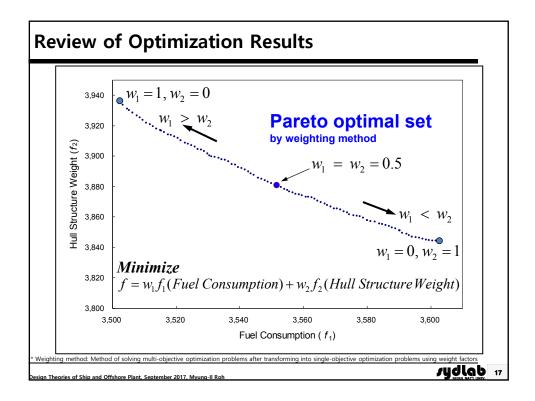
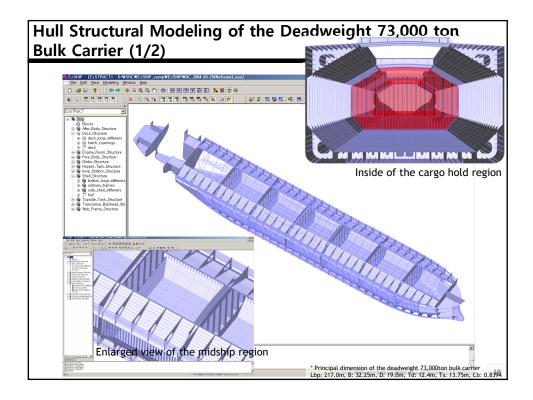
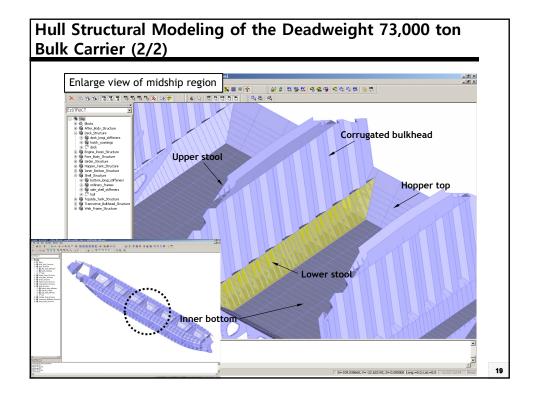

	lars of a deadw	eight 150,000 ton bulk carri	er (parent ship) and ship	owner's requirements
	ltem	Parent Ship	Design Ship	Remark
	L _{OA}	abt. 274.00 m	max. 284.00 m	
	L _{BP}	264.00 m		
Principal	B _{mld}	45.00 m	45.00 m	
Dimensions	D _{mld}	23.20 m		
	T _{mld}	16.90 m	17.20 m	
	T _{scant}	16.90 m	17.20 m	
De	adweight	150,960 ton	160,000 ton	at 17.20 m
	Speed	13.5 kts	13.5 kts	90 % MCR (with 20 % SM)
	TYPE	B&W 5S70MC		
м /	NMCR	17,450 HP×88.0 RPM		Derating Ratio = 0.9
Ē	DMCR	15,450 HP×77.9 RPM		E.M = 0.9
Ī	NCR	13,910 HP×75.2 RPM		
F	SFOC	126.0 g/HP.H		
0 C	TON/DAY	41.6		Based on NCR
Crui	sing Range	28,000 N/M	26,000 N/M	-
Mid	ship Section	Single Hull Double Bottom/Hopper /Top Side Wing Tank	Single Hull Double Bottom/Hopper /Top Side Wing Tank	
	Cargo	abt. 169,380 m ³	abt. 179,000 m ³	Including Hatch Coaming
I	Fuel Oil	abt. 3,960 m ³		Total
Capacity	Fuel Oil	abt. 3,850 m ³		Bunker Tank Only
	Ballast	abt. 48,360 m ³		Including F.P and A.P Tank

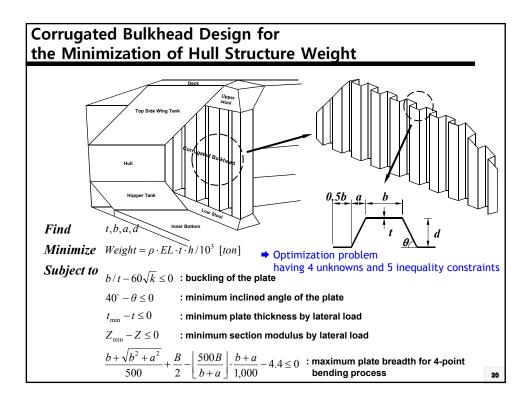
inim	ization of Shipbuil	ding Cos	t						
		Unit	MFD ¹⁾	MS ²⁾	GA ³⁾	HYBRID ⁴⁾ w/o Refine	HYBRID ⁴⁾ with Refine		
G	DWT	ton	160,000						
l Cargo Capacity m		m ³	179,000						
Ē	T _{max}	m			17.2				
Ν	V	knots			13.5				
	L	m	265.54	265.18	264.71	264.01	263.69		
	В	m	45.00	45.00	45.00	45.00	45.00		
	D	m	24.39	24.54	24.68	24.71	24.84		
	C _B	-	0.8476	0.8469	0.8463	0.8427	0.8420		
	D _P	m	8.3260	8.3928	8.4305	8.4075	8.3999		
	Pi	m	5.8129	5.8221	5.7448	5.7491	5.7365		
A _E /A _O		-	0.3890	0.3724	0.3606	0.3618	0.3690		
B	Building Cost	\$	59,889,135	59,888,510	59,863,587	59,837,336	59,831,834		
I	Iteration No	-	10	483	96	63	67		
	CPU Time ⁵⁾	sec	4.39	209.58	198.60	184.08	187.22		

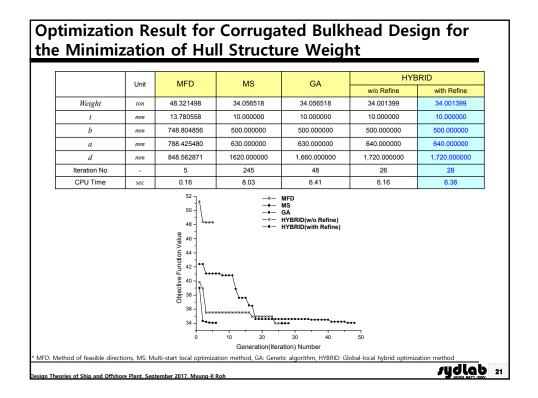
Determination of Optimal Principal Dimensions of a Naval Ship

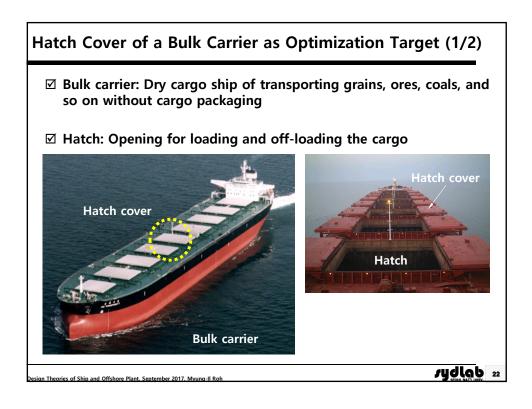


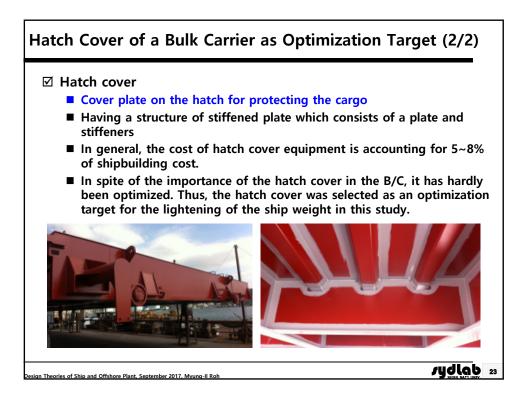

he Mini	mizat	tion of F	uel Con	sumptio	n		
CASE 1: Mi	nimize f	uel consum	ption (f ₁)				
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.68	157.64	157.60	157.79	157.89
В	m	17.98	20.11	19.69	19.47	19.60	19.59
D	m	12.80	12.57	12.67	12.79	12.79	12.74
Т	m	6.40	5.47	5.57	5.69	5.68	5.63
C _B	-	0.508	0.520	0.506	0.506	0.508	0.512
Pi	m	8.90	9.02	9.38	9.04	9.06	9.06
A _E /A _O	-	0.80	0.80	0.65	0.80	0.80	0.80
n	rpm	88.8	97.11	94.24	96.86	96.65	96.64
F.C (<i>f</i> ₁)	kg/h	3,391.23	3,532.28	3,526.76	3,510.53	3,505.31	3,504.70
H.S.W	LT	3,132	3955.93	3901.83	3910.41	3942.87	3,935.39
Δ	LT	8,369	9,074	8,907	8,929	9,016	9,001
Iteration No	-	-	6	328	97	61	65
CPU Time	sec	-	3.83	193.56	195.49	189.38	192.02

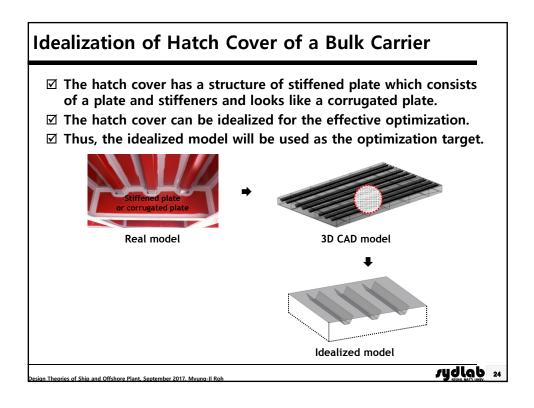

Dptimization Result for he Minimization of Hull Structure Weight										
					3	*****				
CASE 2: Mi	nimize ł	null structur	e weight (f ₂)							
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine			
L	m	142.04	157.22	155.92	155.78	155.58	155.56			
В	m	17.98	20.09	20.09	20.12	20.10	20.09			
D	m	12.80	12.72	12.66	12.63	12.66	12.67			
т	m	6.40	5.64	5.63	5.61	5.65	5.66			
C _B	-	0.508	0.510	0.506	0.508	0.508	0.508			
P _i	m	8.90	8.98	9.42	9.04	9.46	9.45			
A _E /A _O	-	0.80	0.80	0.65	0.80	0.65	0.65			
n	rpm	88.8	97.40	94.06	97.29	93.93	93.98			
F.C	kg/h	3,391.23	3,713.23	3,622.40	3,618.71	3,603.89	3,602.60			
H.S.W (<i>f</i> ₂)	LT	3,132	3,910.29	3,855.48	3,850.56	3,844.43	3,844.24			
Δ	LT	8,369	9,097	9,014	9,008	9,004	9,003			
Iteration No	-	-	7	364	95	64	68			
CPU Time	sec	-	3.91	201.13	192.32	190.98	192.41			

