Aeroelasticity

2014

Prof. SangJoon Shin

Active Aeroelasticity and Rotorcraft Lab.

Index

- 0. Introduction
- 1. Static Aeroelasticity
- 2. Unsteady Aerodynamics
- 3. Dynamic Aeroelasticity
- 4. Turbomachinery Aeroelasticity
- 5. Helicopter Aeroelasticity

Static Aeroelasticity

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Static Aeroelasticity

- Definition ··· interaction of aerodynamic and elastic force intensive to rate and acceleration of the structural deflection
- Two class of problems
 - 1. Effects of elastic deformation on the airloads
 - ··· normal operating condition \rightarrow performance, handling qualities, structural load distribution
 - 2. Static stability ... divergence

[Note] Instability ··· tendency to move away from

equilibrium

static ···· $e^{(a+iw)t}$, a > 0, w = 0

··· consider a rigid airfoil mounted on an elastic support (in a wind tunnel)

 $\boldsymbol{\theta}$: elastic angle of attack

$$\alpha = \alpha_r + \theta$$

 $\alpha_{i,\alpha} : \subset (+)$

L: lift, \uparrow (+), $L = \frac{1}{2}\rho U^2 SC_L$, where *U*: flow speed, ρ : flow density *W*: weight

 $q: \ \frac{1}{2}
ho U^2$, dynamic pressure

S: reference area = $c \cdot 1$

C_L: lift coefficient

 $M_{ac}: qScC_{M_{ac}}$, where : pitching moment coefficient at a.c.

[Note] $C_L = fn.(\alpha, M, \text{airfoil shape})$ $C_{M_{ac}} = fn.(M, \text{airfoil shape})$

From a Taylor series

$$C_{L} = C_{L0} + \frac{\partial C_{L}}{\partial \alpha} \alpha + h.o.t.$$
$$= C_{L0} + \frac{\partial C_{L}}{\partial \alpha} \alpha$$
$$C_{M_{ac}} = C_{M_{ac0}} + \frac{\partial C_{M_{ac}}}{\partial \alpha} \alpha + h.o.t.$$
$$= C_{M_{ac0}} + \frac{\partial C_{M_{ac}}}{\partial \alpha} \alpha$$

[Note] for a flat plate

$$C_{L_{\alpha}} = \frac{\partial C_{L}}{\partial \alpha} = 2\pi$$
$$C_{M_{ac}} = \frac{\partial C_{M_{ac}}}{\partial \alpha} = 0$$

For a rigid support

$$L_{rigid} = \frac{1}{2} \rho U^2 S C_{L_{\alpha}} \cdot \alpha_r$$

However, for an elastic support

$$L_{elastic} = L = qSC_{L_{\alpha}} \cdot \alpha \checkmark \alpha(\alpha_r + \alpha_e)$$

[Note]

$$L_{rigid} \neq L_{elastic}$$
$$L_{rigid} < L_{elastic}$$

Consider the system in equilibrium, all applied moments at support point must equal the torsional reaction at the point

Torsional divergence

Consider the system in equilibrium, all applied moments at support point must equal the torsional reaction at the point

$$L(x_{ea} - x_{ac}) - W(x_{ea} - x_{cg}) + M_{ac} = K_{\alpha}\alpha_{e}$$

$$qSC_{L\alpha}(\alpha_{r} + \alpha_{e})(x_{ea} - x_{cg}) - W(x_{ea} - x_{cg}) + qScC_{M_{ac_{\alpha}}} = K_{\alpha}\alpha_{e}$$

$$\Rightarrow \alpha_{e} = \frac{-W(x_{ea} - x_{cg}) + qScC_{M_{ac_{\alpha}}} + qSC_{L\alpha}\alpha_{r}(x_{ea} - x_{cg})}{K_{\alpha} - qScC_{M_{ac}}(x_{ea} - x_{cg})}$$

0 ··· torsional divergence

For a given q and α_r , we can evaluate L

Torsional divergence

[Note] equilibrium eqn.

$$(K - qSC_{L\alpha} \cdot e)\alpha_e = qScC_{Mac_{\alpha}} + qSC_{L_{\alpha}}\alpha_r e - W \cdot d$$

A x B

 $Ax=B \rightarrow Kx=F$

The stability is associated with the homogeneous part of the eqn. : $Ax=0, A \equiv 0 \rightarrow divergence$ condition

Torsional Divergence (BAH)

$$1 - C^{\theta\theta} \frac{\partial C_{L}}{\partial \alpha} qSe = 0$$

$$\int \frac{1}{K_{\alpha}} K_{\alpha}$$

If e=0 (a.c. falls on e.a.)

or aft of it, wing is stable at all speeds.

