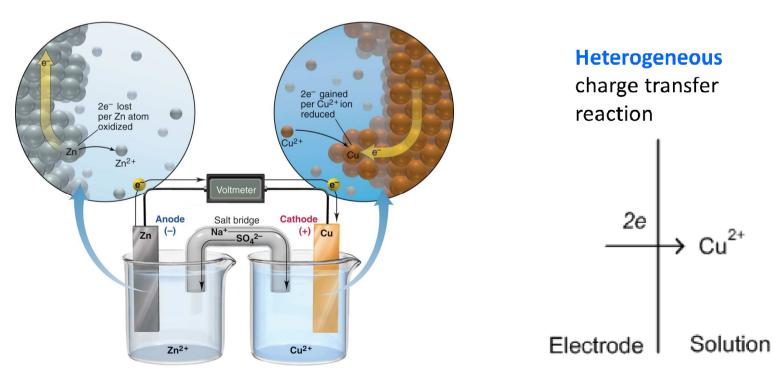
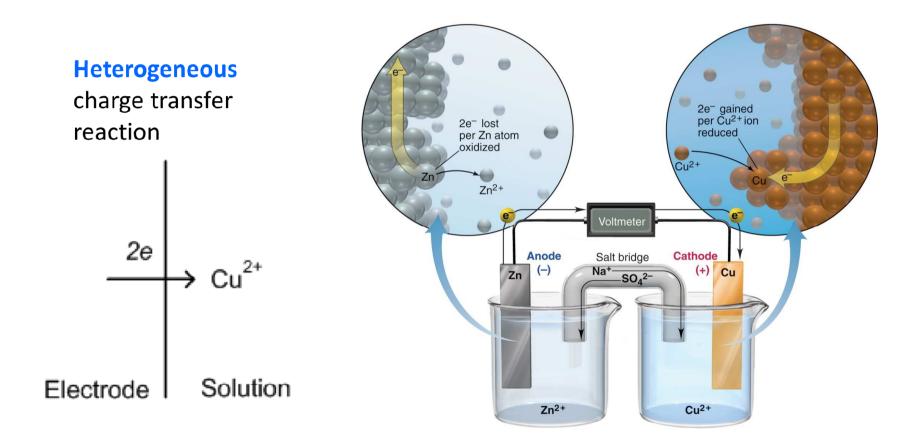
Introduction and Overview of Electrode Process

→ the terms and concepts for describing electrode reactions before studying detailed electrochemical reactions with complex mathematical governing equations


Electrochemistry

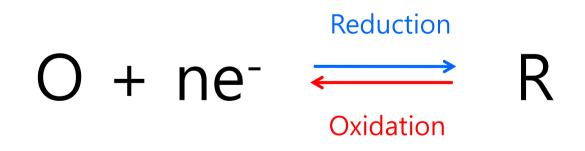
- The branch of chemistry
 - \rightarrow concerned with the interrelation of electrical and chemical effects.
- Deals with the study of
 - \rightarrow chemical changes caused by the passage of an electric current
 - \rightarrow the production of electrical energy by chemical reactions.
- electrophoresis, corrosion, electrochromic displays, electro analytical sensors, batteries, fuel cells, and electroplating

1.1.1 Electrochemical Cells and Reactions


Electrochemical system

- Concerned with the processes and factors that affect the transport of charge across the interface between chemical phases
- → for example, between an electronic conductor (an electrode) and an ionic conductor (an electrolyte).
- \rightarrow Typically, consists of two electrodes separated by an electrolyte

1.1.1 Electrochemical Cells and Reactions

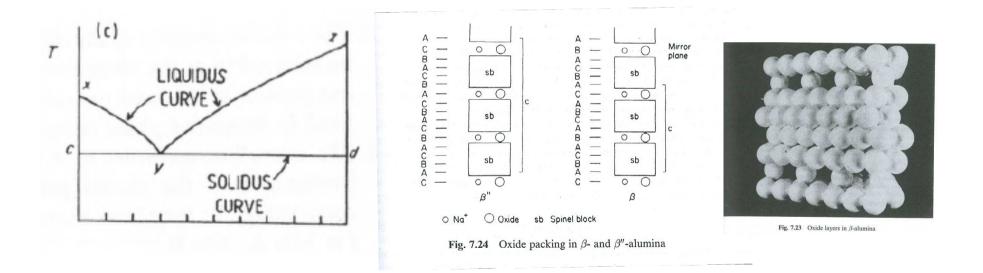

→ In particular, concerned with the electrode/electrolyte interface and the events that occur there when an electric potential is applied and current passes.

