457.644 Advanced Bridge Engineering Aerodynamic Design of Bridges Part V: Aeroelastic and Aerodynamic Analysis

Structural Design Lab.(Prof. Ho-Kyung Kim) Dept. of Civil & Environmental Eng. Seoul National University

Seoul National University Structural Design Laboratory

1. Single-mode Flutter and Buffeting Theory

Concept of single mode single component

Basic assumption

- The eigen-frequencies are well spaced out on the frequency axis.
- The cross sectional shear center is assumed to coincide (or nearly coincide) with the centroid.
- There are no other significant source of mechanism or flow induced coupling between the three displace component (horizontal, vertical or torsion).

Concept of single mode single component

Features

- Coupling between modes may be ignored.
- Each mode shape only contains one component, i.e. any of the N_{mod} mode shapes is purely horizontal, vertical or torsion.
- The variance of a displacement component is the sum of all variance contributions from excited modes containing displacement components exclusively in the y, z or θ direction.
 - σ_y² is the sum of all variances associated with the relevant number of modes containing only horizontal displacement.

$$\begin{bmatrix} \sigma_y^2 \\ \sigma_z^2 \\ \sigma_\theta^2 \end{bmatrix} = \begin{bmatrix} \sum_{i_y} \sigma_{i_y}^2 \\ \sum_{i_z} \sigma_{i_z}^2 \\ \sum_{i_\theta} \sigma_{i_\theta}^2 \end{bmatrix}$$

Equation of motion for lateral direction

The modal time domain equilibrium equation for a lateral single mode

$$\tilde{M}_{y}\cdot\ddot{\eta}_{y}(t)+\tilde{C}_{y}\cdot\dot{\eta}_{y}(t)+\tilde{K}_{y}\cdot\eta_{y}(t)=\tilde{Q}_{bu}(t)+\tilde{Q}_{se}(t,\eta_{y},\dot{\eta}_{y},\ddot{\eta}_{y})$$

By the assumption and features for single mode, single component

- Mode shape: $\phi_{z_i} = \phi_{\theta_i} = 0$
- Aerodynamic force (for drag): $\tilde{Q}_{bu}(t) = \frac{1}{2}\rho U^2 B^2 L \int_{deck} \left[2C_D \frac{u}{U} \phi_y \right] \frac{dx}{l}$

$$\tilde{Q}_{se}(t,\dot{\eta}_{y}) = \frac{1}{2}\rho U^{2}B^{2}L \int_{deck} \frac{KB}{U} \Big[\phi_{y}^{2}P_{1}^{*}\dot{\eta}_{y}\Big] \frac{dx}{l}$$

As a result, the load per unit length can be derived as follows:

$$\tilde{M}_{y}\left[\ddot{\eta}_{y}+2\omega_{y}\zeta_{y}\cdot\dot{\eta}_{y}+\omega_{y}^{2}\cdot\eta\right]=\frac{1}{2}\rho U^{2}B^{2}L\left[\int_{L_{exp}}\Lambda_{D}\phi_{y}\frac{dx}{L}+\frac{KB}{U}P_{1}^{*}\int_{L_{exp}}\phi_{y}^{2}\left(x\right)\frac{dx}{L}\cdot\dot{\eta}_{y}\right]$$

- L_{exp} is the flow exposed part of the structure.
- $\Lambda_D = 2C_D u/U$
- \tilde{Q}_b and \tilde{Q}_{se} are modal aerodynamic loads. Each term is buffeting forces and unsteady self-excited force, respectively. (*Ref*, Part.IV: Wind loads)

Equation of Motion for Lateral Motion

Gathering all motion dependent load on the left hand side:

$$\begin{split} \tilde{M}_{y} \Big[\ddot{\eta}_{y} + 2\omega_{y}\zeta_{y} \cdot \dot{\eta}_{y} + \omega_{y}^{2} \cdot \eta \Big] &= \frac{1}{2} \rho U^{2}B^{2}L \Big[\int_{L_{exp}} \Lambda_{D}\phi_{y} \frac{dx}{L} + \frac{KB}{U} P_{1}^{*} \int_{L_{exp}} \phi_{y}^{2} (x) \frac{dx}{L} \cdot \dot{\eta}_{y} \Big] \\ &\rightarrow \tilde{M}_{y} \Big[\ddot{\eta}_{y} + 2\omega_{y}\zeta_{y} \cdot \dot{\eta}_{y} + \omega_{y}^{2} \cdot \eta \Big] - \frac{1}{2} \rho U^{2}B^{2}L \frac{KB}{U} P_{1}^{*} \int_{L_{exp}} \phi_{y}^{2} (x) \frac{dx}{L} \cdot \dot{\eta}_{y} = \frac{1}{2} \rho U^{2}B^{2}L \int_{L_{exp}} \Lambda_{D}\phi_{y} \frac{dx}{L} \\ &\rightarrow \tilde{M}_{y} \Big[\ddot{\eta}_{y} + 2\omega_{y}\zeta_{y} \cdot \dot{\eta}_{y} + \omega_{y}^{2} \cdot \eta \Big] - \frac{1}{2} \rho U^{2}B^{2}L \frac{\omega B}{U} \frac{B}{U} P_{1}^{*} \int_{L_{exp}} \phi_{y}^{2} (x) \frac{dx}{L} \cdot \dot{\eta}_{y} = \frac{1}{2} \rho U^{2}B^{2}L \int_{L_{exp}} \Lambda_{D}\phi_{y} \frac{dx}{L} \\ &\rightarrow \tilde{M}_{y} \Big[\ddot{\eta}_{y} + 2\omega_{y}\zeta_{y} \cdot \dot{\eta}_{y} + \omega_{y}^{2} \cdot \eta \Big] - \frac{\rho B^{4}L}{2} \omega \cdot P_{1}^{*} \int_{L_{exp}} \phi_{y}^{2} (x) \frac{dx}{L} \cdot \dot{\eta}_{y} = \frac{1}{2} \rho U^{2}B^{2}L \int_{L_{exp}} \Lambda_{D}\phi_{y} \frac{dx}{L} \\ &\rightarrow \tilde{M}_{y} \cdot \ddot{\eta}_{y} + \Big[2\omega_{y}\zeta_{y}\tilde{M}_{y} - \frac{\rho B^{4}L}{2} \omega \cdot P_{1}^{*} \int_{L_{exp}} \phi_{y}^{2} (x) \frac{dx}{L} \Big] \cdot \dot{\eta}_{y} + \omega_{y}^{2}\tilde{M}_{y} \cdot \eta = \frac{\rho U^{2}B^{2}L}{2} \int_{L_{exp}} \Lambda_{D}\phi_{y} \frac{dx}{L} \end{split}$$