- Divergence: independent of α_r (initial a.o.a) and airfoil camber $C_{M_{ac}}$ the increase in aerodynamic moment about the elastic axis due to an arbitrary change in a.o.a is equal to the corresponding increase in elastic restoring moment

Torsional Divergence (BAH)

By adding a control surface

$$L = qcC_{L}$$

$$C_{L} = C_{L0} + \frac{\partial C_{L}}{\partial \alpha} \alpha + H.O.T + \frac{\partial C_{L}}{\partial \delta} \delta + H.O.T$$

$$= C_{L0} + \frac{\partial C_{L}}{\partial \alpha} \alpha + \frac{\partial C_{L}}{\partial \delta} \delta$$

$$\Box_{L_{\alpha}} \qquad \Box_{L_{\delta}} C_{L_{\delta}}$$

$$C_{M_{ac}} = C_{M_{ac_{0}}} + \frac{\partial C_{M_{ac}}}{\partial \delta} \delta$$

H : moment about the hinge line of control surface

$$= q \cdot S_H \cdot C_H \cdot C_H$$
$$= q \cdot S_H \cdot C_H (C_{H\alpha} \cdot \alpha + C_{H\delta} \cdot \delta)$$

$$\begin{array}{cccc} \textcircled{1} & L(x_{ea} - x_{ac}) + M_{ac} = K_{\alpha} \alpha_{e} \\ & eqSC_{L_{\alpha}} + eqSC_{L_{\delta}} \delta + qScC_{mac} = K_{\alpha} \alpha_{e} \\ \hline \end{array} \\ \hline \begin{array}{ccccc} \textcircled{2} & H = K_{\delta} \delta_{e} = K_{\delta} (\delta - \delta_{0}) \\ & q \cdot S_{H} \cdot C_{H} \cdot C_{H} = q \cdot S_{H} \cdot C_{H} (C_{H\alpha} \cdot \alpha + C_{H\delta} \cdot \delta) = K_{\delta} (\delta - \delta_{0}) \\ & & \left[eqC_{L\alpha} - K_{\alpha} & sqSC_{L\alpha} + qScC_{Mac_{\delta}} \\ & aS_{e} C_{e} C_{e} & aS_{e} C_{e} C_{e} - K_{e} \end{array} \right] \left\{ \begin{array}{c} \alpha \\ \delta \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ -K_{e} \delta_{e} \end{array} \right\}$$

$$\begin{bmatrix} c_{I} c_{L\alpha} & c_{I\alpha} & c_{I\alpha} & c_{I\alpha} & c_{I\alpha} & c_{I\alpha} \\ qS_{H}C_{H}C_{H} & qS_{H}C_{H}C_{H_{\delta}} - K_{\delta} \end{bmatrix} \begin{bmatrix} \alpha \\ \delta \end{bmatrix} = \begin{bmatrix} c_{I} \\ -K_{\delta}\delta_{0} \end{bmatrix}$$

$$\Delta$$

Assumption: $\alpha_r = 0$, $C_{Mac} = 0$, $C_{L_0} = 0$

If $|\Delta|=0 \rightarrow q_{D_1}$: divergence $q = lowest + \{q_{D_1}, q_{D_2}\}$ q_{D_2}

If $\boldsymbol{\Delta}$ is non-singular

$$\begin{cases} \alpha \\ \delta \end{cases} = \Delta^{-1} \begin{cases} 0 \\ -K_{\delta} \delta_{0} \end{cases}$$

If Δ is singular

det(Δ)=0 \rightarrow quadratic eqn. in q_D

…lowest positive q_D is the "divergence dynamic pressure"

If system is rigid

 $L_{rigid} = qC_{L_{\delta}}\delta_0 S(\alpha_r = 0)$

However, with flexible attachment

$$L_{flexible} = qS(C_{L_{\alpha}}\alpha + C_{L_{\delta}}\delta)$$

 q_R : "control surface reversal"

$$\Rightarrow \frac{dL}{d\delta} = 0$$

$$\frac{dL}{d\delta} = qS(C_{L_{\alpha}} \frac{d\alpha}{d\delta} + C_{L_{\delta}})$$
unknown value

From the first equilibrium eqn.

$$(eqSC_{L_{\alpha}} - K_{\alpha})\alpha_{e} + (eqSC_{L_{\delta}} + qScCM_{ac_{\delta}})\delta = 0$$
$$(eqSC_{L_{\alpha}} - K_{\alpha})\frac{d\alpha}{d\delta} + (eqSC_{L_{\delta}} + qScC_{mac_{\delta}}) = 0$$

$$\frac{d\alpha}{d\delta} = -\frac{(eqSC_{L_{\delta}} + qScC_{mac_{\delta}})}{(eqSC_{L_{\alpha}} - K_{\alpha})}$$

For
$$\frac{dL}{d\delta} = 0$$
,

$$qS\left\{C_{L_{\alpha}}\left(-\right)\cdot\frac{eqSC_{L_{\delta}}+qScC_{mac_{\delta}}}{eqC_{L_{\alpha}}-K_{\alpha}}+C_{L_{\delta}}\right\}=0$$

$$qS\left\{C_{L_{\alpha}}\left(-\right)\cdot\frac{eqSC_{L_{\delta}}+qScC_{mac_{\delta}}}{eqC_{L_{\alpha}}-K_{\alpha}}+\frac{eqSC_{L_{\alpha}}C_{L_{\delta}}-C_{L_{\delta}}K_{\alpha}}{eqC_{L_{\alpha}}-K_{\alpha}}\right\}=0$$

$$-C_{L_{\alpha}}qScC_{mac_{\delta}}-C_{L_{\delta}}K_{\alpha}=0$$

$$\therefore q_{R} = -\frac{K\alpha}{S \cdot c} \cdot \frac{C_{L_{\delta}} / C_{L_{\alpha}}}{C_{m_{ac_{\delta}}}}$$