Electrode

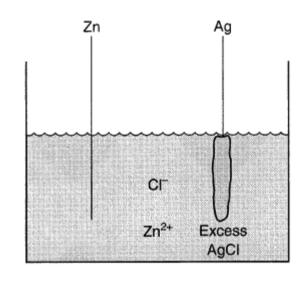
Electrode

- Charge is transported through the electrode
 - \rightarrow by the movement of electrons (and holes).
- Typical electrode materials include
 - → solid metals (e.g., Pt, Au), liquid metals (Hg, amalgams), carbon (graphite), and semiconductors (indium-tin oxide, Si).
- Two types of electrode
 - \rightarrow anode (negative electrode) and cathode (positive electrode)

Anode – electrode where oxidation (losing e⁻) occurs Cathode – electrode where reduction (accepting e⁻) occurs


Electrolyte

Electrolyte

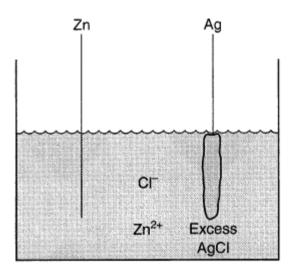

- In the electrolyte phase,
 - \rightarrow charge is carried by the movement of ions.
- To be useful in an electrochemical cell,
 - \rightarrow the electrolyte must have sufficiently low resistance
 - (i.e., sufficiently ionically conductive)
 - ightarrow indicating that the movement of ions is sufficiently fast
- The most common electrolytes
 - : liquid solutions containing ionic species, such as, H⁺, Na⁺, Cl⁻, in either water or a nonaqueous solvent.

Electrolyte

- Less conventional electrolytes
 - → fused salts (e.g., molten NaCl-KCl eutectic)
 - \rightarrow ionically conductive polymers (e.g., Nafion, polyethylene oxide-LiClO₄).
 - → Solid electrolytes (e.g., sodium β -alumina, where charge is carried by mobile sodium ions that move between the aluminum oxide sheets)

- Generally defined as two electrodes separated by at least one electrolyte phase
- In general,
 - → consider electrochemical events at a single interface
 - \rightarrow experimentally impossible
 - → should study the properties of collections of interfaces called electrochemical cells
- A difference in electric potential (cell potential)
 - → can be measured between the electrodes in an electrochemical cell
- Measure a potential difference with a high impedance voltmeter.

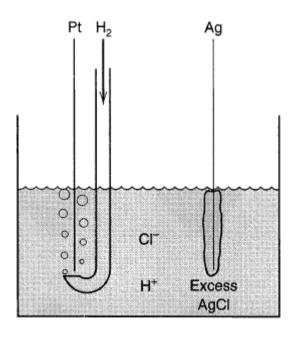
- Measured in volts (V),
 - \rightarrow where 1 V = 1 joule/coulomb (J/C)
- 1 V


 \rightarrow produce 1 J when 1 C of electrons pass through the external circuit

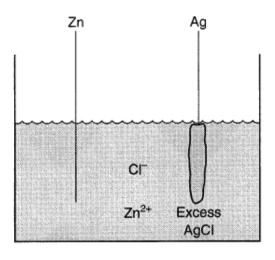
• This cell potential

 \rightarrow is a measure of the energy available to drive charge externally between the electrodes

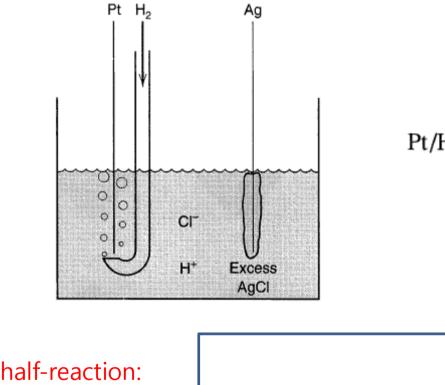
- The magnitude of the potential difference at an interface
 - \rightarrow affects the relative energies of the charge carriers in the two phases
 - \rightarrow controls the direction and the rate of charge transfer.
 - \rightarrow the measurement and control of cell potential is one of the most important aspects of experimental electrochemistry.


• A shorthand notation for expressing the structure of electrochemical cells

Zn/Zn²⁺, Cl⁻/AgCl/Ag


- → Slash: represents a phase boundary
- \rightarrow Comma: separates two components in the same phase.
- → Double slash (not yet used here)
 - : represents a phase boundary whose potential is regarded as a negligible component
 - of the overall cell potential.

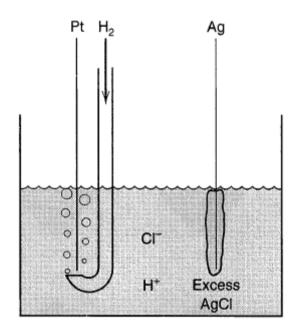
- When a gaseous phase is involved,
 - \rightarrow it is written adjacent to its corresponding conducting element.



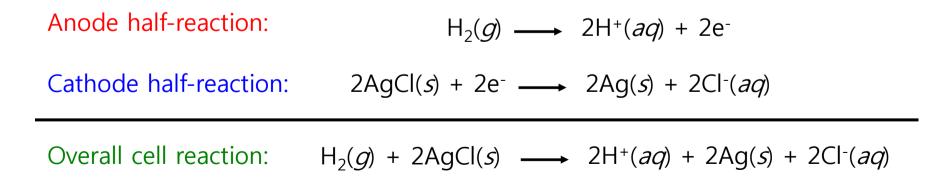
Pt/H₂/H⁺, Cl⁻/AgCl/Ag

- The overall chemical reaction taking place in a cell is made up of two independent half-reactions
- → Describe the real chemical changes at the two electrodes.
- Each half reaction (and, consequently, the chemical composition of the system near the electrodes)
- → responds to the interfacial potential difference at the corresponding electrode.