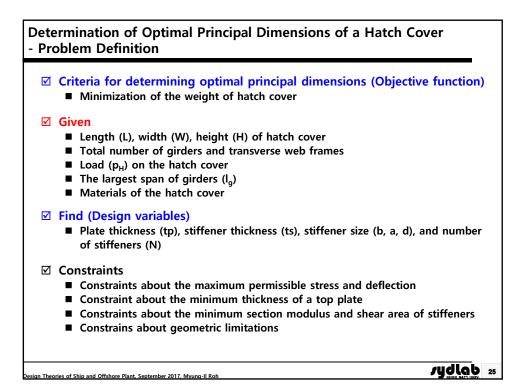

t DDG-51 142.04			e weight (f ₂)		* w ₁ = w ₂ =
t DDG-51		-			* w ₁ = w ₂ =
t DDG-51		-			
142.04			GA	HYBRID w/o Refine	HYBRID with Refine
	157.37	157.02	156.74	156.54	156.51
17.98	19.99	19.98	19.82	19.85	19.82
12.80	12.70	12.69	12.73	12.82	12.84
6.40	5.61	5.62	5.67	5.77	5.80
0.508	0.510	0.506	0.506	0.508	0.508
8.90	9.02	9.51	9.33	9.50	9.05
0.80	0.80	0.65	0.65	0.65	0.65
n 88.8	97.11	93.49	94.53	93.52	93.51
h 3,391.23	3,589.21	3,583.56	3,556.15	3,551.98	3,551.42
3,132	3,931.49	3,896.54	3,891.45	3,880.74	3,880.18
3,261.62	3,760.35	3,740.05	3,723.80	3,716.36	3,715.80
8,369	9,074	9,048	9,004	9,001	9,001
-	7	351	93	65	68
: -	3.99	201.63	191.28	190.74	193.22
	6.40 0.508 8.90 0.80 n 88.8 h 3,391.23 3,132 3,261.62 8,369 - -	6.40 5.61 0.508 0.510 8.90 9.02 0.80 0.80 n 88.8 97.11 h 3,391.23 3,589.21 3,132 3,931.49 3,261.62 3,760.35 8,369 9,074 7 7	6.40 5.61 5.62 0.508 0.510 0.506 8.90 9.02 9.51 0.80 0.80 0.65 n 88.8 97.11 93.49 h 3,391.23 3,589.21 3,583.56 3,132 3,931.49 3,896.54 3,261.62 3,760.35 3,740.05 8,369 9,074 9,048 - 7 351 - 3.99 201.63	6.40 5.61 5.62 5.67 0.508 0.510 0.506 0.506 8.90 9.02 9.51 9.33 0.80 0.80 0.65 0.65 n 88.8 97.11 93.49 94.53 h 3,391.23 3,589.21 3,583.56 3,556.15 3,132 3,931.49 3,896.54 3,891.45 3,261.62 3,760.35 3,740.05 3,723.80 - 7 351 93 - 3.99 201.63 191.28	6.40 5.61 5.62 5.67 5.77 0.508 0.510 0.506 0.506 0.508 8.90 9.02 9.51 9.33 9.50 0.80 0.80 0.65 0.65 0.65 n 88.8 97.11 93.49 94.53 93.52 h 3,391.23 3,589.21 3,583.56 3,556.15 3,551.98 3,132 3,931.49 3,896.54 3,891.45 3,880.74 3,261.62 3,760.35 3,740.05 3,723.80 3,716.36 - 7 351 93 65 - 3.99 201.63 191.28 190.74

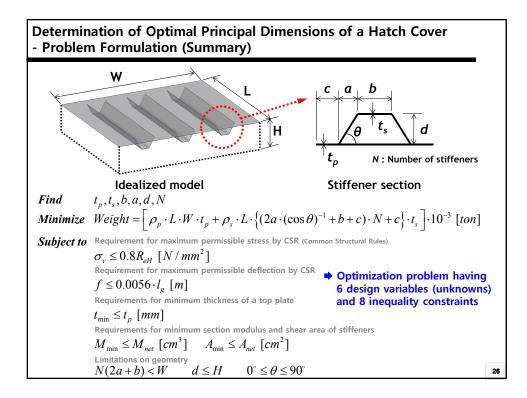

			CASE 1	CASE 2	CASE 3
	Unit	DDG-51	Minimize f ₁ (fuel consumption)	Minimize f ₂ (hull structure weight)	Minimize w ₁ f ₁ +w ₂ f ₂
L	m	142.04	157.89	155.56	156.51
В	m	17.98	19.59	20.09	19.82
D	m	12.80	12.74	12.67	12.84
Т	m	6.40	5.63	5.66	5.80
CB	-	0.508	0.512	0.508	0.508
Pi	m	8.90	9.06	9.45	9.05
A _E /A _O	-	0.80	0.80	0.65	0.65
n	rpm	88.8	96.64	93.98	93.51
F.C	kg/h	3,391.23	3,504.70	3,602.60	3,551.42
H.S.W	LT	3,132	3,935.39	3,844.24	3,880.18
Objective	-	-	3,504.70	3,844.24	3,715.80
Δ	LT	8,369	9,001	9,003	9,001
teration No	-	-	65	68	68
CPU Time	sec	-	192.02	192.41	193.22



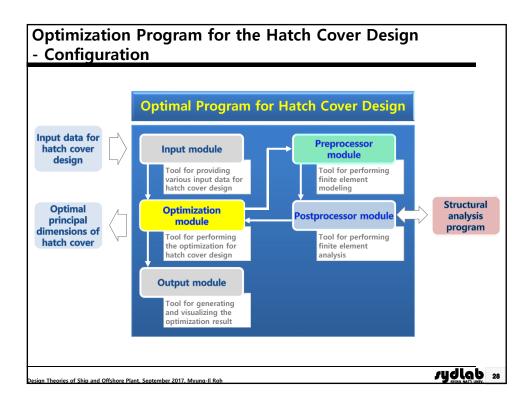


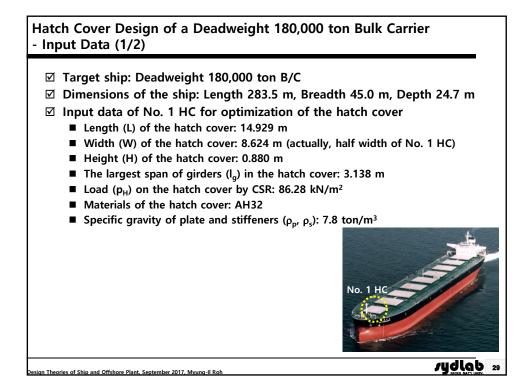


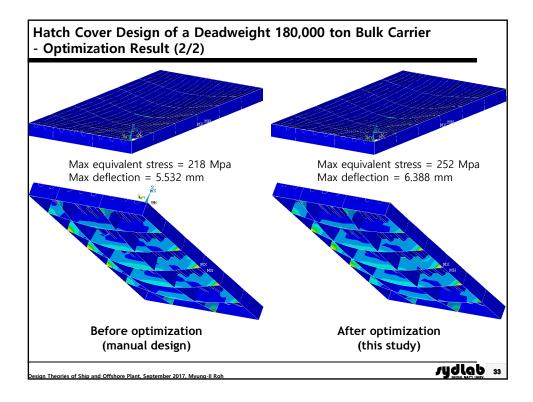


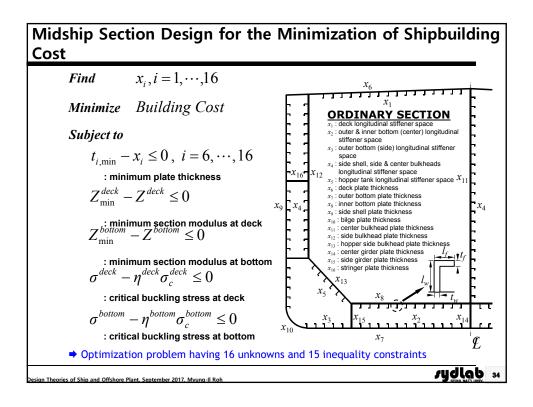


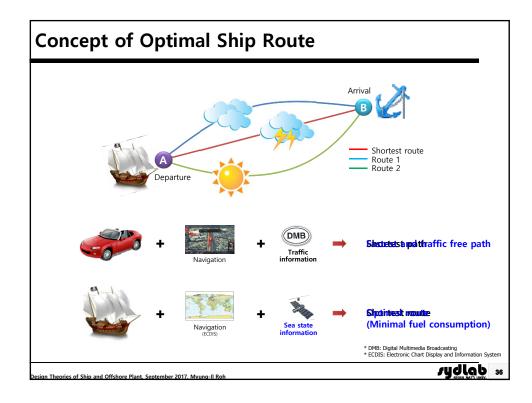


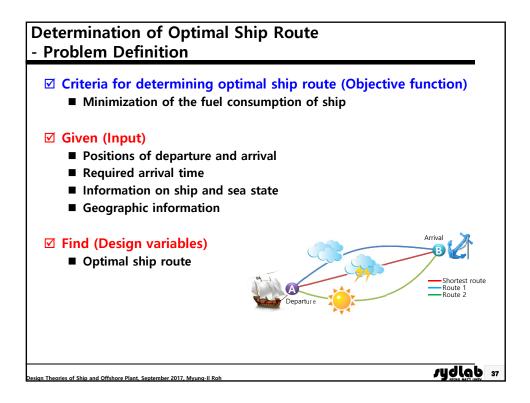


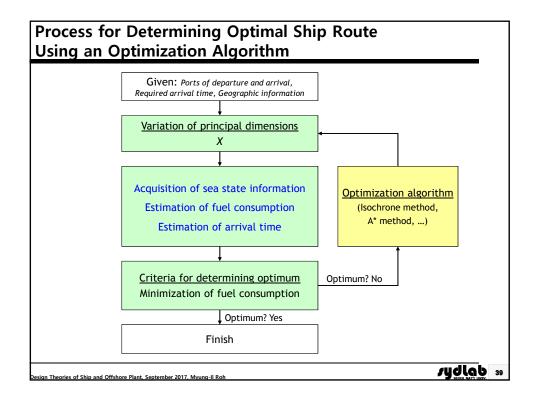


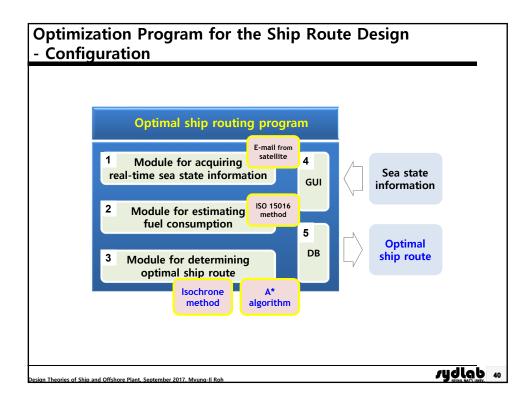


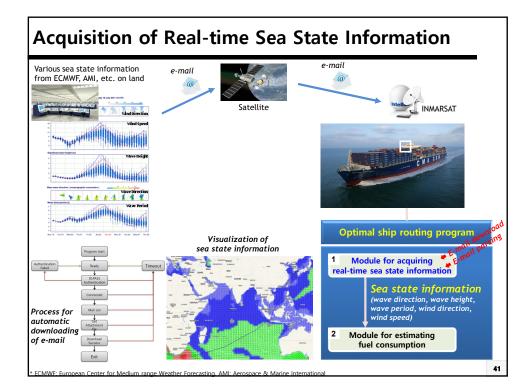


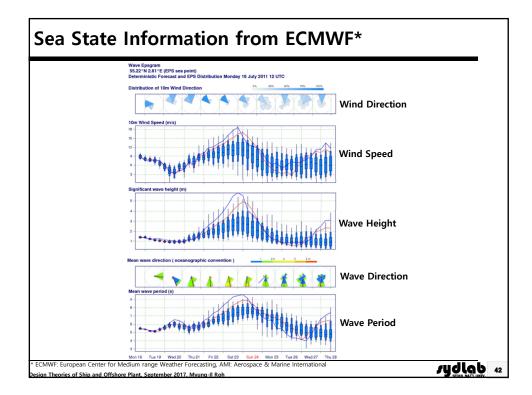

Find Minimize	t_{p}, t_{s}, b, a, d, N Weight = $\left[\rho_{p} \cdot L \cdot W \cdot t_{p} + \rho_{s}\right]$	$\cdot L \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \left] \cdot 10^{-3} \ [ton]$
	$= [7.85 \cdot 14.929 \cdot 8.62]$	$24 \cdot t_p + 7.85 \cdot 14.929 \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \left[10^{-3} \right]$
	L	: weight of top plate and stiffeners
Subject to	$- < 0.8 215 [N/mm^2]$	
	, 2 3	: maximum permissible stress
	$f \le 0.0056 \cdot 3.138 \ [m]$: maximum permissible deflection
	$t_{\min} \leq t_p \ [mm]$: minimum thickness of a top plate
	$M_{\min} \leq M_{net} \ [cm^3]$: minimum section modulus of stiffeners
	$A_{\min} \le A_{net} \ [cm^2]$: minimum shear area of stiffeners
	N(2a+b) < W	: geometric limitation
	d < H	: geometric limitation
	$0^{\circ} < \theta \le 90^{\circ}$: geometric limitation