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Aileron Reversal (BAH)

depends upon $C_{L_{\alpha}}, C_{L\beta}, C_{M_{ac_{\beta}}}$

 \cdots dependent upon aerodynamic quantities, $C_{L_{\alpha}}, C_{L_{\beta}}, C_{Mac_{\beta}}$ independent of $e \leftarrow$ aerodynamic moment providing twist at U_R is a pure couple, independent of the e.a. position

$$\cdot U_R = U_D \quad \cdots \quad \frac{\partial C_\partial}{\partial \beta} = -\frac{c}{e} \frac{\partial C_{mAC}}{\partial \beta}$$

 \rightarrow aileron retains its full effectiveness at all speeds

··· nose-down pitching moment due to the deflection aileron is cancelled by nose-up pitching moment due to the lift.

Clamped-free B.C. $W' = Nmg = 1 + \frac{\ddot{z}}{g}$, N: normal load factor The total moment applied at the elastic axis

 $M_{ea}' = L'e + M'_{ac} - W'd = t(y)$: applied torque/span

For the equilibrium eqn., consider a rod in torsion (St. Venant torsion)

Constitutive relation for a uncoupled torsion rod

$$T = GJ \frac{d\theta}{dy}$$

where, GJ : torsional stiffness

J : function of geometry (geometry of aircraft)

 $J = I_n$: polar moment of inertia for circular, solid, cross section

t(y)dy

Combining the two eqns

$$GJ \frac{d^2\theta}{dy^2} = -t(y) = -L'e - M'_{ac} + Nmgd$$

Using a "strip theory," where both lift and moment at a given Spanwise station depend only on $\alpha(y)$ at given station.

$$C_{l}(y) = f(\alpha) = f(\alpha(y))$$

$$\therefore L' = qcC_{L\alpha}\alpha(y)$$

$$M'_{ac} = qc^{2}C_{maco}$$

where, $C_{L\alpha}$: 2-D lift coefficient slope

[Note] Assume $C_{L_{\alpha}}$, $C_{M_{ac_{o}}} \neq f(y)$, constant airfoil chord

Therefore,

$$\frac{d^2\theta}{dy^2} + \lambda^2\theta = \kappa$$

where,

$$\overline{y} = y / l$$

$$\lambda^{2} = l^{2} qecC_{L_{\alpha}} / GJ$$

$$\kappa = -l^{2} / GJ(qcC_{L_{\alpha}}e\alpha_{r} + qc^{2}C_{M_{aco}} - Nmgd)$$

B.C.

$$\theta(0) = 0$$
 ... cantilever end
 $T(1) = 0 = \frac{d\theta}{dy}(1)$... free end

The general sol. is

$$\theta(\overline{y}) = A\sin\lambda\overline{y} + B\cos\lambda\overline{y} + \frac{\kappa}{\lambda^2}$$

Applying B.C.s

$$\theta(0) = 0 \quad \Rightarrow \quad B = -\frac{\kappa}{\lambda^2}$$
$$\frac{d\theta}{dy}(1) = 0 \quad \Rightarrow \quad \lambda(A\cos\lambda - B\sin\lambda) = 0$$
$$\Rightarrow \quad A = B\tan\lambda$$

Finally,

$$\theta(\overline{y}) = \frac{\kappa}{\lambda^2} [1 - \tan \lambda \sin \lambda \overline{y} - \cos \lambda \overline{y}]$$

Divergence occurs when $\theta(\overline{y}) \rightarrow \infty$, and this happen when

$$\lambda_n \rightarrow (2n-1)\frac{\pi}{2} \quad (n=1, 2, \cdots)$$

The torsional divergence will occur for the lowest n(n=1), yielding

$$q_D = (\frac{\pi}{2l})^2 \frac{GJ}{ecC_{L_{\alpha}}}$$

[Note] Comparing with the typical section

$$q_D = \frac{K_\alpha}{C_{L\alpha}Se}$$

Using a homogeneous part of the governing eqn. Applying B.C.

$$\begin{bmatrix} 0 & 1\\ \lambda \cos \lambda & -\lambda \sin \lambda \end{bmatrix} \left\{ \frac{A}{B} \right\} = \left\{ \frac{0}{0} \right\}$$
$$\uparrow$$
$$\Delta$$

For nontrivial solution,

$$\det(\Delta) = 0 \rightarrow \lambda \cos \lambda = 0$$

$$\lambda_n = (2n-1)\frac{\pi}{2}$$

If e < 0, the characteristic eqn. becomes

 $\cosh |\lambda| \neq 0 \rightarrow \text{no divergence}$

Airload Distribution

- The spanwise lift distribution (L') as

$$L'(\overline{y}) = qcC_{L\alpha}(\alpha_r + \theta(\overline{y}))$$

where,

$$\theta(\overline{y}) = \frac{\kappa}{\lambda^2 (1 - \tan \lambda \sin \lambda \overline{y} - \cos \lambda \overline{y})}$$

and $\kappa = \kappa(\alpha_r, N)$

For a given α_r

- \rightarrow corresponding elastic twist distribution
- \rightarrow particular airload distribution

```
··· integrate over the span: total lift (L)
But also L=NW,
```

Therefore either α_r or *N* may be specified and the others are, determined from the total lift.

