mean to help people
- A new user experience: on-demand, no cash.
- 30% of millennials do not plan to buy cars
- \$215 billion revenue by 2025
- Can this be repeated for air mobility? Where to find thousands of pilots? Can they beat the regulation again?

Exponential growth of Uber car share-ride may be an indication for UAM

Uber's market	End of 2019	Jan 2020
Countries:	60	66
Daily trip:	15 millions+	19 millions+
Monthly active riders:	75 millions+	100 millions+
Total Rider served:	10 billions+	15 billions+

First, Set Up Intra-City Air Taxi Hubs

View of Dubai Picture from Uber brief

UAM Will Require Setting Up Many Air Taxi Hubs

View of Los Angeles Picture from Uber brief

Expands to Inter-City

Example: Lilium's goal is 300 km/h speed and 300km range

Connecting Northern California cities

Liverpool Mancheste

Connecting Germany, France, Switzerland, Austria, and Italy
Linking Singapore, Malaysia and Indonesia

Example of a Roof Top Vertiport

Over 50 Cities Are Exploring UAM for People and Cargo

- Los Angeles, Dallas, Melbourne, Dubai, Osaka, Rio de Janeiro,... want to launch UAM by 2025.
- Paris wants to debut air taxi at the 2024 Summer Olympic.
- Singapore may provide sight seeing rides by 2023

Price to Ride UAM

Example: NY Wall Street to JFK Airport

Today Blade operates helicopter flight from NYC to JFK Airport. Only 7 minutes for 14 miles. Blade charges \$195 per passenger

How Can eVTOL Reduces Air Taxi Price

- Goal is for eVTOL to cost less to buy & operate by 2027
- Further reduction through mass production by 2030 to 2035

eVTOL Reduces Hardware and Operating Cost

US \$3.5 millions 2027

(Note, in 2027 \$ value)

Helicopters Have Many Parts. Expensive to Buy, Operate and Maintain

Electric Vehicles Have Much Fewer Parts

Electric Vehicles Reduces Parts Count

Whereas cars with a combustion engine need about 30,000 components, an electric vehicle needs just 11,000 parts, according to research from Goldman Sachs Group. That reduction in complexity has lowered the barriers to entry for the automotive market and caused a surge in the number of new electric carmakers.

We can also expect significant reduction from a light helicopter to an eVTOL aircraft.

UberAir Targets a <u>Total</u> Operating Cost for eVTOL to be 35% lower than operating helicopters

Source of graph: Uber presentation at 2019 VFS Forum, Philadelphia

Total operating cost = indirect operating cost + direct operating cost

Lets find out the direct operating cost for eVTOL

Comparing Different Operating Cost Definitions

		ATA	AEA	+I	F41	TUB
Ownership	Depreciation Interest Insurance	• 0 •	••••	••••	• 0 •	••••
Hight	Fuel Cockpit Crew Cabin Crew Fees, Landing Fees, Navigation Fees, Ground Handling	• • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
Maintenance	Airframe, Labor Airframe, Material Engine, Labor Engine, Material Burden	••••	••••	••••	••••	••••
	Utilization Function A/C Price Function	• o	• o	•	00	:

Source: https://www.researchgate.net/publication/322310413_Comparison_of_Direct_Operating_Cost_and_Life_Cycle_Cost-Benefit_Methods_in_Aircraft_Technology_Assessment/link/5ef1e895a6fdcc73be96e923/download

Direct Operating Cost for Helicopters and eVTOL

BASE AIRCRAFT PRICE (USD)	\$3,225,000	\$3,450,000	\$3,200,000	\$2,500,000
MANUFACTURER	Bell	Airbus Helicopters	Airbus Helicopters	Generic
AIRCRAFT TYPE	407GXi	H130	H125	eVTOL
DIRECT OPERATING COST	\$ 589	\$ 640	\$ 627	<\$300
DOC / NM	\$ 4.43	\$ 5.00	\$ 4.61	\$2.78
DOC / NM / SEAT	\$ 0.74	\$ 0.71	\$ 0.77	(for 108 nm) \$ 0.56
MAX CRUISE SPEED (KTAS)	133	128	136	108
MAX RANGE (NM)	337	333	341	45
USEFUL LOAD (LBS)	2300	2299	2189	1100
TOTAL SEATS	6	7	6	5

Bell 407GXi's IOC = total op cost – DOC = US\$1120/hr - \$589 = \$531/hr

eVTOL's DOC = total op cost - IOC = US\$\$689 - \$531 = \$158/hr Seems optimistic

Or eVTOL's DOC = DOC – changes = \$589 - \$431 = \$158/hr

Types of eVTOL Aircraft

Name for different VTOL Aircraft Configurations

- Drone = UAV (unmanned air vehicle) = UAS (unmanned air system)
- Multirotor, multicopter
- Lift + cruise

Tiltrotor

- Tiltwing
- Tail sitter

Name for different VTOL Aircraft Configurations

Definition

<image>

Coaxial Rotor

For coaxial rotor type when we calculate the disk loading, we typically use only the disk area of one set of rotors

Lift + Cruise

Lift + Cruise

https://www.droneassemble.com/product/long-endurance-drone-3-hours-vtol-v-tail-for-mapping-surveillance-vtol-frame-kit/

Lift + Cruise

Kitty Hawk Cora (Lift + Cruise Type)

Tiltrotor

AW609

Tiltrotor (vector thrust)

2380

25 mile mission repeated <u>indefinitely</u> 4 passengers + pilot (1,100 lb payload weight) 9-minute, 2C charge 6-mile reserve

Unlimited operations during peak time

h

Compound Helicopter – Airbus X3

Tail Sitter Drawbacks: visibility and passenger comfort

Autogyro (eSTOL)

Characteristics:

- Passengers: 2
- Empty weight: 300 kg (661 lb)
- Gross weight: 500 kg (1,102 lb)
- Powerplant: 1 × Siemens motor 107hp (80 kw)
- Main rotor diameter: 8.4 m (27 ft 7 in)
- Propellers: 3-bladed composite
- Endurance: 30 minutes
- Cruise speed 90 mph (145 km/h), top speed is 99 mph (160 km/h)

AutoGyro GmbH Hildesheim, Germany www.auto-gyro.com

Autogyro (R-Evolution, a Swiss study)

VTOL Jets

BlackFly v3

Opener

Jaunt Air Mobility eVTOL

Jaunt Air Mobility

Passenger Air Vehicle (PAV) Boeing

Aston Martin Volante Vision Supervolant

Ehang 216 *eHANG*

Bell Flight

Lilium Jet *Lilium*

Overair

Alia Beta Technologies

Cora *WISK*

Volocopter *Volocity*

Project Zero AgustaWestland

SureFly VTOL Workhorse

Pipistrel

TriFan 600 *XTI Aircraft*

Types of eVTOL Aircraft in Development

Compiled by James Wang
Trend is Multirotor Replaced by Lift+Cruise

eVTOL Developmental Regions

Recent Technology Enablers for eVTOL

- Better rechargeable batteries
- More powerful electric motors
- Silicone carbide inverters
- Lower cost sensors and autonomous flight control
- Light weight composite structure
- Distributed propulsion architecture
- Better computation tools

Key Challenges to eVTOL and UAM

- Fine tuning the technologies
- Creating appropriate infrastructures
- Collaboration and partnerships
- Regulating an entirely new industry
- Overcoming public psychological barriers
- Public acceptance and affordability

1. Design Phases for a New Aircraft Program Different types of eVTOL by Dr. James Wang

SNUevtolclass@gmail.com

For students to use in the 2022 eVTOL Design Short Course at SNU, please do not reproduce or distribute