Substitute $\overline{\zeta}_{ae}(\omega) = \omega \cdot P_1^* \int_{L_{exp}} \phi_y^2(x) \frac{dx}{L}$ (not exact aerodynamic damping) then:

$$\tilde{M}_{y} \cdot \ddot{\eta}_{y} + \left(2\omega_{y}\zeta_{y}\tilde{M}_{y} - \frac{\rho B^{4}L}{2}\overline{\zeta}_{ae}\left(\omega\right)\right) \cdot \dot{\eta}_{y} + \omega_{y}^{2}\tilde{M}_{y} \cdot \eta = \frac{\rho U^{2}B^{2}L}{2}\int_{L_{exp}}\Lambda_{D}\phi_{y}\frac{dx}{L}$$

Transition into the Frequency Domain

Taking the Fourier transform:

$$\left[\omega_{y}^{2}\tilde{M}_{y}-\omega^{2}\tilde{M}_{y}+i\omega\left(2\omega_{y}\zeta_{y}\tilde{M}_{y}-\frac{\rho B^{4}L}{2}\overline{\zeta}_{ae}\left(\omega_{y}\right)\right)\right]a_{\eta_{y}}\left(\omega\right)=\frac{\rho U^{2}B^{2}L}{2}\int_{L_{exp}}a_{\Lambda_{D}}\phi_{y}\frac{dx}{L}$$

$$\rightarrow \left[\omega_{y}^{2}\tilde{M}_{y} - \omega^{2}\tilde{M}_{y} + i\omega\left(2\omega_{y}\zeta_{y}\tilde{M}_{y} - \frac{\rho B^{4}L}{2}\overline{\zeta}_{ae}\left(\omega_{y}\right)\right)\right]a_{\eta_{y}}\left(\omega\right) = \frac{\rho U^{2}B^{2}L}{2}\int_{L_{exp}}\frac{2C_{D}}{U}a_{u}\phi_{y}\frac{dx}{L}$$

$$\rightarrow \omega_{y}^{2} \tilde{M}_{y} \left[1 - \left(\frac{\omega}{\omega_{y}} \right)^{2} + 2i \left(\zeta_{y} - \frac{\rho B^{4} L}{4\omega_{y} \tilde{M}_{y}} \overline{\zeta}_{ae} \left(\omega_{y} \right) \right) \cdot \frac{\omega}{\omega_{y}} \right] a_{\eta_{y}} \left(\omega \right) = \frac{\rho U^{2} B^{2} L}{2} \int_{L_{exp}} \frac{2C_{D}}{U} a_{u} \phi_{y} \frac{dx}{L}$$

$$a_{\eta_{y}}(\omega) = \frac{\rho U B^{2} L C_{D}}{\omega_{y}^{2} \tilde{M}_{y}} \left[1 - \left(\frac{\omega}{\omega_{y}}\right)^{2} + 2i \left(\zeta_{y} - \frac{\rho B^{4} L}{4\omega_{y} \tilde{M}_{y}} \overline{\zeta}_{ae}(\omega_{y})\right) \cdot \frac{\omega}{\omega_{y}} \right]^{L_{exp}} dx$$