Airload Distribution

$$L = 2l \int_{0}^{1} L' d\overline{y}$$

= $2qcC_{L\alpha} l[\alpha_r + \frac{\kappa(\alpha, N)}{\lambda^2} (1 - \frac{\tan \lambda}{\lambda})] = NW$

a) α_r is specified by aerodynamics or performance engineering

 $L_{rigid} < L_{elastic}$

b) N is specified by structural engineer

$$L_{rigid} = L_{elastic}$$

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Symmetrical Lift Distribution (BAH)

1) α_r is specified \cdots total lift and lift distribution remains to be computed

- lift distribution is not known explicitly until a numerical value of N has been obtained.

$$c_{l} = c_{l_{\alpha}} \alpha^{r}(0) + c_{l_{\alpha}} \theta(y)$$
$$N = \frac{L}{W} = \frac{2g}{W} \int_{0}^{l} cc_{l} dy$$
$$N = \frac{\sim}{\sim}$$

- rigid lift coefficient distribution due to the specified attitude

$$c_l^r = c_{L_\alpha} \alpha^r(0)$$

- lift coefficient distribution resulting from elastic twist

$$c_l^{e}(y) = c_{l_{\alpha}} \alpha^r(0) [\cos \lambda y + \tan \lambda y \sin \lambda y - 1]$$

Symmetrical Lift Distribution (BAH)

 profound effect of elastic twist on spanwise lift distribution.

... when $\lambda l = \frac{\pi}{2}$, divergence and cl / cl^2 approaches infinity

2) N is specified ... structural design, (V-n diagram, N and speed specified

 \rightarrow attitude and lift distribution must both be computed

- assumption

$$q\int_0^l cc_l^r dy = \frac{NW}{2}$$

Symmetrical Lift Distribution (BAH)

- corrective elastic distribution … will be superposed which produces no additional total lift

$$\int_0^l cc_l^e dy = 0$$

Different form of κ^r

$$\kappa^{r} = -\frac{1}{GJ} \left(\frac{WNe}{2l} + qc_{mac}c^{2} - mNgd\right)$$

- corrective a.o.a. distribution $\alpha^{e}(y)$

$$\alpha^{e}(y) = \alpha^{e}(0) + \frac{\kappa^{2}}{\lambda^{2}}(1 - \tan \lambda l \sin \lambda y - \cos \lambda y)$$

→ nose-down pitching attitude that must be assumed by the wing root in order that the total lift resulting from elastic twist be zero

Symmetrical Lift Distribution (BAH)

area under the various load
 distribution curves remain the
 same

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- Variable cross section properties
- Structural (flexibility) influence function
- For a linear elastic structure

$$C^{\theta\theta}(y,\eta) = \frac{d\theta(y)}{d\tau(\eta)}$$

: resulting twist at point y due to torque at point η

(notation in textbook: $C^{\alpha\alpha}$)

t(*y*)=applied torque/span

 $d\tau(\eta) = t(\eta)d\eta$

 $\Rightarrow \theta(y) = \int_0^y C^{\theta\theta}(y,\eta) t(\eta) d\eta$

- Numerical integration by weighting numbers

$$I = \int_{a}^{b} f(y) dy \cong \sum_{i=1}^{N} f_{i}W_{i}$$
$$I = \lfloor W \rfloor \{f\} = \lfloor 1 \rfloor \begin{bmatrix} \ddots & & \\ & W & \\ & \ddots \end{bmatrix} \{f\}$$

[Ref] B.A.H. p809-812

Therefore, the elastic twist can be expressed as

$$\{\theta\} = \begin{bmatrix} C^{\theta\theta} \end{bmatrix} \begin{bmatrix} \ddots & & \\ & W & \\ & & \ddots \end{bmatrix} \{t\}$$
Nx1 NxN NxN Nx1 Nx1 NxN Nx1

- Structural (flexibility) influence coefficient

Discretized version of structural influence function

If $\Delta \tau_j$: variation of torque of station j

 $\Delta \theta_j$: corresponding variation of twist at station i Then for a linearly elastic structure, $C_{ij} = \frac{\Delta \theta_i}{\Delta \tau_i}$

$$\theta_{i} = \sum_{j=1}^{N} C_{ij} \tau_{j} = [C_{ij}] \{\tau_{j}\}$$

[Note] $\{\tau\} = [C]^{-1}\{\theta\}$ \uparrow stiffness matrix

Static aeroelastic equilibrium

 $\theta(y) = \int_0^y C^{\theta\theta}(y,\eta) t(\eta) d\eta$

$$= \int_0^y C^{\theta\theta}(y,\eta) \{q[e(\eta)cc_l(\eta) + c^2(\eta)c_{mac}(\eta)] - Ngm(\eta)d(\eta)\}d\eta$$