Anode half-reaction:	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$
Cathode half-reaction:	$2AgCl(s) + 2e^{-} \longrightarrow 2Ag(s) + 2Cl^{-}(aq)$
Overall cell reaction:	$Zn(s) + 2AgCl(s) \longrightarrow Zn^{2+}(aq) + 2Ag(s) + 2Cl^{-}(aq)$


Pt/H₂/H⁺, Cl⁻/AgCl/Ag

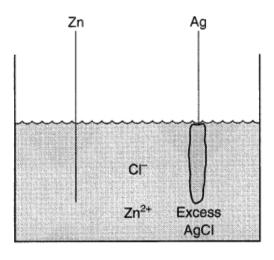
Anode half-reaction:


Cathode half-reaction:

 $2\text{AgCl}(s) + 2e^{-} \longrightarrow 2\text{Ag}(s) + 2\text{Cl}^{-}(aq)$

Overall cell reaction:

Pt/H₂/H⁺, Cl⁻/AgCl/Ag

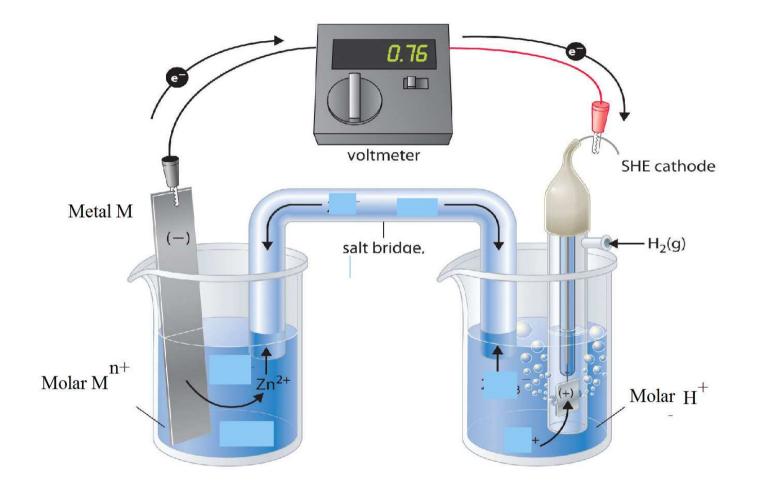


Working electrode

• Most of the time, one is interested in only one of the

two independent half-reactions

- → The electrode at which it occurs is called the working electrode.
- \rightarrow The other electrode is called the counter electrode

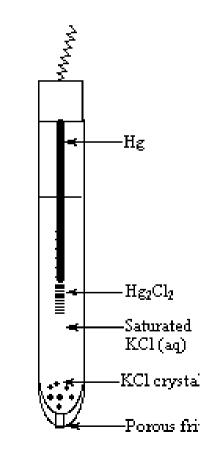


Anode half-reaction:	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$	
Cathode half-reaction:	$2AgCl(s) + 2e^{-} \longrightarrow 2Ag(s) + 2Cl^{-}(aq)$	
Overall cell reaction:	$Zn(s) + 2AgCl(s) \longrightarrow Zn^{2+}(aq) + 2Ag(s) + 2Cl^{-}(aq)$	

Reference electrode

- In order to easily compare with various electrochemical reactions at the working electrode,
- → one standardizes the other half of the cell (counter electrode) by using an electrode (called a reference electrode)
- → made up of phases having essentially constant composition.
 (because composition affects a potential)
- → For more accurate measurement, counter and reference electrodes are experimentally separated
- The internationally accepted primary reference
- → the standard hydrogen electrode (SHE), or normal hydrogen electrode (NHE)
- \rightarrow has all components at unit activity:

$$Pt/H_2(a = 1)/H^+(a = 1, aqueous)$$
 2 H⁺(aq) + 2 e⁻ ↔ H₂(g)

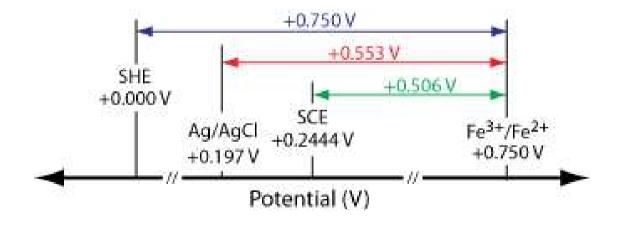


- Potentials are often measured with respect to reference electrodes other than the NHE
- → Because NHE is not very convenient from an experimental standpoint.
- A common reference
- \rightarrow the saturated calomel electrode (SCE), which is

Hg/Hg2Cl2/KCl (saturated in water)

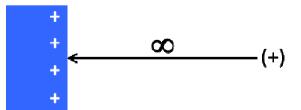
 \rightarrow the potential of SCE: 0.242 V vs. NHE.