• a_{η} and a_{Λ_D} are the Fourier amplitudes of $\eta(t)$ and Λ_D

Frequency Response Function

 $L_{\rm exp}$

From the relationship between response and load in frequency domain:

$$\begin{aligned} a_{\eta_{y}}\left(\omega\right) &= \frac{\rho U B^{2} L C_{D}}{\omega_{y}^{2} \tilde{M}_{y}} \frac{1}{\left[1 - \left(\frac{\omega}{\omega_{y}}\right)^{2} + 2i \left(\zeta_{y} - \frac{\rho B^{4} L}{4\omega_{y} \tilde{M}_{y}} \overline{\zeta}_{ae}\left(\omega_{y}\right)\right) \cdot \frac{\omega}{\omega_{y}}\right]} \int_{L_{exp}} a_{u} \phi_{y} \frac{dx}{L} \\ &= \frac{H_{y}(\omega)}{\tilde{K}_{y}} a_{Q_{y}}(\omega) \end{aligned}$$

where:

$$H_{y} = \left[1 - \left(\frac{\omega}{\omega_{y}}\right)^{2} + 2i\left(\zeta_{y} - \frac{\rho B^{4}L}{4\omega_{y}\tilde{M}_{y}}\overline{\zeta}_{ae}\left(\omega_{y}\right)\right) \cdot \frac{\omega}{\omega_{y}}\right]^{-1} : \text{Non-dimensional} \\ \tilde{K}_{y} = \omega_{y}^{2}\tilde{M}_{y} : \text{Generalized stiffness} \\ a_{Q_{y}} = \rho UB^{2}LC_{D}\int_{V} a_{u}\phi_{y}\frac{dx}{L} : \text{Fourier amplitudes of buffeting load } Q_{bu}$$

Spectral Densites

General single-sided spectral density of x(t) can be defined by form of square of Fourier constant.

$$S_x(\omega) = \lim_{T \to \infty} \frac{1}{\pi T} a_x^*(\omega) \cdot a_x(\omega)$$

Therefore, the single-sided spectrum of generalized coordinate $\eta_y(t)$ is

$$S_{\eta_{y}}(\omega) = \lim_{T \to \infty} \frac{1}{\pi T} a_{\eta}^{*}(\omega) \cdot a_{\eta}(\omega) = \frac{\left|H_{y}(\omega)\right|^{2}}{\widetilde{K}_{y}^{2}} \lim_{T \to \infty} \frac{1}{\pi T} a_{Q_{y}}^{*}(\omega) \cdot a_{Q_{y}}(\omega)$$
$$= \frac{\left|H_{y}(\omega)\right|^{2}}{\widetilde{K}_{y}^{2}} \cdot S_{Q_{y}}(\omega)$$

The single-sided spectrum of buffeting load $Q_{bu}(t)$ is also given by

$$S_{Q_y}(\omega) = \lim_{T \to \infty} \frac{1}{\pi T} a_{Q_y}^*(\omega) \cdot a_{Q_y}(\omega)$$

Spectral Densities

Substitutes the load term of wind fluctuation term:

$$S_{Q_{y}}(\omega) = \lim_{T \to \infty} \frac{1}{\pi T} a_{Q_{y}}^{*}(\omega) \cdot a_{Q_{y}}(\omega)$$

$$= \lim_{T \to \infty} \frac{1}{\pi T} \left\{ \rho U B^{2} L C_{D} \int_{L_{exp}} \frac{a_{u}^{*} \phi_{y} dx}{L} \right\} \cdot \left\{ \rho U B^{2} L C_{D} \int_{L_{exp}} \frac{a_{u} \phi_{y} dx}{L} \right\}$$

$$= (\rho U B^{2} L C_{D})^{2} \lim_{T \to \infty} \frac{1}{\pi T} \iint_{L_{exp}} \phi_{y}(x_{1}) \phi_{y}(x_{2}) a_{u}^{*}(x_{1}, \omega) a_{u}(x_{2}, \omega) \frac{dx_{1}}{L} \frac{dx_{2}}{L}$$

b the single-sided spectrum of wind fluctuation $u_i(t)$ is given by

$$S_u(\omega) = \lim_{T \to \infty} \frac{1}{\pi T} a_u^*(\omega) \cdot a_u(\omega), \ S_u(x_1, x_2, \omega) = S_u(\omega) e^{-\frac{C \cdot \omega |x_1 - x_2|}{U}}$$

Finally, spectrum of wind load Q_{bu} can be defined as follows.

$$S_{Q_{y}}(\omega) = \left(\rho U B^{2} L C_{D}\right)^{2} \iint_{L_{exp}} \phi_{y}(x_{1}) \phi_{y}(x_{2}) e^{-\frac{C \cdot \omega \cdot |x_{1} - x_{2}|}{U}} \frac{dx_{1}}{L} \frac{dx_{2}}{L} \cdot S_{u}(\omega)$$

The RMS of Response

The response may simply be obtained by recognizing that due to linearity the Fourier amplitude at arbitrary position x is given by:

$$a_{y}(\omega) = \phi_{i}(x) \cdot a_{\eta}(\omega)$$

Therefore, the response spectrum for the displacement response is given by

$$S_{y}(x,\omega) = \phi_{y}^{2}(x) \cdot S_{\eta}(\omega) = \frac{\phi_{y}^{2}(x)}{\widetilde{K}_{y}^{2}} \cdot \left|H_{y}(\omega)\right|^{2} \cdot S_{Q_{y}}(\omega)$$