Discretizing the span along N points and using an appropriate integration scheme.

$$\{\theta\} = q[E]\{CC_l\} + q[F]\{C_{Mac}\} - Ng[G]\{m\}$$

where,

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Aerodynamic influence coefficient

If the spanwise airload distribution can be linearly related to the angle of attack distribution, then

$$Aij = \frac{(CC_l)i}{\alpha_j}$$

[Note] For "Strip theory" \rightarrow [A]: diagonal

Therefore,
$$\{cc_l\} = [A]\{\alpha\}$$

where, $\{\alpha\} = \{\alpha_r\} + \{\theta\}$
 $\{\alpha_r\} = \alpha_r(0)\{1\} + \{\alpha_t\}$
 \downarrow
wing root AOA
Finally, $[A]^{-1}\{cc_l\} - \{\alpha_r\} \rightarrow \text{replace } \{\theta\}$

Aeroelastic load distribution

 $[A]^{-1}\{cc_{l}\} = \alpha_{r}(0)\{1\} + \{\alpha_{l}\} + q[E]\{cc_{l}\} + q[F]\{c_{mac}\} - Ng[G]\{m\}$

We can solve by specifying $\alpha_r(0)$ or N, and use the normal load eqn.

Specifying $\alpha_r(0)$, the two sets of equilibrium eqns together.

$$\begin{bmatrix} [A]^{-1} - q[E] & q[G]\{m\} \\ \vdots & \vdots \\ 2q[1] \begin{bmatrix} \ddots & & \\ & W & \\ & \ddots \end{bmatrix} & -W \end{bmatrix} \begin{bmatrix} cc_l \\ & N \\ N \end{bmatrix} = \begin{cases} \frac{\alpha_r(0)\{1\} + \{\alpha_t\} + q[F]\{c_{mac}\}}{0} \\ 0 \end{bmatrix}$$

Torsional divergence

What dynamic pressure will yield a finite load distribution when there are no external disturbances

$$[[A]^{-1} - q[E]] \{cc_l\} = \{0\}$$

divergence occurs when det(Δ)=0

 \rightarrow q_D is the lowest root

We could also write:

$$[A][E]\{cc_l\} = (\frac{1}{q})\{cc_l\}$$
$$(A) = (\frac{1}{q})\{cc_l\}$$
$$(A) = (\frac{1}{q})\{cc_l\}$$
$$(A) = (\frac{1}{q})\{cc_l\}$$
$$(A) = (\frac{1}{q})\{cc_l\}$$

Structural Influence Function (BAH)

$$w(x, y) = \iint_{s} C(x, y; \xi, \eta) Z(\xi, \eta) d\xi d\eta$$
$$Z(\xi, \eta): \text{normal load}$$

• wing is sufficiently slender so that chordwise segments of the wing parallel to the x-axis can be assumed rigid.

$$\rightarrow C(x, y; \xi, \eta) = C^{zz}(y, \eta) - xC^{\theta z}(y, \eta) + \xi C^{\theta \theta}(y, \eta) - \xi C^{z\theta}(y, \eta)$$

Influence function definition

 $C^{pq}(y,\eta)$ = linear or angular deflection in the *p*-direction at *y* due to a unit force or torque in the *q*-direction at η

Deflection

$$w(x, y) = w(y) - x\theta(y)$$

Structural Influence Function (BAH)

$$w(y) = \int_0^l C^{zz}(y,\eta) Z(\eta) d\eta + \int_0^l C^{z\theta}(y,\eta) t(\eta) d\eta$$
$$\theta(y) = \int_0^l C^{\theta z}(y,\eta) Z(\eta) d\eta + \int_0^l C^{\theta \theta}(y,\eta) t(\eta) d\eta$$

Where

$$Z(\eta) = \int_{chord} Z(\xi, \eta) d\xi$$
$$t(\eta) = -\int_{chord} \xi Z(\xi, \eta) d\xi$$

--- chordwise drag loads on the wing have been neglected.

This formula can be applied to unswept or swept wings with structural discontinuities.

