

Flow Assurance

Code and Standard

	DNV-OSS-301 Certification and Verification of Pipelines
	DNV-OS-F101 Submarine Pipeline Systems
	DNV-RP-D101 Structural Analysis of Piping Systems
	DNV-RP-F101 Corroded Pipelines
	DNV-RP-F102 Pipeline Field Joint Coating and Field Repair of Line pipe Coating
	DNV-RP-F103 Cathodic Protection of Submarine Pipelines by Galvanic Anodes
	DNV-RP-F105 Free Spanning Pipelines
	DNV-RP-F106 Factory Applied External Pipeline Coatings for Corrosion Control
Pipeline	DNV-RP-F107 Risk Assessment of Pipeline Protection
	DNV-RP-F108 Fracture Control for Pipeline Installation Methods Introducing Cyclic Plastic Strain
	DNV-RP-F109 On-Bottom Stability Design of Submarine Pipelines
	DNV-RP-F110 Global Buckling of Submarine Pipelines Structural Design due to HP/HT
	DNV-RP-F111 Interference Between Trawl Gear and Pipelines
	DNV-RP-F113 Pipeline Subsea Repair
	DNV-RP-F116 Integrity Management of Submarine Pipeline Systems
	DNV-RP-F118 Pipe Girth Weld System Qualification and Project Specific Procedure Validation
	DNV-RP-O501 Erosive Wear in Piping Systems
	DNV-OSS-302 Offshore Riser Systems
	DNV-OS-F201 Dynamic Risers
	DNV-RP-F201 Design of Titanium Risers
Riser	DNV-RP-F202 Composite Risers
	DNV-RP-F203 Riser Interference
	DNV-RP-F204 Riser Fatigue
	DNV-RP-F206 Riser Integrity Management
	DNV-DSS-314 Verification of Hydrocarbon Refining and Petrochemical Facilities
Oil and Gas Processing	DNV-OSS-307 Verification of Process Facilities
Systems	DNV-OS-E201 Oil and Gas Processing Systems
	DNV-RP-F301 Subsea Separator Structural Design

Pipeline Design Flowchart

Flow Assurance: Definition

- Ensuring successful and economical flow of hydrocarbon stream from reservoir to the point of processing → Guarantee the flow
- Encompassing many discrete and specialized subjects, bridging across the engineering disciplines
- Involves from pre-FEED to detailed design, and beyond the operation
- Two main topics
 - : Network modelling and transient multiphase flow simulation
 - : Handling solid deposition including hydrate, wax, asphaltene, etc

Flow Assurance in Project life cycle

Flow Assurance in offshore developments

- FA becomes "important" more than every before
 - Deep waters
 - Longer tiebacks
 - Challenging reservoir characteristics
- FA is making sure a system is correctly sized and specified to achieve deliverability, integrity, and controllability

Role of Flow Assurance

- Deliverability achieving production rate (boosting/lifting/sizing)
- Integrity never fail (corrosion/erosion)
- Controllability stable and flexible operation
- Uninterrupted production prevent hydrates/wax/asphaltene
- Bridge between subsurface (reservoir) and surface (production or downstream)

: FA balances the inputs from reservoir with the demands and constraints from downstream

Flow Assurance and Interactions

FA: Fluid Related Issues

- May have none, may have several, may have all !!
- FA risks from industry: Hydrate >> Wax >> Asphaltene

FA: Design Related Issues

Pipeline sizing pressure loss vs slugging

Choke design

to minimize pressure loss and erosion

Design of Chemical Injection Systems (transfer line sizing) to minimize risk of hydrates,

scale, corrosion etc.

C-factors, Flare capacity, Surge volume, Cooldown times, Liquid management, Pigging Depressurization, Gas lift system, etc

> Flow assurance is to take precautions to **Ensure Deliverability** and Operability

Thermal Insulation Design

to keep fluids warm and minimize risk of hydrates and wax

Erosion analysis

Erosion wear in complex geometries

Fluid characterization

- Understanding fluid phase behavior provides a roadmap for all subsequent analysis
- Fluid characterization is predicting accurate fluid properties, which is necessary for the specification of all materials and equipment in system
- If fluid characterization and properties prediction is done poorly, the system may not operate as predicted, or may be under- or over- sized.