The variance of the displacement response can be calculated by integration:

$$\sigma_{y}^{2}(x) = \frac{\phi_{y}^{2}(x)}{\tilde{K}_{y}^{2}} \int_{0}^{\infty} \left|H_{y}(\omega)\right|^{2} \cdot S_{Q_{y}}(\omega) d\omega$$

$$\sigma_{y}^{2}(x_{r}) = \left[\frac{\phi_{y}^{2}(x_{r})}{\omega_{y}^{2}\tilde{M}_{y}}\right]^{2} \int_{0}^{\infty} \left[\left[\left(1 - \left(\frac{\omega}{\omega_{y}}\right)^{2}\right)^{2} + \left(2\frac{\omega}{\omega_{y}}\left(\zeta_{y} - \frac{\rho B^{4}}{4\tilde{M}_{y}}P_{1}^{*}\int_{L_{exp}}\phi_{y}^{2}dx\right)\right)^{2}\right]^{-1} d\omega$$

$$\times \iint_{L_{exp}} \rho U B^{2} C_{D} S_{u}(\omega) \left[\phi_{y}(x_{1})\phi_{y}(x_{2}) \cdot e^{-\frac{C \cdot \omega \cdot |x_{1} - x_{2}|}{U}}\right] dx_{1} dx_{2}$$

Background and resonant part

In structural engineering, the response spectrum has been customary to split the response calculations into a background and a resonant part as illustrated as follows.

The variance of the displacement response split into a background and a resonant part is given by

$$\sigma_y^2(x) = \frac{\phi_y^2(x)}{\tilde{K}_y^2} \int_0^\infty |H_y(\omega)|^2 \cdot S_{Q_y}(\omega) \, d\omega$$
$$\simeq \frac{\phi_y^2(x)}{\tilde{K}_y^2} \left[|H_y(0)|^2 \int_0^\infty S_{Q_y}(\omega) \, d\omega + S_{Q_y}(\omega_y) \int_0^\infty |H_y(\omega)|^2 \, d\omega \right]$$

Background and resonant part

It is in the following taken for granted that

$$|H(0)| = 1$$
$$\int_{0}^{\infty} S_{Q_{y}}(\omega) \, d\omega = \sigma_{Q_{y}}^{2}$$
$$\int_{0}^{\infty} |H_{y}(\omega)|^{2} \, d\omega = \frac{\pi \omega_{y}}{4\zeta_{tot}}$$

• where , $\zeta_{tot} = \zeta_y - \zeta_{ae}$, following is obtained:

$$\sigma_y^2(x) = \sigma_{B_y}^2 + \sigma_{R_y}^2 = \frac{\phi_y^2(x)}{\widetilde{K}_y^2} \cdot \left[\sigma_{Q_y}^2 + \frac{\pi\omega_y S_{Q_y}(\omega_y)}{4\zeta_{tot}}\right]$$

Single-Mode Flutter and Buffeting (*Theory*)

There will be no single-mode flutter unless one of the principal flutter derivatives (such as A_2^*) takes on positive values for some range of reduced velocity $2\pi/K = U/nB$, where $K = B\omega/U$. [Notation will be listed at the end of these notes.]

Equation of motion (with limited choice of flutter derivatives)

$$I_i \left[\ddot{\xi}_i + 2\zeta_i \omega_i \dot{\xi}_i + \omega_i^2 \xi_i \right] = Q_i \tag{1}$$

$$Q_{i} = \frac{1}{2}\rho U^{2}B^{2}\ell \left\{ \frac{KB}{U} \left[H_{1}^{*}G_{h_{i}h_{i}} + P_{1}^{*}G_{p_{i}p_{i}} + A_{2}^{*}G_{\alpha_{i}\alpha_{i}} \right] \dot{\xi}_{i} + K^{2}A_{3}^{*}G_{\alpha_{i}\alpha_{i}} \xi_{i}^{+} \int_{deck} \left[\mathcal{L}h_{i} + \mathcal{D}p_{i} + \mathcal{M}\alpha_{i} \right] \frac{dx}{\ell} \right\}$$
(2)

Note that this form implies full coherence of flutter derivative action along the span.

$$G_{q_iq_i} = \int_{deck} q_i^2(x) \frac{dx}{\ell} \quad [q_i = h_i, \ p_i \text{ or } \alpha_i]$$
(3)

Flutter

Dropping \int_{deck} and treating the homogeneous part of (1) and (2), we proceed as follows. If ξ_i is sinusoidal, i.e. $\xi_i = \xi_{i0} e^{i\omega t}$, (1) and (2) yield:

$$I_{i}[\omega_{i}^{2} - \omega^{2}] = \frac{1}{2}\rho U^{2}B^{2}\ell K^{2}A_{3}^{*}G_{\alpha_{i}\alpha_{i}}$$
(4)

$$2I_i\zeta_i\omega_i\omega = \frac{1}{2}\rho U^2 B^2 \ell \left\{ \frac{KB\omega}{U} \left[H_1^{\bullet}G_{h;h;} + P_1^{\bullet}G_{p;p;} + A_2^{\bullet}G_{\alpha;\alpha;} \right] \right\}$$
(5)

These lead to the relation

$$\frac{\omega_i}{\omega} = \left[1 + \frac{\rho B^4 \ell A_3^*}{2I_1} G_{\alpha_1 \alpha_1}\right]^{\frac{1}{2}} \tag{6}$$

and the flutter (zero or negative damping) condition:

$$H_1^{\bullet}G_{h_ih_i} + P_1^{\bullet}G_{p_ip_i} + A_2^{\bullet}G_{\alpha_i\alpha_i} \ge \frac{4\zeta_i I_i}{\rho B^{\bullet}\ell} \left[1 + \frac{\rho B^{\bullet}\ell}{2I_i} A_3^{\bullet}G_{\alpha_i\alpha_i}\right]^{\frac{1}{2}}$$
(7)

Note that only the principal flutter derivatives H_1^* , P_1^* , A_2^* (damping derivatives) are retained here. The influence of A_3^* is usually negligible. The flutter derivative A_2^* is usually the principal actor in s.d.o.f. flutter, as it affects torsional damping. Sway (P_1^*) and vertical bending (H_1^*) are often negative, tending to increase overall system damping.