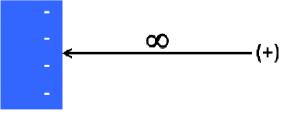
 $Hg_2CI_2(s) + 2e^- \rightarrow 2 Hg(s) + 2CI^-(sat)$


Another is the silver-silver chloride electrode,

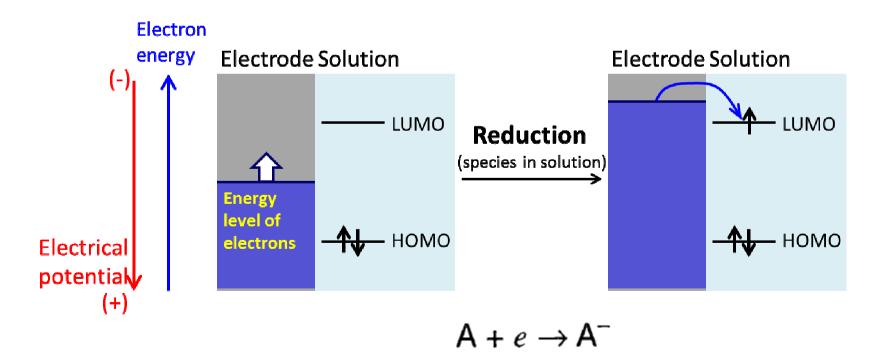
Ag/AgCl/KCl (saturated in water)

 $Ag^+ + e^- \rightleftharpoons Ag(s)$ $AgCl(s) \rightleftharpoons Ag^+ + Cl^-$

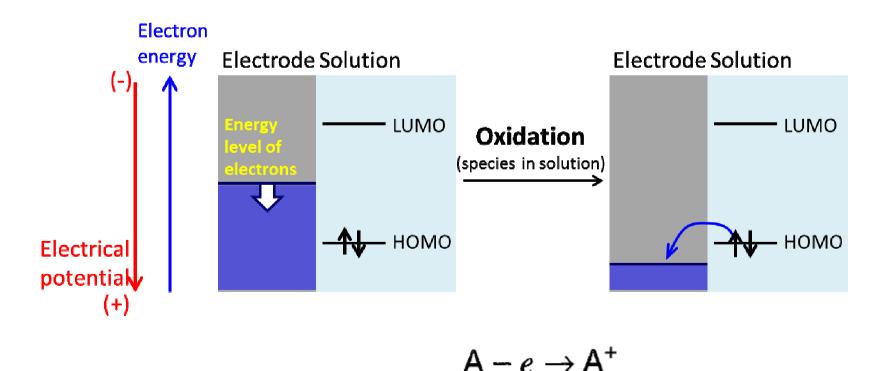

 $AgCl(s) + e^{-} \rightleftharpoons Ag(s) + Cl^{-}$


- \rightarrow the potential of Ag/AgCl: 0.197 V vs. NHE.
- \rightarrow Potentials identified in the literature as "vs. Ag/Ag⁺" when this electrode is used.

- Since the potential of the reference electrode is fixed, any changes in the cell are ascribable to the working electrode.
- When we control the potential of the working electrode with respect to the reference, it is equivalent to controlling the energy of the electrons within the working electrode


"The **potential** at a point is the external work needed to bring a *positive* unit charge (+), at constant speed, from the position of zero potential to the given point."

Positive Electrical potentialNegative Electrical potential[Electric potential] = $[V] = [A \cdot \Omega] = [J/C] = [N \cdot m/C] = [kg \cdot m^2/(C \cdot s^2)]$


- By driving the electrode to more negative potentials using a power supply
- ightarrow The energy of the electrons is raised
- \rightarrow They can reach a level high enough to transfer into vacant electronic states on species in the electrolyte
- \rightarrow In that case, a flow of electrons from electrode to solution (a reduction current) occurs

 Similarly, the energy of the electrons can be lowered by imposing a more positive potential

 \rightarrow at some point, electrons on solutes in the electrolyte will transfer to a more stable energy on the electrode.

 \rightarrow The electron flow from solution to electrode: oxidation current

• The critical potentials at which these processes occur

- → related to the standard
 potentials, E°, for the
 specific chemical
 substances in the system.
- → Potentials at standard states (1M, 25°C)

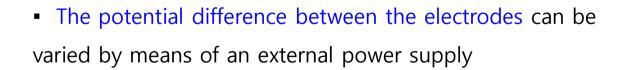
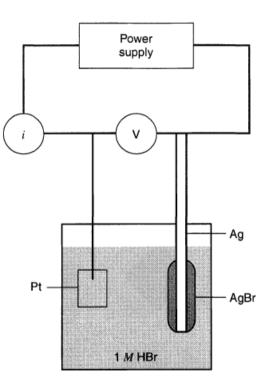
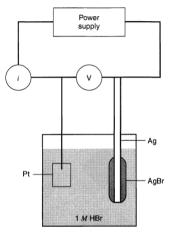