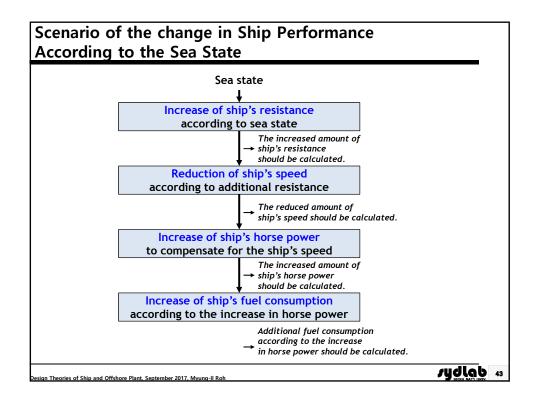

ltem	Unit	Manual design	Optimization result
t _p	mm	16	14
t _s	mm	8	8
b	m	0.170	0.160
а	m	0.120	0.111
d	m	0.220	0.198
N	-	8	8
Weight	ton	26.225	23.975
Maximum stress	MPa	218	252
Maximum deflection	mm	5.532	6.388

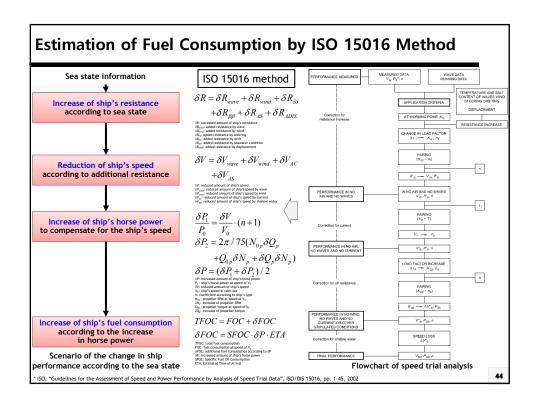


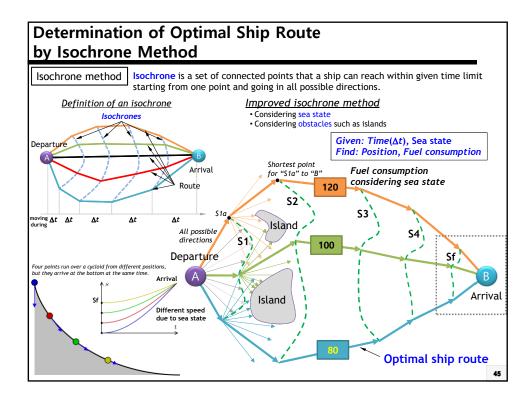

	Unit	Actual Ship	MFD	MS	GA	HYB	RID
	0.111	/ locada onip			0,, (w/o Refine	with Refine
Building Cost	\$/m	-	21,035.254748	20,637.828634	20,597.330090	20,422.478135	20,350.28689
<i>x</i> ₁	mm	800.0	787.038274	811.324938	780.000000	810.000000	810.3701321
<i>x</i> ₂	mm	800.0	762.891023	799.038243	750.000000	800.00000	800.1282732
<i>x</i> ₃	mm	780.0	743.313979	787.034954	770.000000	790.000000	789.0923943
x_4	mm	835.0	814.142029	833.909455	820.000000	830.000000	834.838424
<i>x</i> ₅	mm	770.0	756.434513	772.349435	790.000000	780.000000	780.002092
<i>x</i> ₆	mm	16.5	16.983723	16.203495	16.000000	16.000000	16.390923
x ₇	mm	16.0	16.829142	16.043803	16.500000	16.000000	15.989044
<i>x</i> ₈	mm	15.5	16.020913	15.390394	16.000000	15.500000	15.432091
<i>x</i> ₉	mm	17.0	17.329843	17.039439	16.500000	16.500000	17.139433
x ₁₀	mm	14.5	15.001923	14.324335	15.000000	15.000000	14.780908
x ₁₁	mm	13.5	14.192834	14.240495	14.000000	13.500000	13.550214
x ₁₂	mm	14.5	15.123051	15.403945	14.500000	14.500000	14.500130
x ₁₃	mm	17.0	16.902832	16.849387	16.500000	17.000000	17.010902
x ₁₄	mm	14.0	14.784034	14.739454	15.500000	14.500000	14.309324
x ₁₅	mm	14.0	15.129430	14.448504	15.500000	14.500000	14.588917
x ₁₆	mm	14.5	14.824045	14.940584	15.000000	15.000000	14.789992
Iteration No	-	-	8	912	93	64	70
CPU Time	sec	-	2.90	293.28	272.91	265.06	267.92

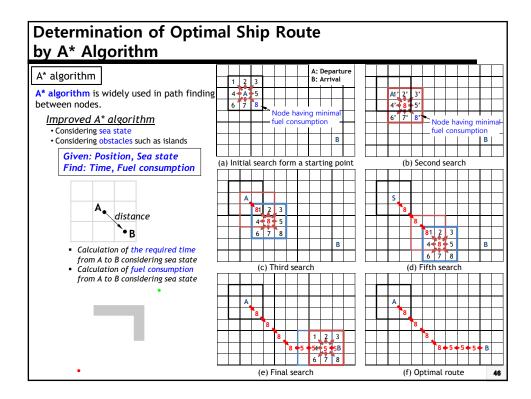


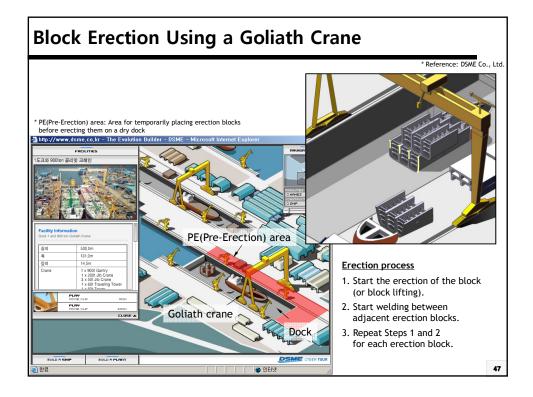


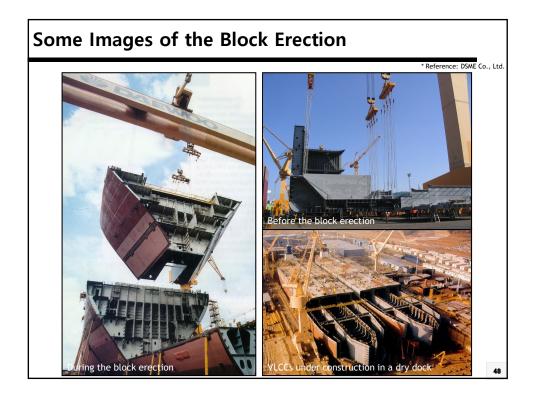

Find	Χ	Route	Design Variables
Minimize	$TFOC(\mathbf{X})$	Total fuel consumption	Objective Function
Subject to	$ETA_{\min} - ET$	$TA(\mathbf{X}) \leq 0$	Constraints
		Requirement for the minimum	arrival time
	$ETA(\mathbf{X}) - E$	$ETA_{\max} \leq 0$	
		Requirement for the maximum	n arrival time
	tion problem bay	ving 1 unknown and 2 in	equality constraints
• Optimizat			equality constraints