Buffeting

Rewrite (1) and (2) in the form

$$\bar{\xi}_i + 2\gamma_i \omega_{i0} \dot{\xi}_i + \omega_{i0}^2 \xi_i = \frac{\rho U^2 B^2 \ell}{2I_i} \int_{deck} \left[\mathcal{L}h_i + \mathcal{D}p_i + \mathcal{M}\alpha_i \right] \frac{dx}{\ell}$$
(8)

where

$$\omega_{i0}^{2} = \omega_{i}^{2} - \frac{\rho B^{4} \ell}{2I_{i}} \omega^{2} A_{3}^{*} G_{\alpha_{i} \alpha_{i}}$$
(9)

and

$$2\gamma_i\omega_{i0} = 2\zeta_i\omega_i - \frac{\rho B^4\ell}{2I_i}\omega \left[H_1^*G_{h_ih_i} + P_1^*G_{p_ip_i} + A_2^*G_{\alpha_i\alpha_i}\right]$$
(10)

We assume that the oscillator (8) responds in random amplitudes around the frequency ω_{i0} . Setting $\omega = \omega_{i0}$ in (9) yields

.

$$\omega_{i0} = \frac{\omega_i}{\left[1 + \frac{\rho B^{4} \ell}{2L_i} A_3^* G_{\alpha_i \alpha_i}\right]^{\frac{1}{2}}}$$
(11)

and therefore, from (10):

$$\gamma_{i} = \zeta_{i} \frac{\omega_{i}}{\omega_{i0}} - \frac{\rho B^{4} \ell}{4I_{i}} \begin{bmatrix} \mathcal{K} \\ H_{1}^{\bullet}(\mathcal{F}_{i0}) G_{h;h_{i}} + P_{1}^{\bullet}(K_{i0}) G_{p;p_{i}} + A_{2}^{\bullet}(K_{i0}) G_{\alpha;\alpha_{i}} \end{bmatrix}$$
(12)

where $K_{i0} = B\omega_{i0}/U$.

The Fourier transform of ξ_i for quiescent (or distant) initial conditions is

$$\bar{\xi} = \int_0^\infty \xi(t) e^{-i\omega t} dt \tag{13}$$

so that the F.T. of (8) is

$$\left[\omega_{i0}^{2} - \omega^{2} + 2i\gamma_{i}\omega_{i0}\omega\right]\overline{\xi}_{i} = \frac{\rho U^{2}B^{2}\ell}{2I_{i}}\int_{deck}\left[\overline{\mathcal{L}}h_{i} + \overline{\mathcal{D}}p_{i} + \overline{\mathcal{M}}\alpha_{i}\right]\frac{dx}{\ell}$$
(14)

Multiplying (14) by its complex conjugate yields

$$\left[(\omega_{i0}^2 - \omega^2)^2 \div (2\gamma_i \omega_{i0} \omega)^2 \right] \bar{\xi}_i \bar{\xi}_i^* = \left[\frac{\rho U^2 B^2 \ell}{2I_i} \right]^2 \iint_{\text{deck}} \Pi(x_A, x_B, \omega) \frac{dx_A}{\ell} \frac{dx_B}{\ell}$$
(15)

where $\overline{()} = \text{complex conjugate of } \overline{()}$ and

$$\Pi(x_A, x_B, \omega) = \left[\overline{\mathcal{L}}(x_A)h_i(x_A) + \overline{\mathcal{D}}(x_A)p_i(x_A) + \overline{\mathcal{M}}(x_A)\alpha_i(x_A)\right] \\ \times \left[\overline{\mathcal{L}}^{\bullet}(x_B)h_i(x_B) + \overline{\mathcal{D}}^{\bullet}(x_B)p_i(x_B) + \overline{\mathcal{M}}^{\bullet}(x_B)\alpha_i(x_B)\right]$$
(16)

The lift (\mathcal{L}) , drag (\mathcal{D}) and moment (\mathcal{M}) factors above depend on the horizontal and vertical (u, w) components of gusting:

$$\mathcal{L} = 2C_{\ell} \frac{u}{U} + (C_{\ell}' + C_D) \frac{w}{U}$$
(17)

$$\mathcal{D} = 2C_D \frac{u}{U} \tag{18}$$

$$\mathcal{M} = 2C_M \frac{u}{U} + C'_M \frac{w}{U} \tag{19}$$

Hence

$$\overline{\mathcal{L}}h_i + \overline{\mathcal{D}}p_i + \overline{\mathcal{M}}\alpha_i = \varphi(x)\frac{u}{U} + \psi(x)\frac{w}{U}$$
(20)

where

$$\varphi(x) = 2\left[C_{\ell}h_i(x) + C_D p_i(x) + C_M \alpha_i(x)\right]$$
(21)

$$\psi(x) = (C'_{\ell} + C_D)h_i(x) + C'_M\alpha_i(x)$$
(22)