Reaction	Potential, V
$Ag^+ + e \rightleftharpoons Ag$	0.7991
$AgBr + e \rightleftharpoons Ag + Br^{-}$	0.0711
$AgCl + e \rightleftharpoons Ag + Cl^{-}$	0.2223
$AgI + e \rightleftharpoons Ag + I^-$	-0.1522
$Ag_2O + H_2O + 2e \rightleftharpoons 2Ag + 2OH^-$	0.342
$Al^{3+} + 3e \rightleftharpoons Al$	-1.676
$Au^+ + e \rightleftharpoons Au$	1.83
$Au^{3+} + 2e \rightleftharpoons Au^+$	1.36
<i>p</i> -benzoquinone $+ 2H^+ + 2e \rightleftharpoons$ hydroquinone	0.6992
$Br_2(aq) + 2e \rightleftharpoons 2Br^-$	1.0874
$Ca^{2+} + 2e \rightleftharpoons Ca$	-2.84
$Cd^{2+} + 2e \rightleftharpoons Cd$	-0.4025
$\mathrm{Cd}^{2+} + 2e \rightleftharpoons \mathrm{Cd}(\mathrm{Hg})$	-0.3515
$Ce^{4+} + e \rightleftharpoons Ce^{3+}$	1.72
$Cl_2(g) + 2e \rightleftharpoons 2Cl^-$	1.3583
$\mathrm{HCIO} + \mathrm{H}^{+} + e \rightleftharpoons \frac{1}{2}\mathrm{Cl}_{2} + \mathrm{H}_{2}\mathrm{O}$	1.630
$\mathrm{Co}^{2+} + 2e \rightleftharpoons \mathrm{Co}$	-0.277
$\mathrm{Co}^{3+} + e \rightleftharpoons \mathrm{Co}^{2+}$	1.92
$\operatorname{Cr}^{2^+} + 2e \rightleftharpoons \operatorname{Cr}$	-0.90
$\operatorname{Cr}^{3+} + e \rightleftharpoons \operatorname{Cr}^{2+}$	-0.424
$\mathrm{Cr}_{2}\mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} + 6e \rightleftharpoons 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}$	1.36
$Cu^+ + e \rightleftharpoons Cu$	0.520
$Cu^{2+} + 2CN^{-} + e \rightleftharpoons Cu(CN)_2^{-}$	1.12
$\mathrm{Cu}^{2+} + e \rightleftharpoons \mathrm{Cu}^+$	0.159
$Cu^{2+} + 2e \rightleftharpoons Cu$	0.340
$\operatorname{Cu}^{2+} + 2e \rightleftharpoons \operatorname{Cu}(\operatorname{Hg})$	0.345
$\operatorname{Eu}^{3+} + e \rightleftharpoons \operatorname{Eu}^{2+}$	-0.35
$1/2F_2 + H^+ + e \rightleftharpoons HF$	3.053
$Fe^{2+} + 2e \rightleftharpoons Fe$	-0.44
$Fe^{3+} + e \rightleftharpoons Fe^{2+}$	0.771
$\operatorname{Fe}(\operatorname{CN})_6^{3-} + e \rightleftharpoons \operatorname{Fe}(\operatorname{CN})_6^{4-}$	0.3610
	(continued

TABLE C.1 (continued)


