4.4 DIFFUSION

= Diffusion leads to the homogenization of a mixture

- can be described using the model of a "random walk" process.

= Consider a one-dimensional random walk.
- Consider a molecule constrained to a linear path

- moving in steps of length, |, with one step being made per unit time, T.

= In a random walk,
- all paths that can be traversed in any elapsed period are equal

- the probability that the molecule has arrived at any particular point

the number of paths leading to that point

the total of possible paths to all accessible points



4.4 DIFFUSION

= Number of cases
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= At time T,

- it is equally likely that the molecule is at +| and -I
= At time 2 T,
- the relative probabilities of being at +2I, 0, and -2I, are 1, 2, and 1, respectively.



4.4 DIFFUSION

= The probability, P(m, r), that the molecule is at a given location after m time units

(m = t/7) is given by

! 1"
P = st (3)

: where the set of locations is defined by x = (-m + 2nl, withr=0,1,... m.

= The mean square displacement of the molecule, A2

Sum of the squares of the displacements

Total number of possibilities (2™)

- The squares of the displacements are used, because movement is possible in both
the positive and negative directions,

> the sum of the displacements is always zero.



4.4 DIFFUSION

TABLE 4.4.1 Distributions for a Random Walk Process®
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9] = step size, 1/7 = step frequency, t = mT = time interval.

’n = total number of possibilities.

‘A = possible positions; relative probabilities are parenthesized.



4.4 DIFFUSION

= In general, A% is given by

A’ =mP=L1P =2D;

- where the diffusion coefficient, D, identified as 12/271, is a constant related to
the step size and step frequency. (derived by Einstein)

- It has units of length?/time, usually cm?/s.

= The root-mean-square displacement at time t is thus

A = V2Dt

= This equation provides a handy rule of thumb for estimating the thickness of a
diffusion layer (e.g., how far product molecules have moved, on the average, from an
electrode in a certain time).

> A typical value of D for aqueous solutions is 5 X 106 cm?/s, so that a diffusion layer

thickness of 104 cm is built up in 1 ms, 103 cm in 0.1 s, and 102 cm in 10 s.



4.4 DIFFUSION

= As m becomes large, a continuous form can be obtained.

= For N, molecules located at the origin at t = 0,

- a Gaussian curve will describe the distribution at some later time, t.

= The number of molecules, N(x, t), in a segment Ax wide centered on position x is

N(_x, I) _ &}C exp (:ﬁ)
No 2V Dt 4Dt




4.4.2 Fick's Laws of Diffusion

= Fick's laws
- differential equations describing the flux of a substance and its concentration as

functions of time and position.

= Consider the case of linear (one-dimensional) diffusion.
= The flux of a substance O at a given location x at a time t, written as J(x, t)
- the net mass-transfer rate of O

> expressed as amount per unit time per unit area (e.g., mol st cm-2).

= Thus J5(x, t) represents the number of moles of O that pass a given location per

second per cm? of area normal to the axis of diffusion.



4.4.2 Fick's Laws of Diffusion

= Fick's first law

- states that the flux is proportional to the concentration gradient, dC,/dx:

ICo(x, 1)

__JO(.X, f) = DO Ix

= This equation can be derived from the microscopic model

= Consider location x, and assume Ng(x) molecules are immediately to left of x, and

No(x+Ax) molecules are immediately to the right, at time t

Ng (x + Ax)

Ng (x + Ax)
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4.4.2 Fick's Laws of Diffusion

= All of the molecules are understood to be within one step-length, Ax, of location x.

= During the time increment, At, half of them move Ax in either direction by the
random walk process, so that the net flux through an area A at x is given by the
difference between the number of molecules moving from left to right and the

number moving from right to left:

Ng (x + Ax)

No (x + Ax)

No() No(x + Ax)

_1_2 2 2
Jo(x, 1) A At

w =]

= Multiplying by Ax?/Ax? and noting that the concentration of O is C; = Ng/AAx, we
derive

Ax?2 Colx + Ax) — Cp(x)
2At Ax

“Jro(x, f) =



4.4.2 Fick's Laws of Diffusion

* From the definition of the diffusion coefficient, Dy = Ax?/2At, and allowing Ax

and At approach zero, we obtain the Fick’s first law

Y

_ Ax2Colx + Ax) — Co(x)

dCo(x, f)
T 2At Ax

— t
Jox, 1) ox

__Jo(x, l) = DO




4.4.2 Fick's Laws of Diffusion

» Fick's second law - the change in concentration of O with time:

c?CO(x, f) - D 52C0(x, f)
T = Dy __(9_;2__

= This equation is derived from the first law
= The change in concentration at a location x is given by the difference in flux into

and flux out of an element of width dx

dCo(x, 1) _J, ) = Jx + dx, 1) = Note that J/dx has units of
ot dx (mol st cm2)/cm or change
dx In concentration per unit time.
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x + dx out of an element at x.
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4.4.2 Fick's Laws of Diffusion