Hence

$$\Pi(x_A, x_B, \omega) = [\varphi(x_A)\bar{u}(x_A, \omega) + \psi(x_A)\bar{w}(x_A, \omega)]$$
$$\times [\varphi(x_B)\bar{u}^*(x_B, \omega) + \psi(x_B)\bar{w}^*(x_B, \omega)]\frac{1}{U^2}$$
(23)

In the limit, as $T \to \infty$:

-

. .

$$\lim \frac{2}{T} \bar{\xi}_i \bar{\xi}_i^* = S_{\xi_i \xi_i}(\omega) \tag{24}$$

•

the auto-power spectral density of ξ_i , and analogously for u, w. Therefore (15) becomes

$$\omega_{i0}^{4} \left[\left(1 - \left(\frac{\omega}{\omega_{i0}} \right)^{2} \right)^{2} + \left(2\gamma_{i} \frac{\omega}{\omega_{i0}} \right)^{2} \right] S_{\ell i \ell i}(\omega)$$

$$= \left[\frac{\rho U^{2} B^{2} \ell}{2I_{i}} \right]^{2} \iint_{deck} \frac{1}{U^{2}} [\varphi(x_{A}) \varphi(x_{B}) S_{u}(x_{A}, x_{B}, \omega)]$$

$$+ \psi(x_{A}) \psi(x_{B}) S_{w}(x_{A}, x_{B}, \omega)] \frac{dx_{A}}{\ell} \frac{dx_{B}}{\ell}$$
[neglecting S_{uw}, S_{wu} cross spectra].
$$(25)$$

We make the following assumptions concerning the lateral coherence of turbulence [neglecting the imaginary part]:

$$S_u(x_A, x_B \omega) \cong S_u(\omega) e^{-c|x_A-x_B|/\ell}$$
 (26)

$$S_{w}(x_{A}, x_{B} \omega) \cong S_{w}(\omega) e^{-c|x_{A}-x_{B}|/\ell}$$
 (27)

where

$$\frac{5n\ell}{U} \le C \le \frac{20n\ell}{U} \qquad \left[n = \frac{\omega_{i0}}{2\pi}\right] \tag{28}$$

We thus encounter integrals of the type

$$R_{\varphi} = \iint_{\text{deck}} \varphi(x_A) \varphi(x_B) e^{-C|x_A - x_B|/\ell} \frac{dx_A}{\ell} \frac{dx_B}{\ell}$$
(29)

$$R_{\psi} = \iint_{deck} \psi(x_A) \psi(x_B) e^{-C|x_A - x_B|/\ell} \frac{dx_A}{\ell} \frac{dx_B}{\ell}$$
(30)

to be evaluated from modal and force coefficient data.

.

Thus

$$S_{\xi_i\xi_i}(\omega) = \frac{\left[\frac{\rho B^4 \ell}{2L_i K_{i0}^2}\right]^2}{\left[1 - \left(\frac{\omega}{\omega_{i0}}\right)^2\right]^2 + \left[2\gamma_i \frac{\omega}{\omega_{i0}}\right]^2} \{R_\varphi S_u + R_\varphi S_w\} \frac{1}{U^2}$$
(31)

We now recall that, for the single mode i:

$$h(x, t) = h_i(x)B\xi_i(t)$$

$$p(x, t) = p_i(x)B\xi_i(t)$$

$$\alpha(x, t) = \alpha_i(x)\xi_i(t)$$
(32)

so that, for example

$$S_{hh}(x, \omega) = h_i^2(x) B^2 S_{\xi_i \xi_i}(\omega)$$
(33)

The variance σ_n^2 of h is

$$\sigma_{h}^{2}(x) = \int_{0}^{\infty} S_{hh}(x, n) dn \qquad \left[n = \frac{\omega}{2\pi}\right]$$
(34)

Now, for any P.S.D. S(n):

$$\int_{0}^{\infty} \frac{S(n)dn}{\left[1 - \left(\frac{n}{n_{0}}\right)^{2}\right]^{2} + \left[2\gamma\frac{n}{n_{0}}\right]^{2}} \cong \int_{0}^{\infty} S(n)dn + \frac{\pi n_{0}S(n_{0})}{4\gamma}$$
(35)

which will apply to the wind spectra S_u , S_w . Kaimal-Simiu [Simiu & Scanlan Wind Effects 1986, Ch.2] offer the following:

$$S_{u}(n) = \frac{200zu_{*}^{2}}{U\left(1 + \frac{50nz}{U}\right)^{5/3}}$$
(36)

$$S_{w}(n) = \frac{3.36zu_{*}^{2}}{U\left[1+10\left(\frac{nx}{U}\right)^{5/3}\right]}$$
(37)

$$U = 2.5\ell n \frac{z}{z_0} \tag{38}$$

so that

$$\int_0^\infty S_u(n)dn = 6u_\bullet^2 \tag{39}$$

$$\int_{0}^{\infty} S_{w}(n) dn = 1.7 u_{\bullet}^{2}$$
 (40)