Reaction		Potential,
$2H^+ + 2e \rightleftharpoons H_2$		(0.0000)
$2H_2O + 2e \equiv$	\geq H ₂ + 2OH ⁻	-0.828
$H_2O_2 + 2H^+$	$+ 2e \rightleftharpoons 2H_2O$	1.763
$2Hg^{2+} + 2e =$	\Rightarrow Hg ₂ ²⁺	0.9110
$Hg_2^{2+} + 2e \equiv$	≥ 2Hg	0.7960
$Hg_2Cl_2 + 2e$	$\rightleftharpoons 2Hg + 2Cl^{-}$	0.26816
$Hg_2Cl_2 + 2e$	\Rightarrow 2Hg + 2Cl ⁻ (sat'd. KCl)	0.2415
$HgO + H_2O +$	$-2e \rightleftharpoons Hg + 2OH^{-}$	0.0977
$Hg_2SO_4 + 2e$	\rightleftharpoons 2Hg + SO ₄ ²⁻	0.613
$I_2 + 2e \rightleftharpoons 2I$		0.5355
$I_3^- + 2e \rightleftharpoons 3I$		0.536
$\mathbf{K}^+ + e \rightleftharpoons \mathbf{K}$		-2.925
$\mathrm{Li}^+ + e \rightleftharpoons \mathrm{Li}$		-3.045
$Mg^{2+} + 2e \equiv$		-2.356
$Mn^{2+} + 2e \equiv$	≛ Mn	-1.18
$Mn^{3+} + e \rightleftharpoons$		1.5
	$+ 2e \rightleftharpoons Mn^{2+} + 2H_2O$	1.23
$MnO_{1}^{-} + 8H^{+}$	$+5e \rightleftharpoons Mn^{2+} + 4H_2O$	1.51
$Na^+ + e \rightleftharpoons N$		-2.714
$Ni^{2+} + 2e \rightleftharpoons$		-0.257
	$a \rightleftharpoons Ni + 2OH^{-1}$	-0.72
$O_2 + 2H^+ + 3$		0.695
$O_2 + 4H^+ + .$		(1.229)
$O_2 + 2H_2O +$		0.401
$O_3 + 2H^+ + 3$	$2e \rightleftharpoons O_2 + H_2O$	2.075
$Pb^{2+} + 2e \rightleftharpoons$		-0.1251
$Pb^{2+} + 2e \rightleftharpoons$	Pb(Hg)	-0.1205
	$+2e \rightleftharpoons Pb^{2+} + 2H_2O$	1.468
	$+ 4H^+ + 2e \rightleftharpoons PbSO_4 + 2H_2O$	1.698
$PbSO_4 + 2e \rightleftharpoons Pb + SO_4^{2-}$		-0.3505
$Pd^{2+} + 2e \rightleftharpoons$		0.915
$Pt^{2+} + 2e \rightleftharpoons$		1.188
$PtCl_4^{2-} + 2e \neq$		0.758
$PtCl_{e}^{2-} + 2ez$	\Rightarrow PtCl ₄ ²⁻ + 2Cl ⁻	0.726
$\operatorname{Ru}(\mathrm{NH}_3)_6^{3^+} + e \rightleftharpoons \operatorname{Ru}(\mathrm{NH}_3)_6^{2^+}$		0.10
$S + 2e \rightleftharpoons S^{2-}$		-0.447
$\operatorname{Sn}^{2+} + 2e \rightleftharpoons$	Sn	(-0.1375)
$\operatorname{Sn}^{4+} + 2e \rightleftharpoons$		0.15
$Tl^+ + e \rightleftharpoons Tl$		-0.3363
$TI^+ + e \rightleftharpoons TI(Hg)$		-0.3338
$TI^{3+} + 2e \rightleftharpoons TI^+$		1.25
$U^{3+} + 3e \rightleftharpoons U$		-1.66
$\mathbf{U}^{4+} + e \rightleftharpoons \mathbf{U}^{3+}$		-0.52
	$+ e \rightleftharpoons U^{4+} + 2H_2O$	0.273
$UO_2^+ + 4H^+ = UO_2^{2+} + e \rightleftharpoons$		0.273

(continued)

- Consider a typical electrochemical experiment where a working electrode and a reference electrode are immersed in a solution
- ➔ We measure a potential across the cell using a high impedance voltmeter
- → called the open-circuit potential of the cell because the internal resistance of the voltammeter is so high that no appreciable current flows through it during a measurement

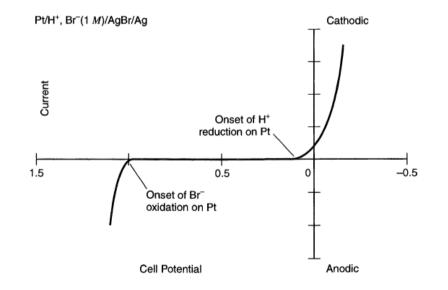

• This variation in potential, *E*, can produce a current flow in the external circuit, because electrons cross the electrode/solution interfaces as electrochemical reactions occur.

Number of electrons

- The number of electrons that cross an interface
 - : stoichiometrically proportional to the extent of the
 - chemical reaction

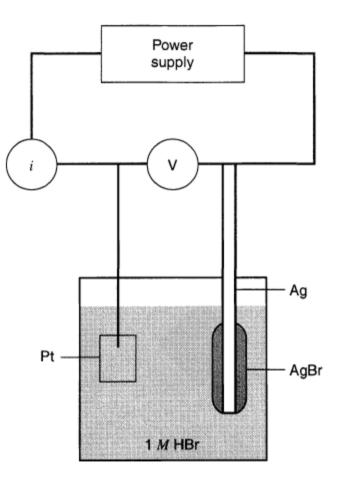
(i.e., to the amounts of reactant consumed and product generated).

- ➔ The number of electrons is measured in terms of the total charge, Q, passed in the circuit.
- → Unit of charge: coulombs (C), where $1 \text{ C} = 6.24 \text{ X} 10^{18}$ electrons.

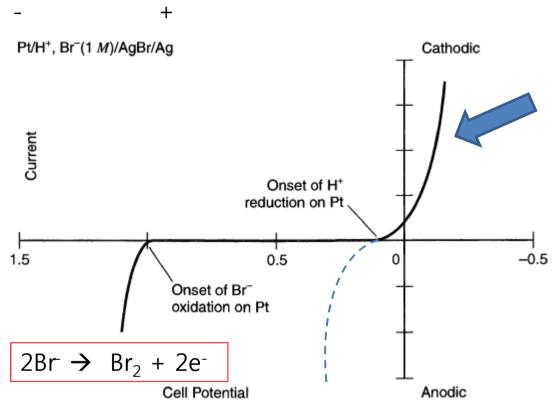

→ Faraday's law

- : relationship between charge and amount of product formed
- : the passage of 96,485.4 C \rightarrow 1 mole of reaction for a one-electron reaction.
- : 1 mole = 6.02 X 10^{23}

Current


- Current, i
 - : the rate of flow of coulombs (or electrons)
 - : unit of a current = ampere (A)
 - : 1 A = 1 C/s.
- When one plots the current as a function of the potential, one obtains a current-potential (i vs. E) curve.