Swept-back wing … a.o.a. is reduced in the streamwise direction
 → tends to shift the pressure center of the aerodynamic loads inboard

(swept-forward ··· outboard)

- → possibility of wing divergence reduced, possibility of control reversal increased
- \rightarrow Produce large fore and after pressure center shifts
- \rightarrow marked effect upon static longitudinal stability
- Integral eqn. (streamwise segments)

$$\begin{aligned} \theta(y) &= \int_0^l C^{\theta Z}(y,\eta) Z(\eta) d\eta + \int_0^l C^{\theta \theta}(y,\eta) t(\eta) d\eta \\ &= \int_0^l C^{\theta Z}(y,\eta) (gcc_l - mNg) d\eta + \int_0^l C^{\theta \theta}(y,\eta) (gecc_l + gc^2 c_{mAC} - mNgd) d\eta \end{aligned}$$

substitute $c_l = c_l^r + c_l^e$

$$\theta(y) = q \int_0^l \overline{C}(y,\eta) cc_l d\eta + F(y)$$

→ c_l^{e} and θ are unknown, and all other quantities are regarded as known.

$$\overline{C}(y,\eta) = C^{\theta z}(y,\eta) + e(\eta)C^{\theta \theta}(y,\eta) \rightarrow \text{non self-adjoint}$$

nonsymmetrical function

- homogeneous form

$$\theta(y) = q \int_0^l \overline{C}(y,\eta) c c_l^e d\eta$$

since $\overline{C}(y,\eta)$ is not a symmetrical function, real characteristic values may not exist for a given case.

$$\Rightarrow [A]\{cc_l^e\} = q[\overline{E}]\{cc_l^e\}$$

[A] : matrix of aerodynamic influence coefficients

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- Solution in terms of matrices for arbitrary planform and stiffness

$$a[ccl_e] = q \int_0^l \overline{C}(y,\eta) c \overline{c_l}^e d\eta + \overline{f}(y)$$

a: appropriate linear aerodynamic operator accounting for spanwise aerodynamic effects

- In matrix form

symmetric $[A^{s}]{cc_{l}^{e}} = q[\overline{E}]{cc_{l}^{e}} + {\overline{f}}$

[A^s]: Matrix of aerodynamic influence coeff. for symmetrical loading

$$\{\overline{f}\} = q[\overline{E}]\{cc_l^r\} + q[\overline{F}]\{c_{mAC}\} - N[\overline{G}]\{mg\}$$
$$[\overline{E}] = ([C^{\theta_z}] + [C^{\theta\theta}] \begin{bmatrix} \ddots & & \\ & e & \\ & & \ddots \end{bmatrix}) \begin{bmatrix} \ddots & & \\ & \overline{W} & \\ & \ddots \end{bmatrix}$$

$$[\overline{F}] = ([C^{\theta\theta}] \begin{bmatrix} \ddots & & \\ & c^2 & \\ & \ddots \end{bmatrix}) \begin{bmatrix} \ddots & & \\ & \overline{W} & \\ & \ddots \end{bmatrix}$$
$$[\overline{G}] = ([C^{\theta z} + [C^{\theta\theta}] \begin{bmatrix} \ddots & & \\ & d & \\ & \ddots \end{bmatrix}) \begin{bmatrix} \ddots & & \\ & \overline{W} & \\ & \ddots \end{bmatrix}$$

Eq. (5-195): $[A^s]$ According to Weissinger's theory

- Alternative form

By putting
$$\{cc_l^e\} = \{cc_l\} - \{cc_l^r\}$$

 $[A^s]\{cc_l\} = q[\overline{E}]\{cc_l\} + \{\alpha^r\} + q[\overline{F}]\{c_{mAC}\} - N[\overline{G}]\{mg\}$
where $\{\alpha^r\} = [A^s]\{cc_l^r\}$

 $\{cc_{l}^{e}\} \text{ and } \{cc_{l}\} \text{ are unknowns.}$ when $\{\alpha^{r}\}$ (attitude) is specified $[A^{s}\}\{cc_{l}\} = q([\overline{E}]\} - \frac{2}{W}[\overline{G}]\{mg\} \lfloor 1 \rfloor \begin{bmatrix} \ddots & & \\ & \overline{W} & \\ & \ddots \end{bmatrix} \} \{cc_{l}\} + \{\alpha^{r}\} + q[\overline{F}]\{c_{mAC}\}$

··· can be solved by matrix inversion, some cases by matrix iteration

Anti-symmetrical a.o.a. distribution (Rolling of a Wing, BAH)

B.A.H. 8.3(d) Anti-symmetrical lift distribution (rolling of a wing) - anti-symmetrical a.o.a. distribution

$$\alpha(y) = \frac{\partial \alpha^r}{\partial \beta} \beta - \frac{py}{U} + \theta(y)$$

p: rolling velocity (rad/sec)

 $\frac{py}{U}$: induced a.o.a. due to rolling velocity *P*

- Equation of equilibrium (integral eqn.)

$$c_{mAC}(y) = \frac{\partial c_{mAC}}{\partial \beta} \beta$$
$$c_{l}^{r}(y) = \frac{\partial c_{l}^{r}}{\partial \beta} \beta + \frac{\partial c_{l}^{r}}{\partial c_{l} l / U} (\frac{pl}{U})$$
$$N(y) = \frac{y\dot{p}}{g}$$

$$\begin{aligned} \theta(y) &= q \int_0^l C^{\theta\theta}(y,\eta) ecc_l^e d\eta + f_a(y) \\ f_a(y) &= \int_0^l C^{\theta\theta}(y,\eta) [qec(\frac{\partial c_l^r}{\partial \beta}\beta + \frac{\partial c_l^r}{\partial (pl/U)}(\frac{pl}{U})) + qc^2 \frac{\partial c_{mAC}}{\partial \beta}\beta - m\eta \dot{p}d] d\eta \end{aligned}$$