Phase behavior and Operating regions

- A PT operating envelope can be developed from the fluid behavior characteristics
- This envelope provides a good visual indication of operating limits
 - : Hydrate will form at P & T to the left of the curve
 - : Wax will form at P & T to the left of the curve

etc

Fluid hydraulics

- Primarily concerned with "pressure drop" in the system
 - Influence size of equipment
 - Recovery from the reservoir
- Key aspect in understanding single phase and multiphase flow
 - Single phase flow is well understood
 - Multiphase flow is becoming better-defined, especially "slug flow"
- Essentially need to balance:
 - Flowrate
 - Required arrival pressure (separation train, gas processing units, etc)
 - Available inlet pressure (reservoir, subsea production system, etc)
 - Flowline inner diameter
 - Surge volume analysis for slug catcher design

Flow regime for horizontal and vertical flow

- Flow regime is a key factor in many aspects of FA analysis
 - : Pressure drop, operability, dynamic behavior
 - : Heat transfer
 - : Chemical distribution
 - : Hydrate/wax forming potential

Flow regime map

- Depict the transitions between the flow patterns.
- The superficial gas velocity (V_{sg}) is on the X-axis and the superficial liquid velocity (V_{sl}) is on the Y-axis.
- The flow pattern is also dependent on:
- the angle of inclination,
- pipe diameter,
- fluid composition,
- pressure and temperature.

Liquid holdup

- Liquid holdup is the amount of liquid contained in a multi phase pipeline at particular flow conditions.
- The liquid phase is normally carried though the line by drag forces exerted by the gas phase.
- The holdup at a particular time will be produced as a liquid slug when the line is pigged. These aspects affect slug catcher sizing and peak onshore liquid processing requirements

Slugging

- Slugging
 - : Periods of low flow followed by periods of high flow (liquid bomb)
 - : Occurs in multiphase flowlines at low gas velocities
 - : Causes
 - Low fluid velocity
 - Seabed bathymetry
 - Riser type
- Hydrodynamic
 - : High frequency
 - : Minimal facilities impact
- Terrain
 - : High liquid/gas flowrates
 - : Topsides concern
 - : Riser fatigue concern

Time (hours)

Slug flow simulations

- Lazy-S is a slug generator
- Prevention
 - : Incrase gas flowrate
 - : control separator pressure
 - : Gas lift

Multiphase flow applications

- Hydraulics
 - : Line sizing
 - : Liquid holdup
 - : Slugging / surge volume
 - : Erosion velocity Maximum from C-factor, Minimum from CI
 - : Bigger is not better
 - + Higher throughput
 - + Lower erosion velocities
 - Increased slugging tendency
 - Increased liquid holdup in pipeline

Line sizing checklist

Multiphase flow applications

- Thermal design
 - : Sometimes try to keep fluids hot
 - avoid hydrate formation
 - avoid wax deposition
 - how to? passive heating, active heating
 - : Or sometimes try to cool fluids down
 - reduce corrosion
 - manage maximum material temperature limits
 - how to? Subsea heat exchangers, ensure exposed piping

Single layer

Multi layer

Role of Flow Assurance in CCS project

- Line sizing initial inputs for the cost estimation
- Normal operational conditions
- Transient operational conditions
 - : Depressurization
 - : Initial pressurization
- Any other suggestions for
 - : Hydrate management
 - : Pigging operations, air quality

FA design for CCS project

- Initial line sizing
 - : Trunkline system
 - : Platform/subsea manifold
 - : Infield system
 - : Well tubing requirements
- Normal operation condition
 - : Winter/Summer operation
- Transient operation
 - : Shutdown and restart JT cooling
 - : Depressurization
 - : CO2 removal pigging
 - : Initial pressurization
 - : Pressure surge analysis

Contact: Yutaek Seo

Email: Yutaek.Seo@snu.ac.kr

Thank you