 \rightarrow information about the nature of the solution and the electrodes and about the reactions that occur at the interfaces.



Electrochemical reaction

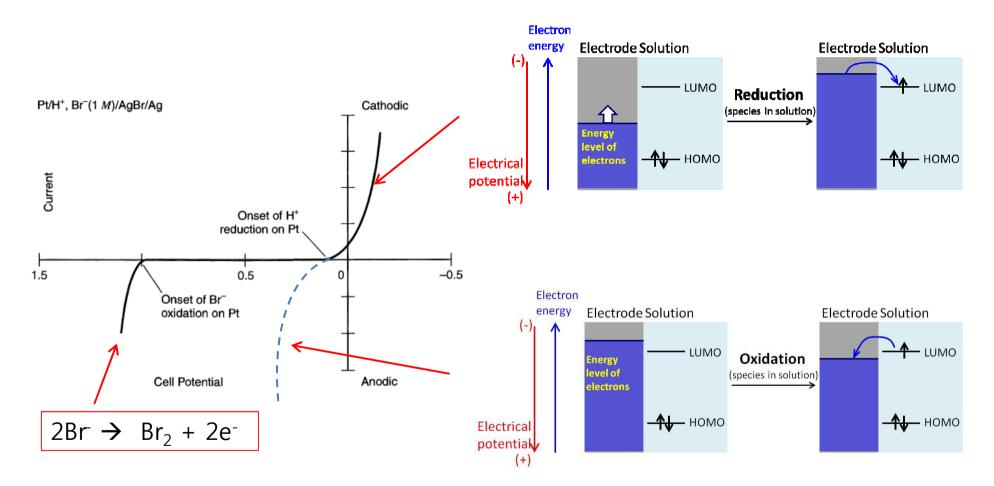
- Let us now consider that a power supply, a voltmeter and a microammeter are connected across the cell
- composed of the Pt working electrode and the Ag/AgBr reference electrode.
- As we gradually decrease the potential of the working electrode, the electrochemical reaction occurs (current flows)
- → reduction of protons (hydrogen evolution)
- → current-potential curve

I vs V curve

Schematic current-potential curve for the cell Pt/H⁺, Br⁻ (1*M*)/AgBr/Ag

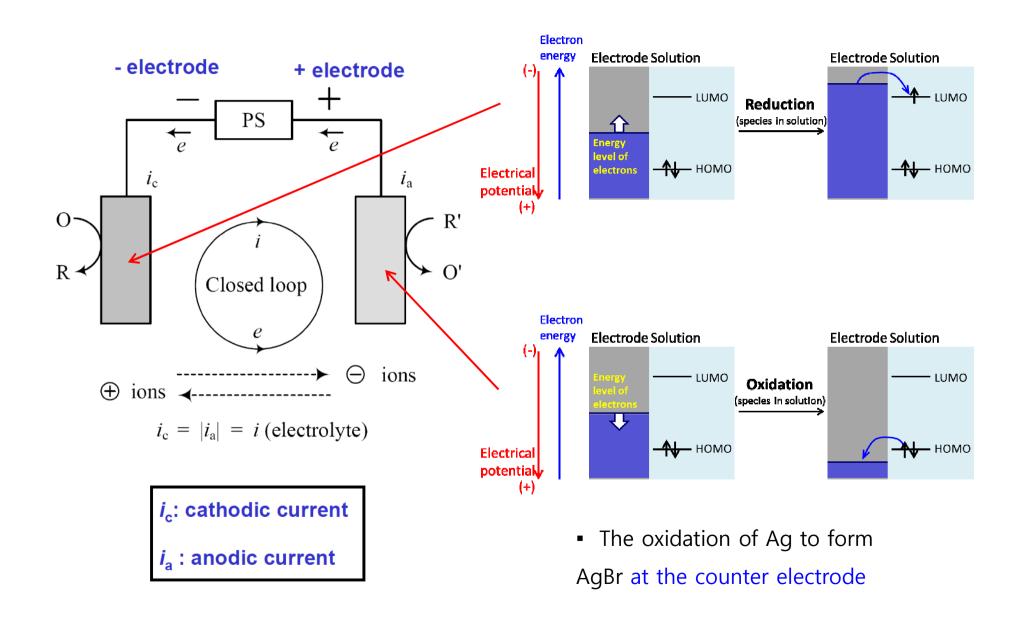
- Direction of electron flow
 - : from the electrode to protons

