
4.4 DIFFUSION

▪ Diffusion leads to the homogenization of a mixture

� can be described using the model of a "random walk" process. 

▪ Consider a one-dimensional random walk. 

� Consider a molecule constrained to a linear path

� moving in steps of length, l, with one step being made per unit time, τ. 

▪ In a random walk, 

� all paths that can be traversed in any elapsed period are equal

� the probability that the molecule has arrived at any particular point 

= 
the number of paths leading to that point

the total of possible paths to all accessible points



4.4 DIFFUSION

▪ At time τ, 

� it is equally likely that the molecule is at +l and -l 

▪ At time 2 τ, 

� the relative probabilities of being at +2l, 0, and -2l, are 1, 2, and 1, respectively.

▪ Number of cases



4.4 DIFFUSION

▪ The probability, P(m, r), that the molecule is at a given location after m time units 

(m = t/τ) is given by

▪ The mean square displacement of the molecule, ∆��

� The squares of the displacements are used, because movement is possible in both 

the positive and negative directions, 

� the sum of the displacements is always zero.

: where the set of locations is defined by x = (-m + 2r)l, with r = 0, 1 , . . . m.

Sum of the squares of the displacements
= 

Total number of possibilities (2m)
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4.4 DIFFUSION

▪ In general, ∆�� is given by

� where the diffusion coefficient, D, identified as l2/2τ, is a constant related to 

the step size and step frequency. (derived by Einstein)

� It has units of length2/time, usually cm2/s.

▪ The root-mean-square displacement at time t is thus

▪ This equation provides a handy rule of thumb for estimating the thickness of a 

diffusion layer (e.g., how far product molecules have moved, on the average, from an 

electrode in a certain time). 

� A typical value of D for aqueous solutions is 5 X 10-6 cm2/s, so that a diffusion layer 

thickness of 10-4 cm is built up in 1 ms, 10-3 cm in 0.1 s, and 10-2 cm in 10 s.
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▪ As m becomes large, a continuous form can be obtained. 

▪ For N0 molecules located at the origin at t = 0, 

� a Gaussian curve will describe the distribution at some later time, t. 

▪ The number of molecules, N(x, t), in a segment Δx wide centered on position x is



4.4.2 Fick's Laws of Diffusion

▪ Fick's laws

� differential equations describing the flux of a substance and its concentration as 

functions of time and position. 

▪ Consider the case of linear (one-dimensional) diffusion.

▪ The flux of a substance О at a given location x at a time t, written as JO(x, t)

� the net mass-transfer rate of O

� expressed as amount per unit time per unit area (e.g., mol s-1 cm-2). 

▪ Thus JO(x, t) represents the number of moles of О that pass a given location per

second per cm2 of area normal to the axis of diffusion.



4.4.2 Fick's Laws of Diffusion

▪ Fick's first law 

� states that the flux is proportional to the concentration gradient, ���/��:

▪ This equation can be derived from the microscopic model 

▪ Consider location x, and assume NO(x) molecules are immediately to left of x, and 

NO(x+Δx) molecules are immediately to the right, at time t



4.4.2 Fick's Laws of Diffusion

▪ All of the molecules are understood to be within one step-length, Δx, of location x.

▪ During the time increment, Δt, half of them move Δx in either direction by the 

random walk process, so that the net flux through an area A at x is given by the 

difference between the number of molecules moving from left to right and the 

number moving from right to left:

▪ Multiplying by Δх2/Δx2 and noting that the concentration of О is CO = NO/AΔx, we 

derive



4.4.2 Fick's Laws of Diffusion

▪ From the definition of the diffusion coefficient, DO = Δx2/2Δt, and allowing Δx

and Δt approach zero, we obtain the Fick’s first law
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▪ Fick's second law � the change in concentration of О with time:

▪ This equation is derived from the first law 

▪ The change in concentration at a location x is given by the difference in flux into 

and flux out of an element of width dx

▪ Note that J/dx has units of 

(mol s-1 cm-2)/cm or change 

in concentration per unit time. 
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▪ From the Fick’s first law, we obtain

▪ Combination of the equations yields



4.4.2 Fick's Laws of Diffusion

▪ When DO is not a function of x,

� In most electrochemical systems, the changes in solution composition caused by 

electrolysis are sufficiently small that variations in the diffusion coefficient with x can 

be neglected.

▪ Solutions of this equation yield concentration profiles, CO(x, t).



4.4.2 Fick's Laws of Diffusion

▪ The general formulation of Fick's second law for any geometry is

: where 	2 is the Laplacian operator. 

▪ Forms of 	2 for different geometries are given in Table 4.4.2. 
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▪ Thus, for problems involving a planar electrode, 

� the linear diffusion equation is appropriate. 

▪ For problems involving a spherical electrode, such as the hanging mercury drop 

electrode (HMDE), 

� the spherical form of the diffusion equation must be employed:



4.4.3 Boundary Conditions in Electrochemical Problems

▪ The solution of these equations, that is, the discovery of an equation expressing CO,

CR, . . . as functions of x and t, requires that 

� i) an initial condition (the concentration profile at t = 0) 

� ii) two boundary conditions (functions applicable at certain values of x) be given 

for each diffusing species. 



4.4.3 Boundary Conditions in Electrochemical Problems

▪ Typical initial and boundary conditions include the following.

(a) Initial Conditions

▪ These are usually of the form

▪ For example, if О is uniformly distributed throughout the solution at a bulk 

concentration CO* at the start of the experiment, the initial condition is

▪ If R is initially absent from the solution, then
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(b) Semi-infinite Boundary Conditions

▪ The electrolysis cell is usually large compared to the length of diffusion

� hence the solution at the walls of the cell is not altered by the process at the 

electrode 

▪ One can normally assume that at large distances from the electrode (x � ∞) the

concentration reaches a constant value, typically the initial concentration, so that, for

example,

▪ However, for thin-layer electrochemical cells, where the cell wall is at a distance, l, 

of the order of the diffusion length, one must use boundary conditions at x = l 

instead of those for x � ∞ (Finite boundary condition)
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(c) Electrode Surface Boundary Conditions

▪ Additional boundary conditions usually relate to concentrations or concentration 

gradients at the electrode surface. For example, if the potential is controlled in an 

experiment, one might have

� where f(E) is some function of the electrode potential derived from the general 

current-potential characteristic or one of its special cases (e.g., the Nernst equation).

▪ If the current is the controlled quantity, the boundary condition is expressed in 

terms of the flux at x = 0; for example,



4.4.4 Solution of Diffusion Equations

▪ Sometimes one is interested only in the steady-state solution (e.g., with rotating 

disk electrodes or ultramicroelectrodes). Since dCO/dt = 0 in such a situation, the 

diffusion equation simply becomes

▪ For most cases, the electrochemical system is not a steady state 

� solve the PDEs using the Laplace transformation