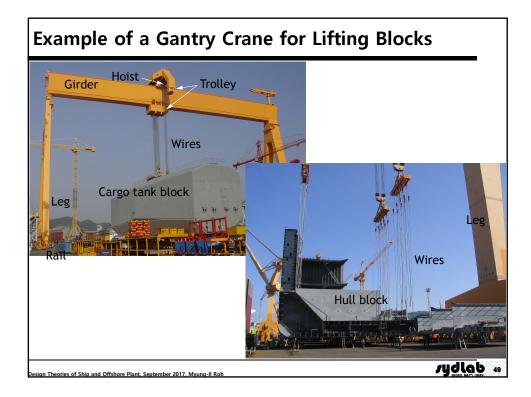


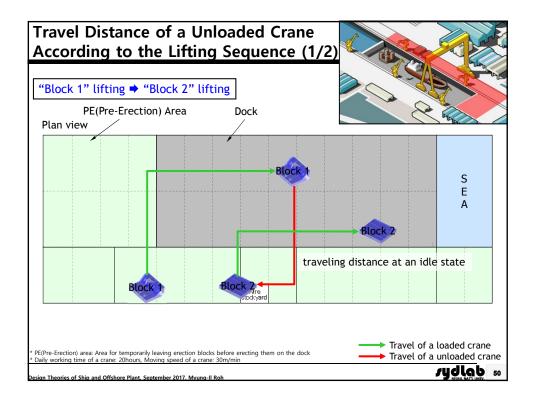


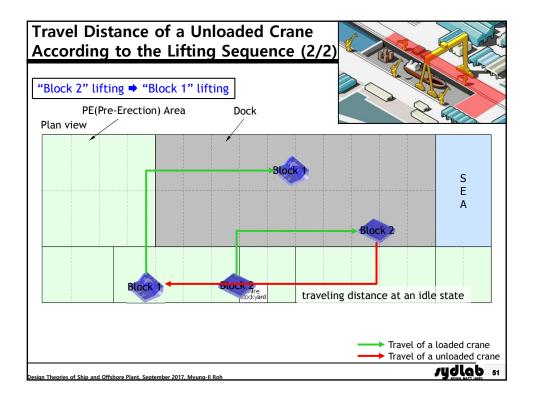


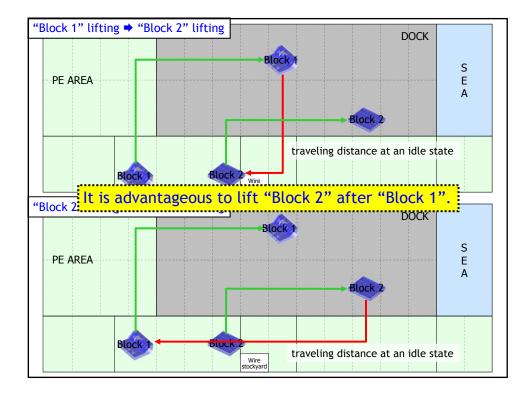


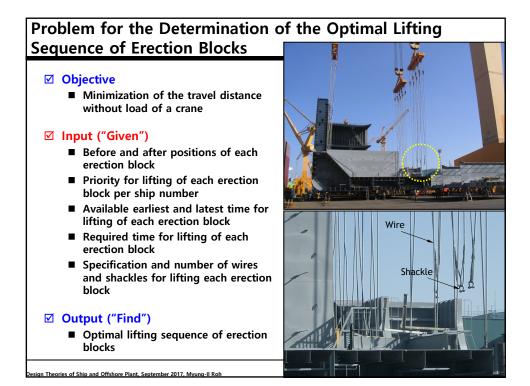


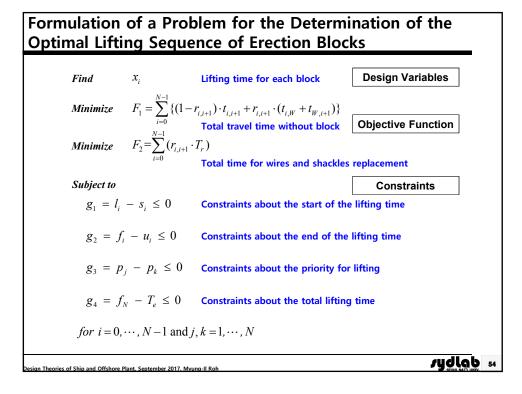


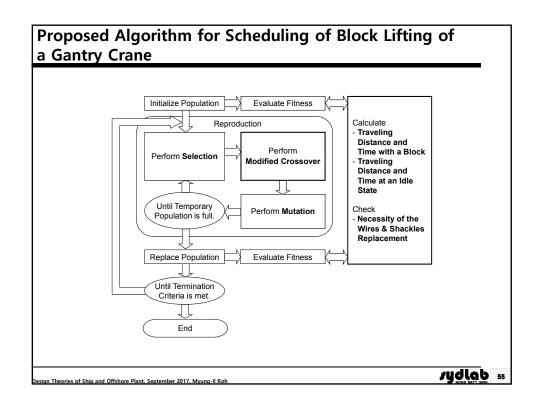


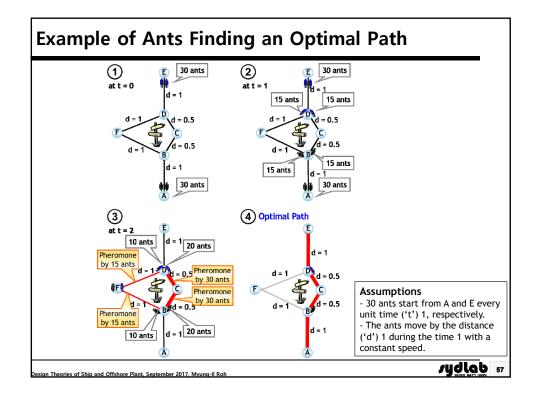


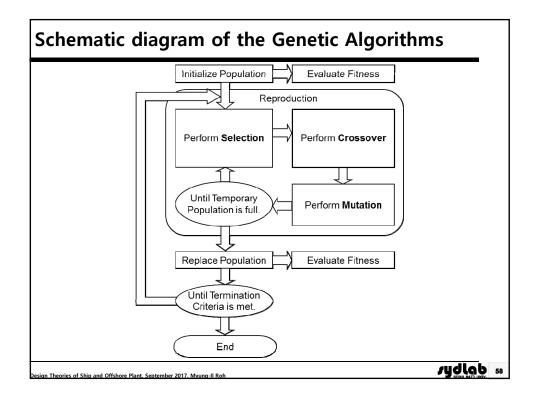


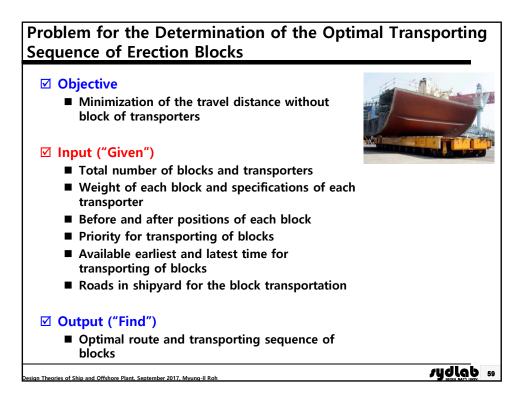












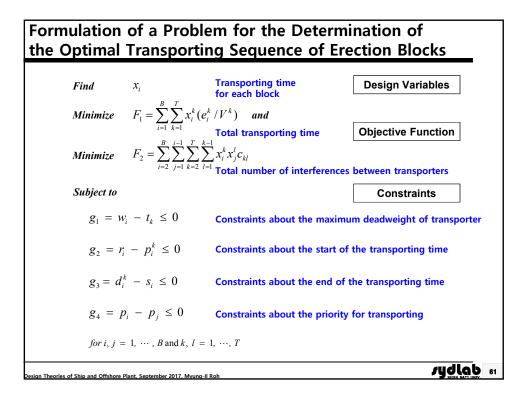
Example of a Blocks in Sh	a Deadweight 600 ton Transporter for Moving ipyards
	Block
(a) Trar	nsporter with loading (b) Transporter without loading
Specifications	 Length: 23.3 m Breadth: 6.6 m Height: Avg. 2.2 m (1.55 ~ 2.2 m, adjustable) Lightweight: 126 ton Speed: without loading 15 km/h, with loading 10 km/h Number of wheels: 88
Purpose	Moving blocks, deck houses, main engines, large pipe equipments, etc.
Features	 Moving forward and backward, 360° at the current position Two control rooms at the front and back Two signalmen are required for ensuring against risks
gn Theories of Ship and Offshore	Plant, September 2017, Myung-II Roh

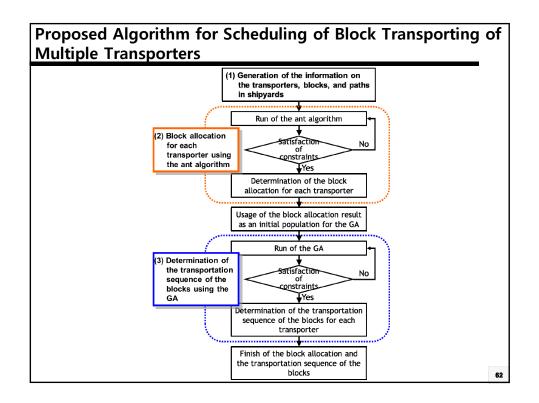
Detailed Input Data for the Determination of the Optimal Transporting Sequence of Erection Blocks

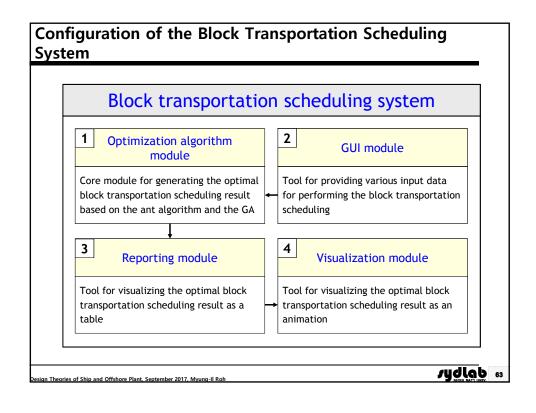
☑ Data on the transporters

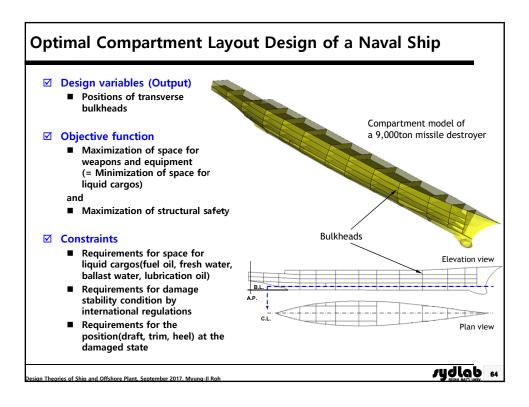
- Total number and ID of the transporters
- Specifications (e.g., the speed, maximum deadweight, service time, etc.) of each transporter
- Initial position of each transporter

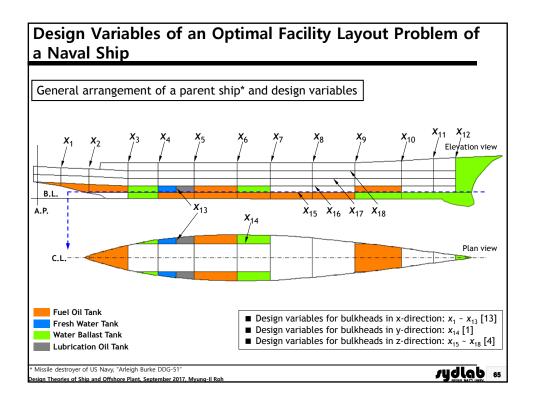
☑ Data on the blocks

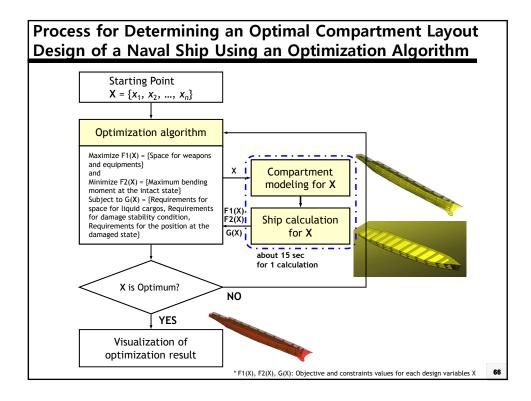

- Total number and ID of the blocks to be moved by the transporters
- Weight of each block
- Initial position and target position after moving each block
- Transportation time limit (lower and upper bounds) of each block
- Priority for the transportation among the blocks