= From the Fick's first law, we obtain

&
_al(x, 1) 9 dCp(x, 1) i i
&x - (?x O (ix Jg (%, 1) ——i—‘» Jo (x +dx, 1)
x+=dx
= Combination of the equations yields
IColx, 1) J(x, 1) — J(x + dx, 1) -
ot dx
aJ(x, 1)
Jx +dx, ) = J(x, 1) + I dx - dCo(x, t) _[(a b ICo(x, 1)
ot Ix 0 ox
_adlx, b _ iD dCo(x, 1)

ox gx O ox —



4.4.2 Fick's Laws of Diffusion

= When D is not a function of x,

C(x, 1) #Ca(x, 1)
c?CO(x, t) o J §Co(x, f} » i__c.)__ =D (__9_.__)
o (&) [D 0 ( ox )] ot o\ o

=» In most electrochemical systems, the changes in solution composition caused by
electrolysis are sufficiently small that variations in the diffusion coefficient with x can

be neglected.

= Solutions of this equation yield concentration profiles, C5(x, t).



4.4.2 Fick's Laws of Diffusion

» The general formulation of Fick's second law for any geometry is

ICo
W = DO VZCO

: where V72 is the Laplacian operator.

= Forms of V2 for different geometries are given in Table 4.4.2.

TABLE 4.4.2 Forms of the Laplacian Operator for Different Geometries”

Type Variables V? Example

Linear x 9%0 x* Shielded disk electrode
Spherical r 3%lar + (2/r)(dfar) Hanging drop electrode
Cylindrical (axial) r 3%/or? + (1/r)(0/or) Wire electrode

Disk v,z 92/9r% + (1/r)(0/0r) + 9°/9z° Inlaid disk ultramicroelectrode”
Band X,z 9%/ox% + 9%0z* Inlaid band electrode®

“See also J. Crank, “The Mathematics of Diffusion,” Clarendon, Oxford, 1976.

by = radial distance measured from the center of the disk; z = distance normal to the disk surface.

‘x = distance in the plane of the band; z = distance normal to the band surface.



4.4.2 Fick's Laws of Diffusion

= Thus, for problems involving a planar electrode,

- the linear diffusion equation is appropriate.

= For problems involving a spherical electrode, such as the hanging mercury drop

electrode (HMDE),

- the spherical form of the diffusion equation must be employed:
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4.4.3 Boundary Conditions in Electrochemical Problems

» The solution of these equations, that is, the discovery of an equation expressing Cg,
Cr . .. as functions of x and t, requires that

- i) an initial condition (the concentration profile at t = 0)

- i) two boundary conditions (functions applicable at certain values of x) be given

for each diffusing species.



4.4.3 Boundary Conditions in Electrochemical Problems

= Typical initial and boundary conditions include the following.
(a) Initial Conditions

= These are usually of the form

Colx, 0) = f(x)

= For example, if O is uniformly distributed throughout the solution at a bulk

concentration Cy* at the start of the experiment, the initial condition is

Co(x,0)=Cg  (forallx)

= If R is initially absent from the solution, then

Cr(x,0)=0 (for all x)



4.4.3 Boundary Conditions in Electrochemical Problems

(b) Semi-infinite Boundary Conditions

= The electrolysis cell is usually large compared to the length of diffusion
- hence the solution at the walls of the cell is not altered by the process at the

electrode

= One can normally assume that at large distances from the electrode (x > ) the

concentration reaches a constant value, typically the initial concentration, so that, for

example,
lim Co(x, ) =C§ (at all )
X—>00
lim Cr(x,?) =0 (at all 1)
X—>o0

= However, for thin-layer electrochemical cells, where the cell wall is at a distance, |,
of the order of the diffusion length, one must use boundary conditions at x = |

instead of those for x = oo (Finite boundary condition)



4.4.3 Boundary Conditions in Electrochemical Problems

(c) Electrode Surface Boundary Conditions

= Additional boundary conditions usually relate to concentrations or concentration
gradients at the electrode surface. For example, if the potential is controlled in an
experiment, one might have

Co(0, ) = A(E)

Co(0,1)
Co(0, 1) = HE)

- where f(E) is some function of the electrode potential derived from the general
current-potential characteristic or one of its special cases (e.g., the Nernst equation).
= If the current is the controlled quantity, the boundary condition is expressed in

terms of the flux at x = O; for example,

- ICo(x, 1)
~Jo(0, 1) = ﬁ =D, [%—f] - f@



4.4.4 Solution of Diffusion Equations

= Sometimes one is interested only in the steady-state solution (e.g., with rotating
disk electrodes or ultramicroelectrodes). Since dCy/dt = 0 in such a situation, the

diffusion equation simply becomes

&CO ’ 2
£0 = py V2, » ViCo =0

= For most cases, the electrochemical system is not a steady state

- solve the PDEs using the Laplace transformation

Co

——==Do V2Cq