 \cdots all terms except $\theta(y)$ and cc_l^{e} are known

- Solution by matrices

 $[A^{a}]\{cc_{l}^{e}\} = q[E]\{cc_{l}^{e}\} + \{f_{a}\}$

 $[A^{a}]$: Matrix of aerodynamic influence coeff. for anti-symmetrical loading on a straight wing, refer to Eq. (5-157)

$$\{f^{a}\} = q[E](\{c\frac{\partial c_{l}^{r}}{\partial \beta}\beta + c\frac{\partial c_{l}^{r}}{\partial (pl/U)}\}\frac{pl}{U}) + q[F]\{\frac{\partial c_{mAC}}{\partial \beta}\}\beta - [G]\begin{bmatrix} \ddots & & \\ & y & \\ & & \ddots \end{bmatrix}\{m\}\dot{p}$$

$$[E] = [C^{\theta\theta}] \begin{bmatrix} \ddots & & \\ & e & \\ & & \ddots \end{bmatrix}) \begin{bmatrix} \ddots & & \\ & \overline{W} & \\ & & \ddots \end{bmatrix}$$

$$[F] = [C^{\theta\theta}] \begin{bmatrix} \ddots & & \\ & c^2 & \\ & & \ddots \end{bmatrix}) \begin{bmatrix} \ddots & \overline{W} & \\ & & \ddots \end{bmatrix}$$

$$[G] = [C^{\theta\theta}] \begin{bmatrix} \ddots & & \\ & d & \\ & & \ddots \end{bmatrix}) \begin{bmatrix} \ddots & & \\ & \overline{W} & \\ & & \ddots \end{bmatrix}$$

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- Alternative form

by substituting

$$\{cc_{l}^{e}\} = \{cc_{l}\} - \{cc_{l}^{r}\} = \{cc_{l}\} - \{c\frac{\partial c_{l}^{r}}{\partial \beta}\}\beta - \{c\frac{\partial c_{l}^{r}}{\partial (pl/U)}\}\frac{pl}{U}$$
$$[Aa]\{cc_{l}\} = q[E]\{cc_{l}\} + \{f_{a}'\}$$

 $\cdots \beta, p, \dot{p}$ are prescribed, can be solved by matrix inversion or iteration

 $\{cc_l^{e}\} = ([A^{a}] - q[E])^{-1}\{f_a\}$

- Sudden aileron displacement
 - \cdots if β , p, \dot{p} are not prescribed, additional eqn. must be needed.

$$\dot{p} = \frac{2g}{I_x} \lfloor H \rfloor \{cc_l\} = \frac{2g}{I_x} \lfloor H \rfloor (\{cc_l^e\} + \{c\frac{\partial c_l^r}{\partial \beta}\}\beta)$$

row matrix $\lfloor H \rfloor = \lfloor 1 \rfloor \begin{bmatrix} \ddots & & \\ & y & \ddots \end{bmatrix} \begin{bmatrix} \ddots & & \\ & \overline{W} & \ddots \end{bmatrix}$

steady rolling motion

 $\lfloor H \rfloor \{ cc_l \} = 0$

- aileron effectiveness

$$\frac{\partial(pl/U)}{\partial\beta} = -\frac{\left\lfloor H \right\rfloor ([A^a] - q[E])^{-1} (\{\partial \alpha^r / \partial \beta\} + q[F] \{\partial c_{mAC} / \partial \beta\})}{\left\lfloor H \right\rfloor ([A^a] - q[E])^{-1} \{y/l\}} \dots (*)$$

lift distribution can be computed by $\dot{p} = 0$

pl/U and β cannot be both specified due to (*)

→ In design specifications, specified pl/U, then β from (*)

-aileron reversal ··· numerator of (*) vanishes

$$q_{R} = -\frac{\left\lfloor H \rfloor \left(\left[A^{a} \right] - q_{R}[E] \right)^{-1} \left\{ \partial \alpha^{r} / \partial \beta \right\} \right.}{\left\lfloor H \rfloor \left(\left[A^{a} \right] - q_{R}[E] \right)^{-1}[F] \left\{ \partial c_{mAC} / \partial \beta \right\}}$$

··· can be solved iteratively

- Alternative form of q_R

$$\lfloor H \rfloor \{ cc_l^{e} \} + \lfloor H \rfloor \{ cc_l^{r} \} = 0$$

$$q_{R} = -\frac{c_{l_{\beta}}}{\frac{1}{sl} \lfloor H \rfloor ([A^{a}] - q_{R}[E])^{-1} ([E] \{ c \frac{\partial c_{l}^{r}}{\partial \beta} \} + [F] \{ \frac{2c_{mAC}}{\partial \beta} \})}$$

where $c_{l_{\beta}} = \frac{1}{sl} \lfloor H \rfloor \{ c \frac{\partial c_{l}^{r}}{\partial \beta} \}$
 $c_{l_{p}} = \frac{1}{sl} \lfloor H \rfloor \{ c^{2} \frac{\partial c_{l}^{r}}{\partial (pl/U)} \}$