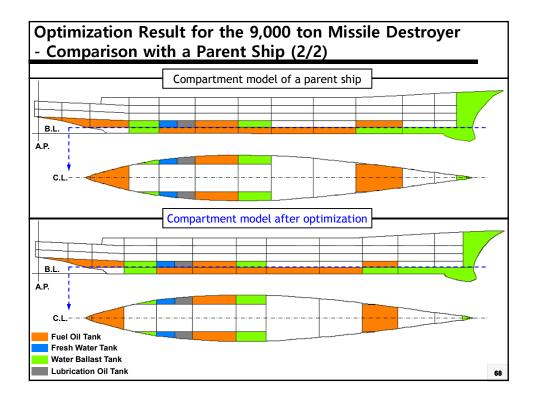

☑ Miscellaneous data

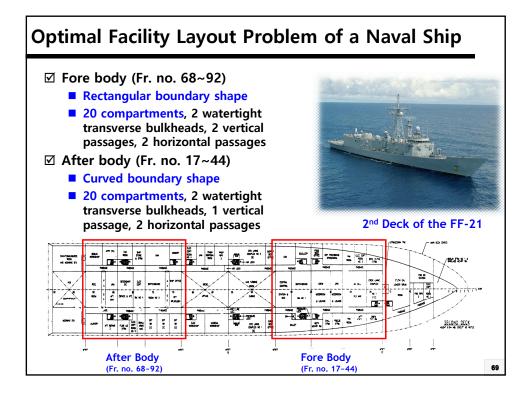

In Theories of Ship and Offshore Plant, September 2017, Myung-Il Roh

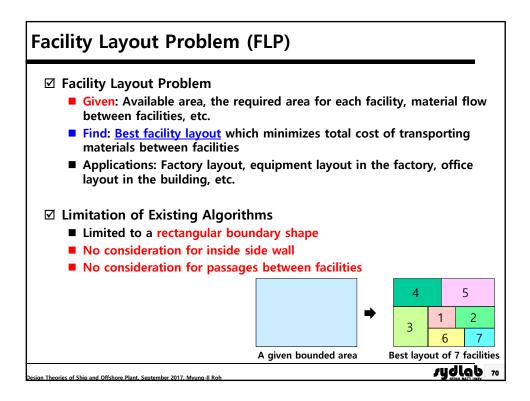

■ Information on the shipyard roads for the block transportation

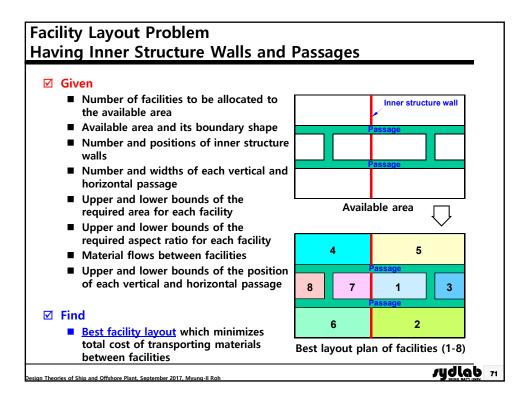

sydlab 🕫



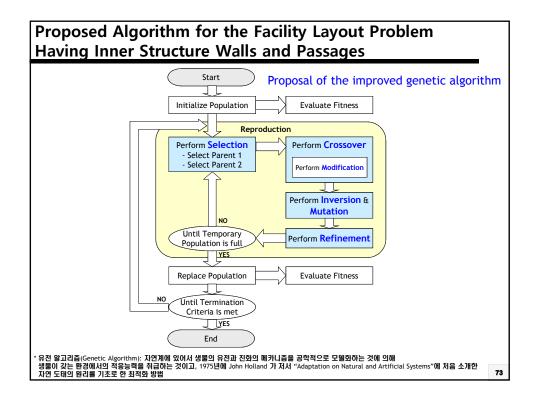


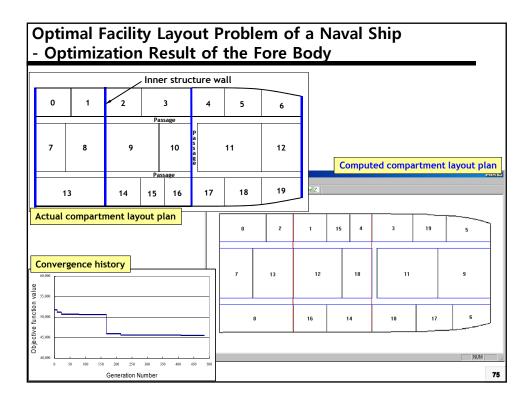


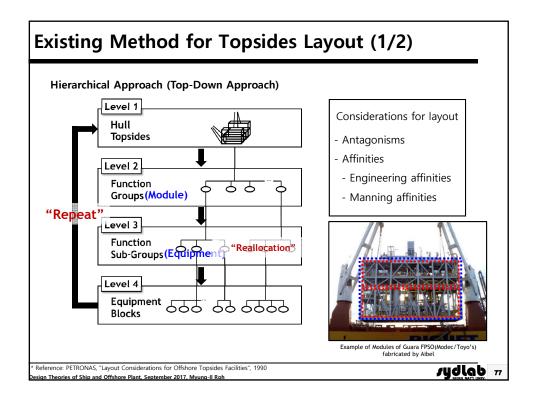


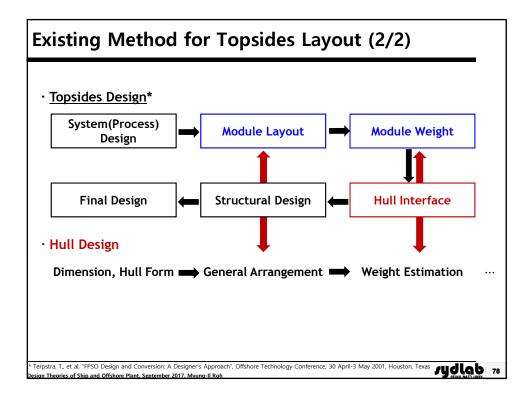


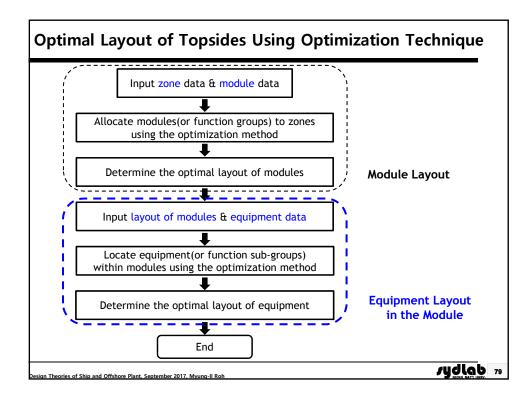
$V_{W.B.T}$ m^3 1,181.4 1,050.6 (Minimize) BM_1 BM_2 $kN \cdot m$ 74,694.3 50,401.1 67,254.7 47,325.6 Objective funct (Minimize) $\phi_{0,1}$ $\phi_{0,2}$ \circ 0.000 0.038 0.000 0.038 damage stabili condition by international regulations $A_{2,1}/A_{1,1}$ $A_{2,2}/A_{1,2}$ $-$ 40.871 40.544 40.874 40.666 arguite amage stability condition by international regulations T_1 T_2 m 6.919 6.884 6.819 6.787 t_1 t_2 m 0.192 0.396 0.309 0.589 $degetter \phi_1 \phi_2 \circ 1.243 1.336 0.839 0.896 degetter Decrease of space $	lte	em	Unit	Paren	t ship	Optimizat	ion result	Note	
BM1 BM2 KN·m 74,694.3 50,401.1 67,254.7 47,325.6 (Minimize) $\phi_{0,1}$ $\phi_{0,2}$ ° 0.000 0.038 0.000 0.038 0.000 0.038 $A_{2,1}/A_{1,1}$ $A_{2,2}/A_{1,2}$ - 40.871 40.544 40.874 40.666 Requirements f damage stabili condition by international regulations T_1 T_2 m 6.919 6.884 6.819 6.787 Equivariance t_1 t_2 m 0.192 0.396 0.309 0.589 Equivariance ϕ_1 ϕ_2 ° 1.243 1.336 0.839 0.896 Equivariance <th< td=""><td>Vw</td><td>.в.т</td><td><i>m</i>³</td><td colspan="2">1,181.4</td><td colspan="2">1,050.6</td><td>Objective function (Minimize)</td></th<>	Vw	.в.т	<i>m</i> ³	1,181.4		1,050.6		Objective function (Minimize)	
$\phi_{0,1}$ $\phi_{0,2}$ \circ 0.000 0.038 0.000 0.038 $damage stabilic condition by international regulations A_{2,1}/A_{1,1} A_{2,2}/A_{1,2} \circ 40.871 40.544 40.874 40.666 damage stabilic condition by international regulations T_1 T_2 m 6.919 6.884 6.819 6.787 t_1 t_2 m 0.192 0.396 0.309 0.589 \phi_1 \phi_2 \circ 1.243 1.336 0.839 0.896 \phi_1 \phi_2 \circ 1.243 0.396 0.839 0.896 0.896 \phi_1 \phi_2 \circ 0.1243 0.396 0.839 0.896 0.810 0.810 0.810 0.810 0.810 <$	BM ₁	BM ₂	kN∙m	74,694.3	50,401.1	67,254.7	47,325.6	Objective functio (Minimize)	
$A_{2,1}/A_{1,1}$ $A_{2,2}/A_{1,2}$ - 40.871 40.544 40.874 40.666 international regulations T_1 T_2 m 6.919 6.884 6.819 6.787 t_1 t_2 m 0.192 0.396 0.309 0.589 ϕ_1 ϕ_2 ° 1.243 1.336 0.839 0.896 ϕ_1 ϕ_2 o 1.243 1.336 0.839 0.896 0.896 ϕ_1 ϕ_2 o 1.243 1.336 0.839 0.896 0.896 ϕ_2 ϕ_2 o 1.243 1.336 0.839 0.896 0.896 ϕ_3 Increase of space for weapons and equipment) Increase of structu	Ø _{0,1}	Ø _{0,2}	o	0.000	0.038	0.000	0.038	Requirements for damage stability	
t_1 t_2 m 0.192 0.396 0.309 0.589 ϕ_1 ϕ_2 \circ 1.243 1.336 0.839 0.896 \Rightarrow Decrease of space for liquid cargos as compared with a parent ship (= Increase of space for weapons and equipment) & Increase of structural safety y: Total volume of ballast tank Maximum bending moment at the <i>i</i> th loading condition ϕ_1 ϕ_2 ϕ_1 ϕ_2 ϕ_2 ϕ_1 ϕ_2 ϕ_2 ϕ_2 ϕ_2 ϕ_2 ϕ_3 ϕ_2 ϕ_3 ϕ_3 ϕ_4 ϕ_1 ϕ_2 ϕ_2 ϕ_2 ϕ_3 ϕ_4 ϕ_2 ϕ_3 ϕ_4 ϕ_2 ϕ_4 ϕ_2 ϕ_4 ϕ_4 ϕ_4 ϕ_4 ϕ_2 ϕ_4 ϕ_2 ϕ_4 ϕ_4 ϕ_2 ϕ_4	A _{2,1} /A _{1,1}	A _{2,2} /A _{1,2}	-	40.871	40.544	40.874	40.666	international	
 φ₁ φ₂ ° 1.243 1.336 0.839 0.896 Decrease of space for liquid cargos as compared with a parent ship (= Increase of space for weapons and equipment) & Increase of structural safety y² Total volume of ballast tank Maximum bending moment at the <i>i</i>th loading condition 	<i>T</i> ₁	<i>T</i> ₂	m	6.919	6.884	6.819	6.787		
φ1 φ2 1.243 1.330 0.639 0.690 Decrease of space for liquid cargos as compared with a parent ship (= Increase of space for weapons and equipment) & Increase of structural safety y: Total volume of ballast tank Maximum benefits Maximum benefits	t ₁	t ₂	m	0.192	0.396	0.309	0.589		
(= Increase of space for weapons and equipment) & Increase of structural safety Total volume of ballast tank Maximum bending moment at the <i>i</i> th loading condition	ϕ_1	φ ₂	0	1.243	1.336	0.839	0.896		
: Initial heel angle at the jth damage case A _{2, i} : Areas of the negative and the positive righting moment from a statistical stability curve and a heeling arm curve at the jth damage cas	(= Incre & Increa T: Total volume Maximum bendi Initial heel ang	ase of space ase of strue of ballast tank ng moment at the e at the <i>j</i> th dama	ce for ctural e ith loadin age case	weapons an safety g condition	d equipme	nt) .	·	at the ith damage care	