Therefore the variance of ξ_i may be calculated from

$$\sigma_{\xi_{i}}^{2} = \left[\frac{\rho B^{4} \ell}{2I_{i} K_{i0}^{2}}\right]^{2} \left\{ R_{\varphi} \left[\frac{\pi n_{i0} S_{u}(n_{i0})}{4\gamma_{i}} + 6u_{\bullet}^{2}\right] + R_{\psi} \left[\frac{\pi n_{i0} S_{w}(n_{i0})}{4\gamma_{i}} + 1.7u_{\bullet}^{2}\right] \right\} \frac{1}{U^{2}}$$
(41)

and the standard deviation of each component, from

$$\sigma_{\phi}(x) = h_{i}(x)B\sigma_{\xi}$$

$$\sigma_{p}(x) = p_{i}(x)B\sigma_{\xi}$$

$$\sigma_{\alpha}(x) = \alpha_{i}(x)\sigma_{\xi}$$
(42)

The max excursion may be taken as 3σ to 4σ and the max peak-to-peak, twice that. This outlines the buffeting analysis. In the above, the aerodynamic admittance is conservatively kept at unit value. [This writer believes that use of the Sears airfoil admittance function in this context is improper.] Note that in this writing wind cross spectra are conservatively neglected (they are negative, according to Kaimal).

Summary up buffeting analysis procedure

- Start with motion of equation.
- Define wind-induced forces i.e. buffeting forces and unsteady self-excited forces (aerodynamic stiffness and damping).
- Apply Fourier transform.
- Develop the response spectrum from wind turbulence spectrum with Joint acceptance function and frequency response function.
- Derive the variance of response from response spectrum by integration.

Natural modal freq. vs. Actual vibration freq.

Remind the self-excited force

- Self-excited force is motion-induced force.
- Functions of displacement, velocity and acceleration of deck.
- We define aerodynamic stiffness and damping with flutter derivatives.

Natural modal freq. is defined by mass and stiffness

$$\omega_i = \sqrt{\frac{K_i}{M_i}}$$

Actual vibration freq. ($\omega_i(U)$) under wind condition (in terms of the resonance frequency in the textbook) is a function of the mean wind velocity, U. At U = 0, $\omega_i(U)$ is the natural modal freq. At $U \neq 0$, K_{ae} have the effect of changing the total stiffness then $\omega_i(U)$ is no more same with the natural modal freq.

Variable ω

Go back to Part.IV: Wind loads

Buffeting forces and unsteady self-excited forces are function of freq.

Coherence function (Textbook, p.67)

- To consider spatial properties, the single point spectrum, $S_u(\omega)$ and coherence function, $Coh(\Delta x, \omega)$ are adopted.
- Not only spectrum but also coherence function have variable ω .

Re-call the buffeting analysis formulation (PPT, p10)

• To get the variance of response, all these terms are integrated together w.r.t variable, ω

• Triple integration !

$$\sigma_{y}^{2}(x_{r}) = \left[\frac{\phi_{y}^{2}(x_{r})}{\omega_{y}^{2}\tilde{M}_{y}}\right]^{2} \int_{0}^{\infty} \left[\left[1 - \left(\frac{\omega}{\omega_{y}}\right)^{2}\right]^{2} + \left(2\frac{\omega}{\omega_{y}}\left(\zeta_{y} - \frac{\rho B^{4}}{4\tilde{M}_{y}}P_{1}^{*}\int_{L_{exp}}\phi_{y}^{2}dx\right)\right)^{2}\right]^{-1} \\
\times \rho UB^{2}C_{D}S_{u}(\omega) \iint_{L_{exp}}\left[\phi_{y}(x_{1})\phi_{y}(x_{2}) \cdot e^{-\frac{C\omega|x_{1}-x_{2}|}{U}}\right]dx_{1}dx_{2}\right]d\omega$$

Simplified method 1 - Scanlan

Go back to the assumption in p.15

- We assume that the oscillator (8) responds in random amplitudes around the frequency ω_{i0} .
- ω_{i0} is the result of 1st iteration ω_i and $\omega_i(U)$
- Then, we adopt $\omega = \omega_{i0}$ as a constant, also we can use $P_1^*(\omega_{i0})$ as a constant value.

Assume $Coh(\Delta x, \omega)$ to $Coh(\Delta x)$ (PPT, p18)

- Coherence is a function of gap distance, Δx and turbulence freq., ω .
- Assume that $\omega = \omega_{i0}$ as a constant.

$$\sigma_{y}^{2}(x_{r}) = \left[\frac{\phi_{y}^{2}(x_{r})}{\omega_{y}^{2}\tilde{M}_{y}}\right]^{2} \left[\left(1 - \left(\frac{\omega_{i0}}{\omega_{y}}\right)^{2}\right)^{2} + \left(2\frac{\omega_{i0}}{\omega_{y}}\left(\zeta_{y} - \frac{\rho B^{4}}{4\tilde{M}_{y}}P_{1}^{*}(\omega_{i0})\int_{L_{exp}}\phi_{y}^{2}dx\right)\right)^{2}\right]^{-1} \times \iint_{L_{exp}}\left[\phi_{y}(x_{1})\phi_{y}(x_{2}) \cdot e^{-\frac{C\cdot\omega_{i0}|x_{1}-x_{2}|}{U}}\right]dx_{1}dx_{2}\int_{0}^{\infty}\left[\rho UB^{2}C_{D}S_{u}(\omega)\right]d\omega$$