Sweep + Roll (BAH)

$$\theta(y) = q \int_0^l \overline{C}(y,\eta) c c_e^{e} d\eta + \overline{f}_a(y)$$

where

$$\begin{split} f_{a}(y) &= q \int_{0}^{l} \overline{C}(y,\eta) \left[c \frac{\partial c_{l}^{r}}{\partial \beta} d\eta + c \frac{\partial c_{l}^{r}}{\partial (pl/U)} (\frac{pl}{U}) \right] d\eta \\ &+ q \int_{0}^{l} C^{\theta\theta}(y,\eta) c \frac{\partial c_{mAC}}{\partial \beta} \beta c^{2} d\eta - p^{\circ} \int_{0}^{l} \left[C^{\theta Z}(y,\eta) + C^{\theta\theta}(y,\eta) d \right] m\eta d\eta \end{split}$$

- Appropriate relation between antisymmetric lift distribution and twist distribution

$$a[cc_l] = q \int_0^l \overline{C}(y,\eta) cc_e^{\ e} d\eta + \overline{f}_a(y)$$

Sweep + Roll (BAH)

- Matrix form

 $[A^{a}][cc_{l}] - q[\overline{E}] + \{f_{a}\}$ $\{\overline{f}_{a}\} = q[\overline{E}](\{c\frac{\partial c_{l}}{\partial \beta}\}\beta + \{c^{2}\frac{\partial c_{l}}{\partial (pl/U)}\}(\frac{pl}{U})) + q[\overline{F}]\{\frac{\partial c_{mAC}}{\partial \beta}\}\beta - [G]\begin{bmatrix} \ddots & & \\ & y & \\ & & \ddots \end{bmatrix}\{m\}p^{\circ}$

- Aileron reversal

$$q_{R} = -\frac{c_{l_{\beta}}}{\frac{1}{sl} \lfloor H \rfloor ([A^{a}] - q_{R}[E])^{-1} ([E] \{ c \frac{\partial c_{l}}{\partial \beta} \} + [F] \{ \frac{2c_{mAC}}{\partial \beta} \})}$$

- Influence of sweep on aileron reversal

- \cdots for swept-forward wing aileron deflected down \rightarrow lift increase
- \rightarrow nose-up deflection
 - \leftrightarrow opposite to nose-down twisting by the pitching moment

Sweep + Roll (BAH)

... two effects tend to cancel each other aileron remain effective

In the case of swept-back wing, two effects add together, \rightarrow low aileron effectiveness

#7 Katz & Plotkin

"Low-speed Aerodynamics"

- 1. Field description
 - Lagrangian method
 - Euler method

a) $\overline{\delta}(t, x_0) \cdots$ L, particle point of view $x = x_p(x_0, y_0, z_0, t) \leftarrow$ material b) $\delta(t, x) \cdots$ E, u = u(x, y, z, t) field point of view \leftarrow fluid

- Velocity

b)
$$u(t,x) = \lim_{\Delta t \to 0} \frac{\delta(t + \Delta t, x + \Delta x)}{\Delta t} = \frac{\partial \delta}{\partial t} + u \frac{\partial \delta}{\partial x}$$

- Acceleration
- 3D

$$\frac{D()}{Dt} = \frac{\partial()}{\partial t} + q \cdot \nabla()$$

- 2. Governing Eqn's
 - 1) Integral form

1 Mass

$$\frac{d}{dt}m_{c.v} = \frac{\partial}{\partial t}\int_{c.v.}\rho dV + \int_{c.s.}\rho(\vec{q}\cdot\vec{n})dS = 0$$

② Momentum

$$\frac{d}{dt}(m\vec{q})_{c.v.} = \frac{\partial}{\partial t} \int_{c.v.} \rho \vec{q} dV + \int_{c.s.} \rho \vec{q} (\vec{q} \cdot \vec{n}) dS = \sum \vec{F}$$
$$(\sum \vec{F})_i = \int_{c.v.} \rho f_c dV + \int_{c.s.} n_j \cdot \tau_{ij} dS$$

③ Energy

2) Differential form

- 1 Mass
 - divergence theorem

$$\int_{c.s.} n_j q_j dS = \int_{c.v.} \frac{\partial q_j}{\partial x_j} dV$$

$$\int_{c.v.} (\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{q}) dV = 0$$

$$\frac{\partial \rho}{\partial t} + \vec{q} \cdot \nabla \rho + \rho \nabla \vec{q} = 0 \quad \Rightarrow \quad \frac{D\rho}{Dt} + \rho \nabla \cdot \vec{q} = 0$$

$$\frac{D\rho}{Dt}$$
incompressible: $\nabla \vec{q} = 0$

Active Aeroelasticity and Rotorcraft Lab., Seoul National University