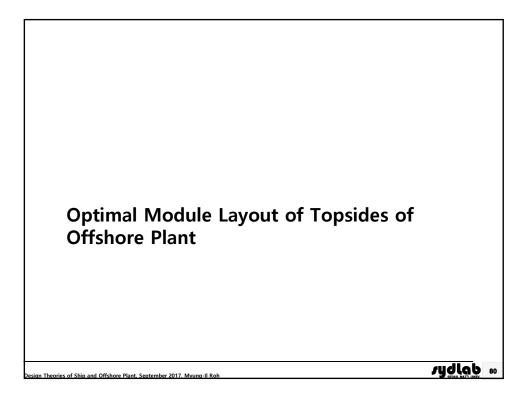


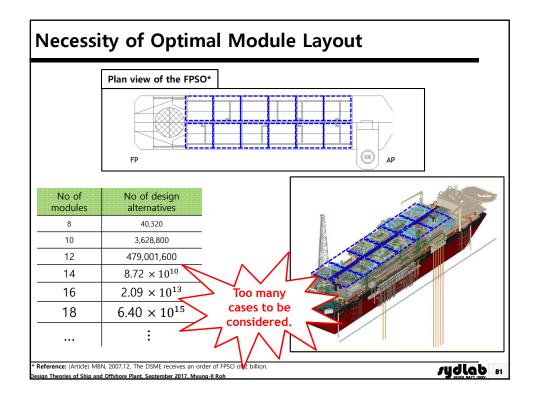


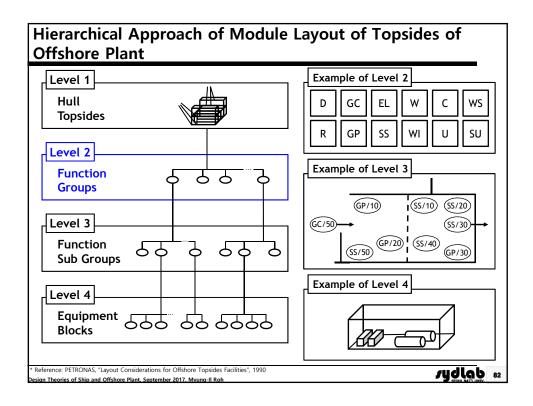

Formulation of the Optimal Facility Layout Problem Having Inner Structure Walls and Passages Minimize **Objective Function** $F = \sum_{i=1}^{M} \sum_{j=1}^{M} f_{ij} \times d_{ij}$ Total cost of transporting materials Subject to Constraints $g_1 = \alpha_k^{\min} - \alpha_k \le 0$ Constraints about the required J aspect ratio of each compartment $g_2 = \alpha_k - \alpha_k^{\max} \le 0$ $g_3 = a_k^{\min} - a_k \le 0$ Constraints about the required area $g_4 = a_k - a_k^{\max} \le 0$ of each compartment $g_5 = \sum_{k=1}^{M} a_k - A_{allowable} \leq 0$ Constraints about the total area of all compartments $g_6 = x_i^r - x_s^{i.s.w} \le 0$ Constraints about the position of each compartment $g_7 = x_s^{i.s.w} - x_i^l \le 0$ for $i, j, k = 1, \dots, M$ & $s = 1, \dots, P$ f_{ij} : Material flow between the facility *i* and *j* d_{ii} : Distance between centroids of the facility *i* and *j* sydlab 72 n Theories of Ship and Offshore Plant, September 2017, My




-				Layout Result o				val Ship		
				Inner struct	ure wall					
	0	1	2	3	4	5				
	6	Pass7	8	Passage 9	10 s a ge	11	C	omputed Con	npartment	
	12	13	<u>р</u> 14	15 16	17 18	19	e			
1	Actual Co	ompartme	<mark>nt Layout</mark>	t Plan	O	1	7	3	4	5
r	60,000	ence Histo	<mark>iry</mark>		6	8	2	11	9	10
Objective Function Value	50,000				12	14	13	15 16	19	17 18
Obie	40,000	500	1,000	1,500 2,000						NUM
L		Gei	nerauori nuillbei							74

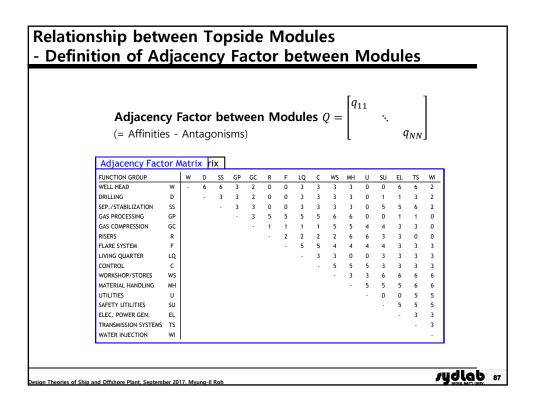


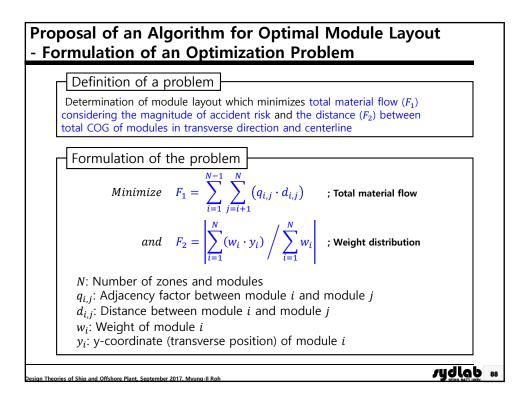


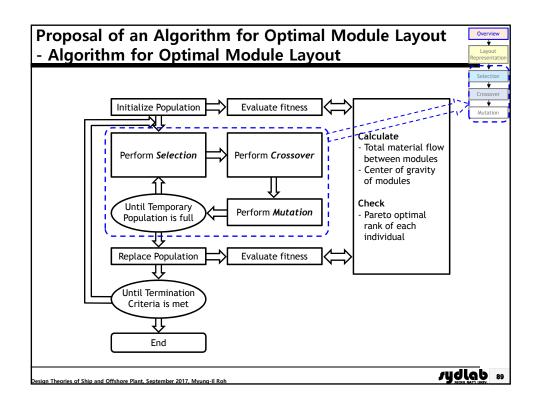


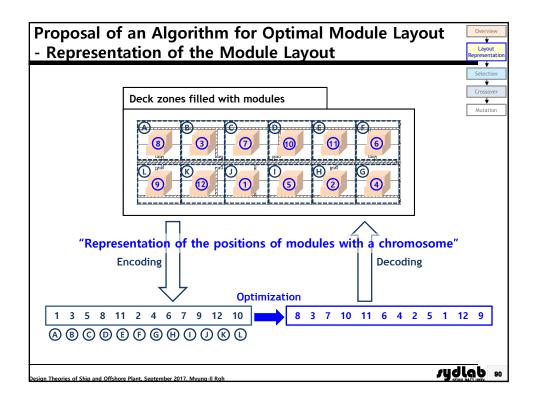
ub Groups	/						_
Wellhead	w	Gas Compressing	GC	Workshop/Stores	ws	Safety Utilities	SU
Xmas Trees	W/10	Compression Train	GC/10	Workshop - Mechanical	WS/10	Fire Water Pumps	SU/10
Manifold	W/20	Scrubber	GC/20	Workshop - Electrical	WS/20	Emergency Generator	SU/20
Well Control	W/30	Coolers	GC/30	Stores	WS/30	Emergency Switchgear	SU/30
Conductors	W/40	Lube Oil/Seal Oil	GC/40	Laboratory	WS/40	UPS	SU/40
		Gas Metering	GC/50	Storage - Standby Fuel	WS/50	Survival Craft	SU/50
Drilling	D	-		Storage - Jet Fuel	WS/60	Bridges	SU/60
BOP	D/10	Risers	R	Storage - Flamm./Comb. Liquids	WS/70		
Drilling Derrick	D/20	Risers/Manifolds	R/10	Storage - Process Consumables	WS/80	Electrical Power Generati	on EL
Drilling Support	D/30	ESD Valves	R/20			Driver / Power Generator	EL/10
Mud Systems (Active)	D/40	Pigging Facilities	R/30			Switchgear	EL/20
Drilling Control	D/50	Subsea Sat. Facilities	R/40	Material Handling	мн	Transmission Systems	TS
Separation/Stabilization	SS	Flare System	F	Cranes	MH/10	Relief and Blowdown	TS/10
Separation	SS/10	Flare Knockout	F/10	Laydown Areas	MH/20	Drains - Open	TS/20
Stabilization	SS/20	Tower (incl. tip)	F/20			Drains - Closed	TS/30
Test Separation	SS/30	i i i i i i i i i i i i i i i i i i i				Piping - Process	TS/40
Produced Water Treatment	SS/40	Living Quarter	LQ	Utilities	U	Piping - Safety	TS/50
Oil Export Pumping	SS/50	Living Quarters	LQ/10	Seawater System	U/10	Piping - Utilities.	TS/60
Oil Metering	SS/60	Living Quarters Utilities	LQ/20	Instrument Air System	U/20	Cables - Instrumentation	TS/70
		Sheltered Area	LQ/30	Diesel System	U/30	Cables - Electrical	TS/80
Gas Processing	GP	Helideck	LQ/40	HVAC	U/40	Ducting - HVAC	TS/90
Gas Processing	GP/10			Potable Water	U/50	r	_
Condensate Processing	GP/20	Control	С	Sewage Systems	U/60	Water Injection	WI
Dehydration	GP/30	Central Control	C/10	Heating Systems	U/70	Injection	WI/10
Fuel Gas	GP/40	Local Control	C/20	Cooling Systems	U/80	Treatment	WI/20

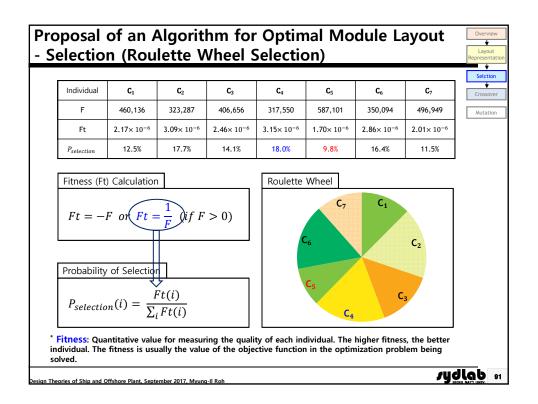
Characteristics for the Representation of Relationship between Topsides Modules

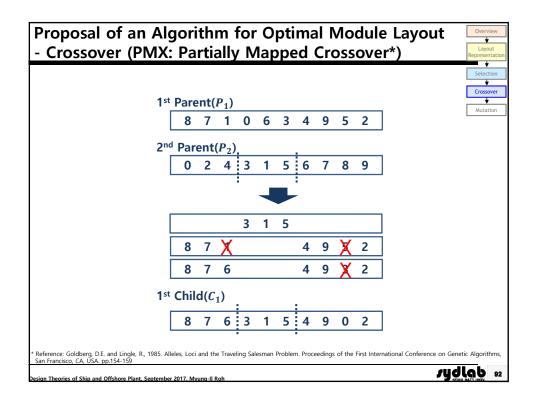

- ✓ Antagonisms: Characteristics which preclude an module being safely located near another specific module unless mutually protected (e.g., "two modules should be distant from each other.")
- ☑ Affinities: Characteristics which make it particularly advantageous to locate one module close to another specific module (e.g., "two modules should be adjacent to each other.")