in solution

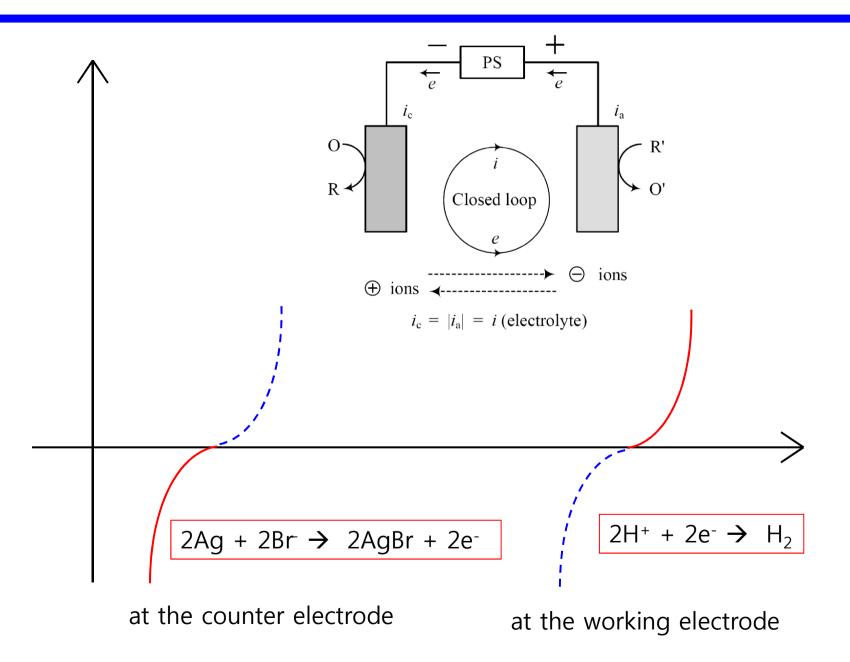

→ cathodic current

$$2H^+ + 2e^- \rightarrow H_2$$

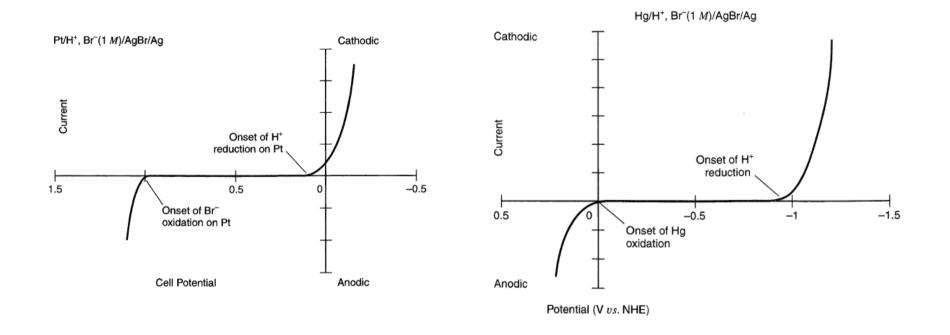
- Sign convention
 - : cathodic currents are taken as positive
- the onset of current flow occurs when the potential of the Pt electrode is near 0 V vs. NHE or -0.07 V vs. the Ag/AgBr electrode
 → Electrochemical potential for the H⁺/H₂ reaction


I vs V curve

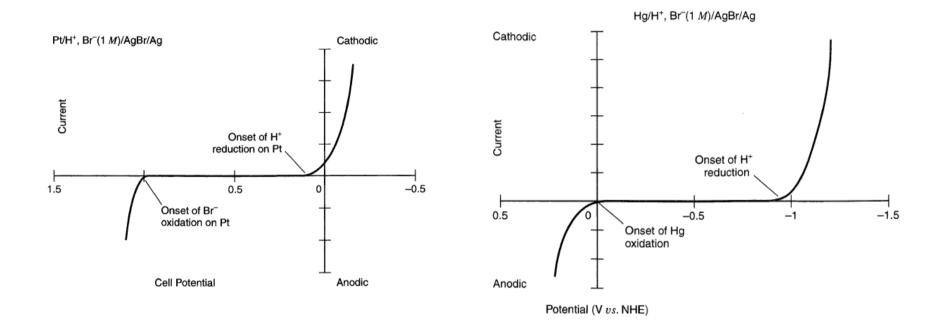
Schematic current-potential curve for the cell Pt/H+, Br- (1M)/AgBr/Ag



- If H₂ gas is fed into solution, the oxidation of H₂ should be observed
- Anodic current: negative sign


Current passes through "closed loop"

Current passes through "closed loop"



Overpotential

- Let us compare with two different working electrodes such as Pt and Hg
- The onset potential of Hg is more negative value despite of that the thermodynamics have not changed, since the half-reaction (hydrogen evolution) is independent of the metal electrode

Overpotential

- Considerably higher electron energies (more negative potentials) must be applied to make the reaction occur on the Hg electrode
- The additional potential (beyond the thermodynamic requirement) needed to drive a reaction at a certain rate is called the overpotential.
- → it is said that mercury shows "a high overpotential for the hydrogen evolution reaction."