Simplified method 2 - Textbook

Getting closed form solution of joint acceptance function – Analytically solve the double integration w.r.t. spatial coordinates.

$$J_y^2(\omega) = \iint_{L_{exp}} \phi_y(x_1) \phi_y(x_2) e^{-\frac{C\omega|x_1 - x_2|}{U}} dx_1 dx_2$$

- Assume the mode shape vectors as well-known function, i.e. $sin(n\pi x)$, x^2 and etc.
- Then, eliminate the double integration by closed form solution of joint acceptance function.

• Example
$$\phi_y(x) = sin \frac{\pi x}{L}$$

$$J_{y}^{2}(\omega) = \iint_{0}^{1} \sin \frac{\pi x_{1}}{L} \sin \frac{\pi x_{2}}{L} e^{-\frac{C\omega |x_{1} - x_{2}|}{U}} dx_{1} dx_{2}$$
$$= \frac{\widehat{\omega}}{\widehat{\omega}^{2} + \pi^{2}} + 2\pi^{2} \frac{1 + e^{-\widehat{\omega}}}{(\widehat{\omega}^{2} + \pi^{2})^{2}}$$

• Where,
$$\widehat{\omega} = \frac{C\omega}{U}$$

Simplified method 2 - Textbook

• Then, the only single integration remains

$$\sigma_{y}^{2}(x_{r}) = \left[\frac{\phi_{y}^{2}(x_{r})}{\omega_{y}^{2}\tilde{M}_{y}}\right]^{2} \int_{0}^{\infty} \left[\left[\left(1 - \left(\frac{\omega}{\omega_{y}}\right)^{2}\right)^{2} + \left(2\frac{\omega}{\omega_{y}}\left(\zeta_{y} - \frac{\rho B^{4}}{4\tilde{M}_{y}}P_{1}^{*}\int_{L_{exp}}\phi_{y}^{2}dx\right)\right)^{2}\right]^{-1}\right] d\omega$$
$$\times \rho UB^{2}C_{D}S_{u}(\omega)J_{y}^{2}(\omega)$$

Homework

Follow up Example 6.2 (Textbook pp.122-127). It is a buffeting analysis for a typical single mode single component situation. Basically you are needed to reproduce all figures in the example by yourself.

THANK YOU for your attention!

Seoul National University Structural Design Laboratory

Equation of Motion

Recall the equation of motion for ith mode is

 $I_i \left(\ddot{\xi}_i + 2\zeta_i \omega_i \dot{\xi}_i + \omega_i^2 \xi_i \right) = Q_i$

By definition, equation for 1st lateral mode is

 $I_{1}\left(\ddot{\xi}_{1}+2\zeta_{1}\omega_{1}\dot{\xi}_{1}+\omega_{1}^{2}\xi_{1}\right)=Q_{1}$

$$I_{1}\left(\ddot{\xi}_{1}+2\zeta_{1}\omega_{1}\dot{\xi}_{1}+\omega_{1}^{2}\xi_{1}\right) = \frac{1}{2}\rho U^{2}B^{2}L\left[\frac{KB}{U}P_{1}^{*}\int_{L_{exp}}p_{y}^{2}(x)\frac{dx}{L}\cdot\dot{\xi}_{1}+\int_{L_{exp}}2C_{D}\frac{u}{U}\cdot p_{y}\frac{dx}{L}\right]$$
$$\rightarrow I_{1}\left(\ddot{\xi}_{1}+\left(2\zeta_{1}\omega_{1}-\frac{\rho B^{4}L}{2}\zeta_{ae}\right)\dot{\xi}_{1}+\omega_{1}^{2}\xi_{1}\right) = \frac{\rho U^{2}B^{2}L}{2}\int_{L_{exp}}2C_{D}\frac{u}{U}\cdot p_{y}\frac{dx}{L}$$

Transform to Frequency Domain

Fourier transform

$$\begin{bmatrix} \omega_{1}^{2} - \omega^{2} + i\omega \left(2\omega_{1}\zeta_{1} - \frac{\rho B^{4}L}{2}\zeta_{ae}(\omega_{1}) \right) \end{bmatrix} a_{\xi_{1}}(\omega) = \frac{\rho U^{2}B^{2}L}{2I_{1}} \int_{L_{exp}} \frac{2C_{D}}{U} a_{u}p_{1}\frac{dx}{L}$$
$$\rightarrow a_{\xi_{1}}(\omega) = \frac{\rho UB^{2}LC_{D}}{\omega_{1}^{2}I_{1}} \frac{1}{\left[1 - \left(\frac{\omega}{\omega_{1}}\right)^{2} + 2i\left(\zeta_{1} - \frac{\rho B^{4}L}{4\omega_{1}}\zeta_{ae}(\omega_{1})\right) \cdot \frac{\omega}{\omega_{1}} \right]} \int_{L_{exp}} a_{u}p_{1}\frac{dx}{L}$$