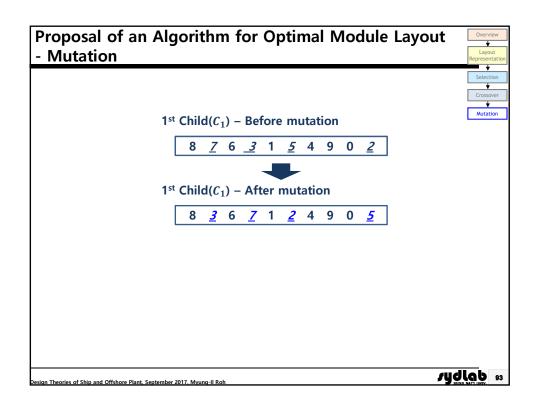

n Theories of Ship and Offshore Plant, September 2017, Myung-II Roh

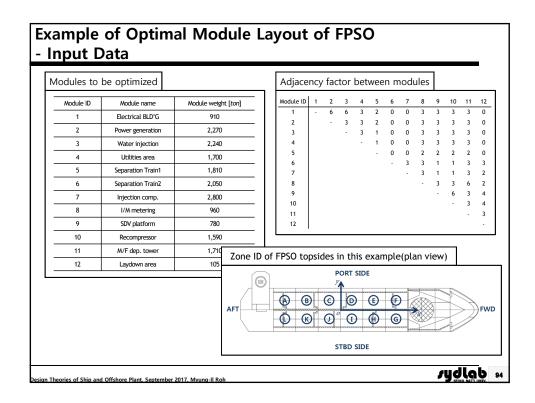


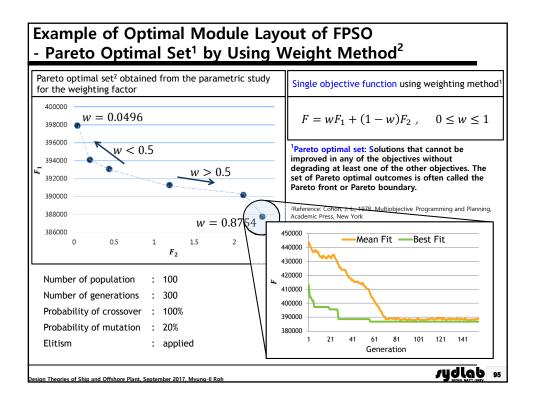

Characterist Active be 						-								Fa	m	ho	<i>.</i>	o in	itiating
major inc			na	Ia	. le	115	ues	э. г	- TC	JDa		ity	0	a		ou	uie	; 111	itiating
•														_					_
Reactive	bel	havio	r cl	ha	rac	tei	rist	ics	: F	'ro	ре	nsi	ty	fo	r a	m	oc	lule	e to escalate
major inc	ide	ents ir	niti	at	ed	els	sev	vhe	ere		-		-						
		_																	
Antagonisms M	atri	x							-										1
FUNCTION GROUP		REACTIVE	W 3	D 3	SS 3	GP 3	GC 2	R 3	F	LQ 3	C 3	WS 2	MH 2	U 2	SU	EL 3	TS 3	WI 2	
		ACTIVE	5	J	2	5	2	3	5	3	2	2	2	2	5	5	2	2	
WELL HEAD	w	3	-																
DRILLING	D	3	3	-						Fa	ch		mb	or	(1.	. 2)	ro	nro	sents a
SEP./STABILIZATION	SS	2	3	3	-														
GAS PROCESSING	GP	2	3	3	3	-				qua	ant	ita	tive	e va	alue	е о	t ti	he r	isk when tw
GAS COMPRESSION	GC	3	3	3	3	3	-			mo	du	les	an	e la	าตลา	ted	l in	ad	jacent zones
RISERS	R	3	3	3	3	3	3												
FLARE SYSTEM	F	2	3		3		3	3	-	CIO	se.	In	ie r	iigi	ner	nu	Imi	ber,	the more ris
LIVING OUARTER	LO	0	3	3	3	3	3	3	3	lav	out	t.							
CONTROL	c	0	3	3		3		3	3	1	-								
WORKSHOP/STORES	WS	0	3	3	2	2	3	3	2	1	1	-							
MATERIAL HANDLING	MH	1	3	3	2	2	3	3	2	2	2	1	-						
UTILITIES	U	1	3	3		2		3	2	2	2	1	1						
SAFETY UTILITIES	SU	1	3	3		3		3	3	2	2	1	2	2	-				
ELEC. POWER GEN.	FL	3	3	3		3		3	3	3	3	2	2	2	3				
		3	3	3	3	3	3	3	3	3	3	2	2	2	3	3	-		
TRANSMISSION SYSTEMS												~	~	~	5	5			

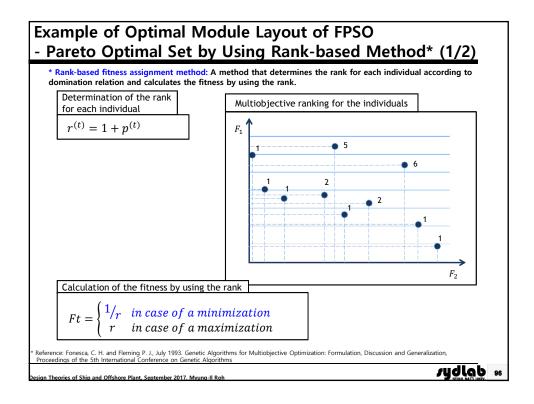

racteristics f																		
acteristics 1	~ r	da	f ; ,,	in	a -	.		Hin	~									
	0I	ue		IIII	y a	311		ue	5									
Engineering a	ffir	nitie	s:	Th	e r	nee	d t	οI	oc	ate	C	erta	ain	m	od	ule	es d	lose
together, the																		
-	me	51	u	iua			a	DEI	ny	- ui		eq	un	en	ICI	113	U	uie
process logic																		
Manning affir	itie	-c. 1	Ma	avs	to	m	iniı	miz		the	m	ากง	em	her	nt c	of (sta	ff ar
				'y S	.0					circ		101					stu	ii ui
the platform																		
Manning Affinit	ies	Matr	ix	ix														
FUNCTION GROUP			l w	D	SS	GP	GC	R	F	LO	с	ws	мн	U	su	EL	TS	wi
		LUND		3			1			3	3				1			3
WELL HEAD	w	3		3	3	3			-	3	3	3	3	-			-	3
DRILLING	D	3		-	3	3				3	3	3	3					3
SEP./STABILIZATION	SS	3			-	3				3	3	3	3					3
GAS PROCESSING	GP	3				-				3	3	3	3					3
GAS COMPRESSION	GC	1					-											
RISERS	R	2						-										
FLARE SYSTEM	F	0							-									
LIVING QUARTER	LQ	3								-	3	3	3					3
CONTROL	С	3									-	3	3					3
WORKSHOP/STORES	WS	3										-	3					3
MATERIAL HANDLING	мн	3																3
UTILITIES	U	2		Ea	ich	nu	mb	er	(1~	·3)	ren	ores	ent	ts a	a	uar	ntita	ative
SAFETY UTILITIES	SU	1																es ha
ELEC. POWER GEN.	EL	2																
TRANSMISSION SYSTEMS	тs	0		fre	qu	ent	m	ove	me	nt	of	sta	lf e	ac	h o	the	r ir	ו the
WATER INJECTION	WI	3																-
WATER INJECTION	WI	3		ası	pec	t o	f m	anı	nin	g a	ffir	nitie	es.	000000000000000000000000000000000000000	******	*********		-

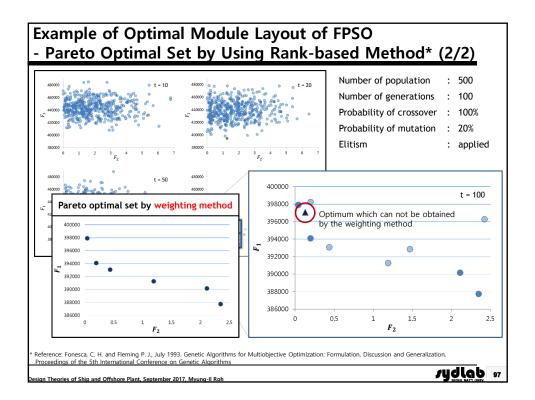


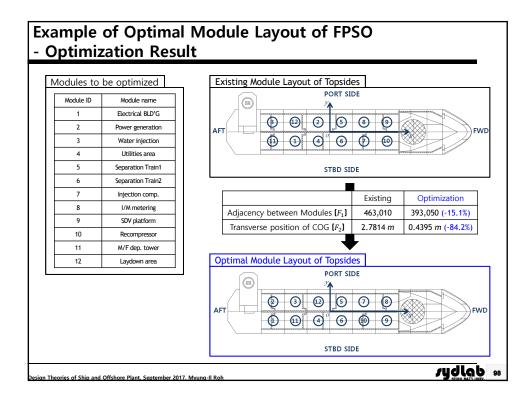


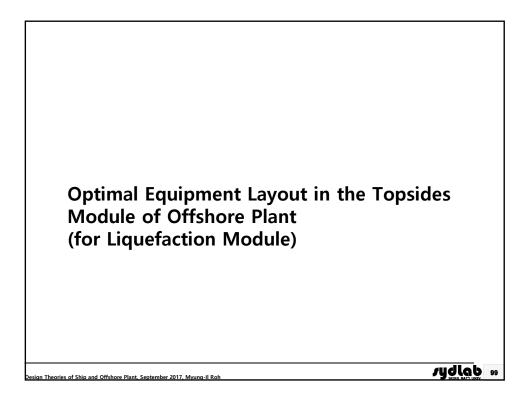


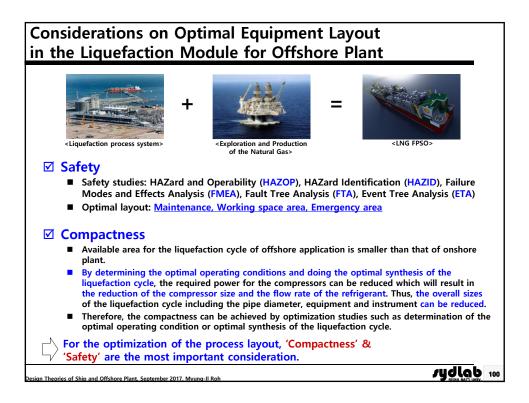


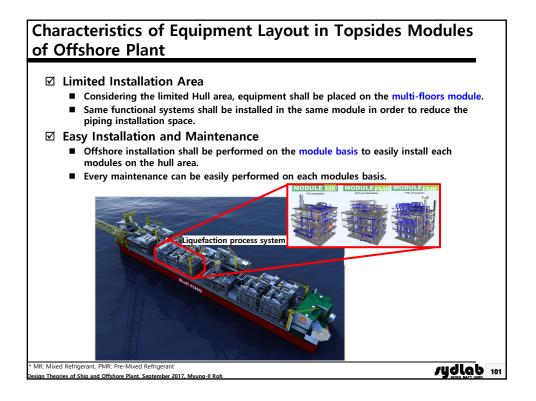


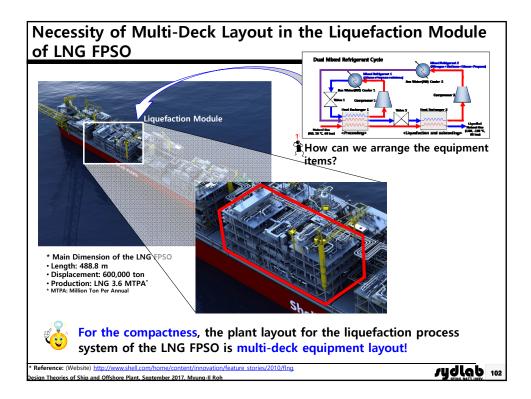


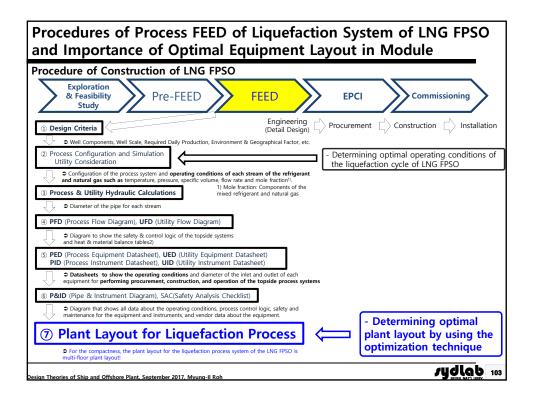


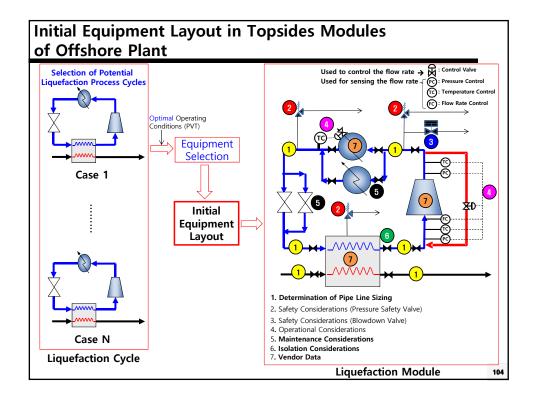


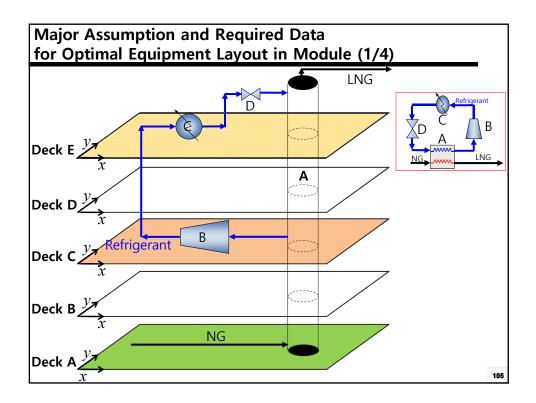


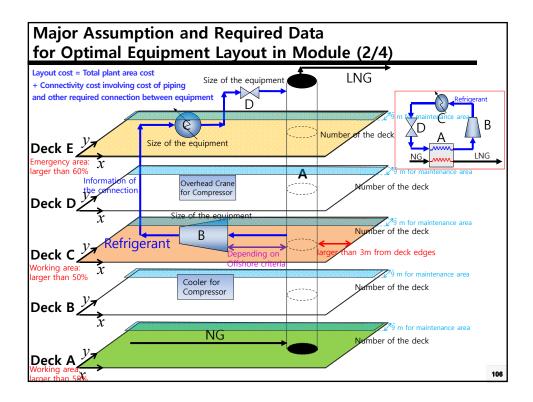


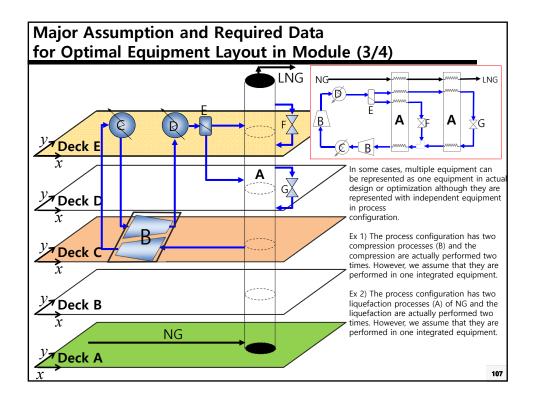


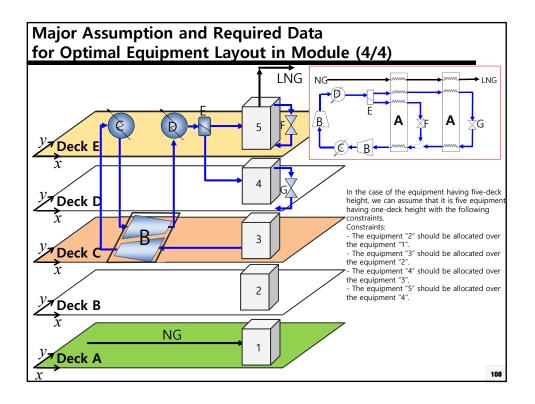


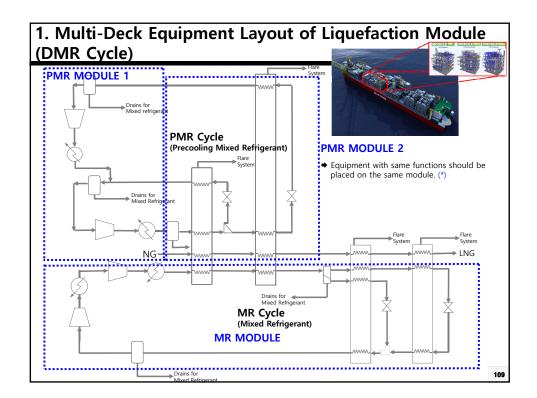


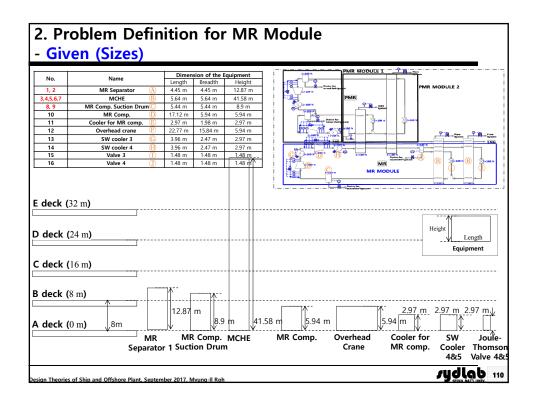


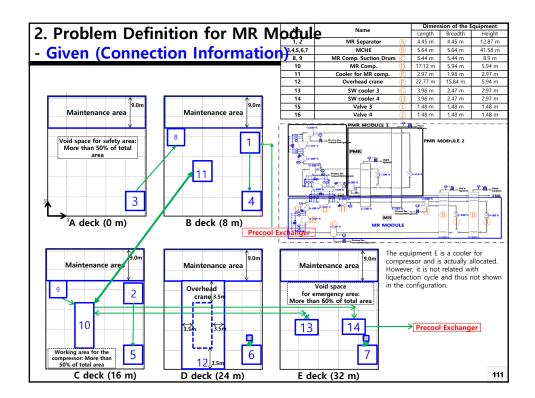


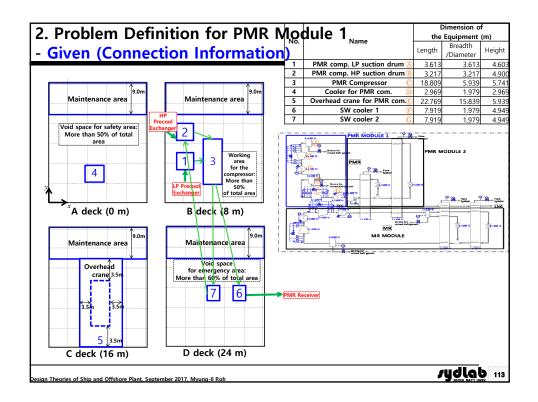


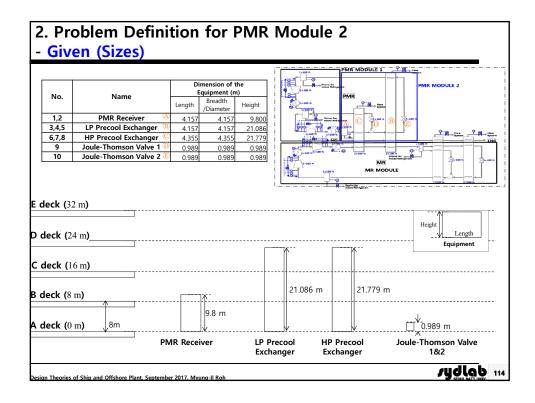


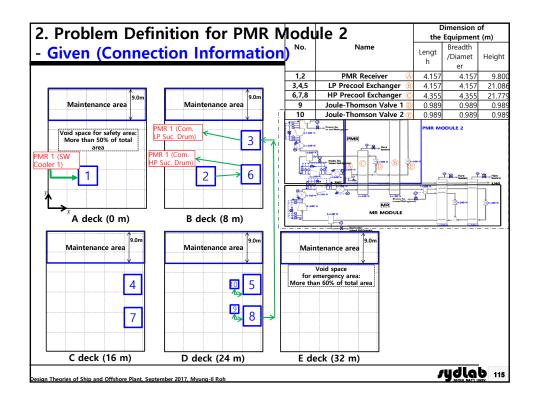


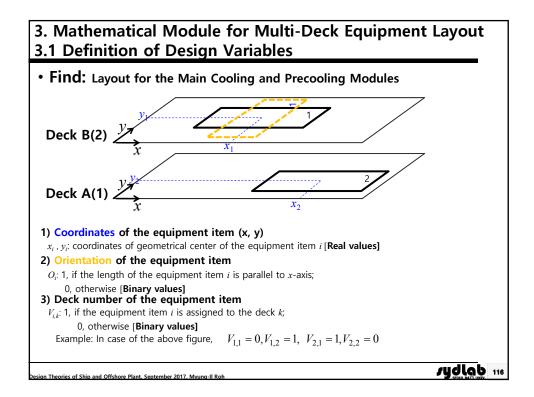


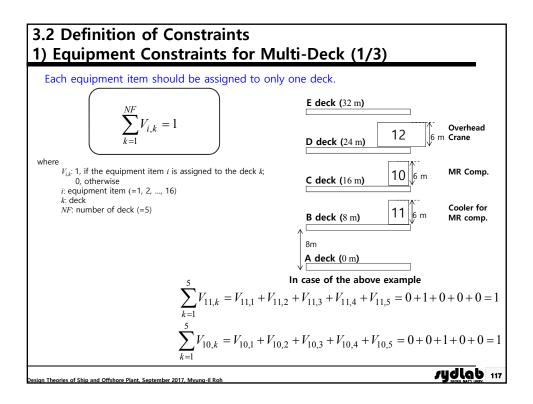


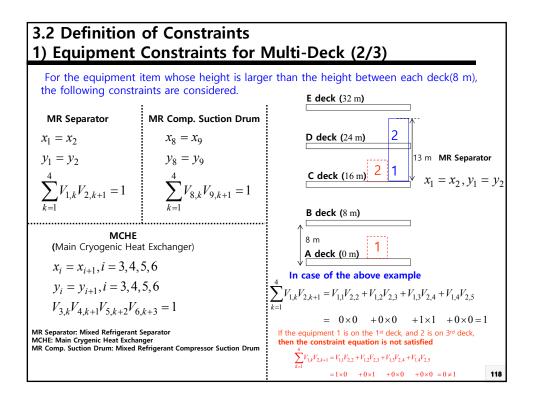


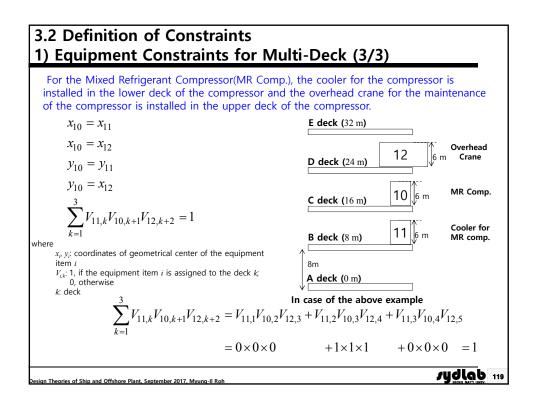


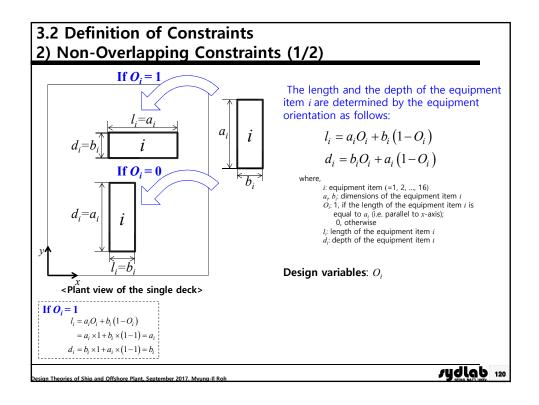

55

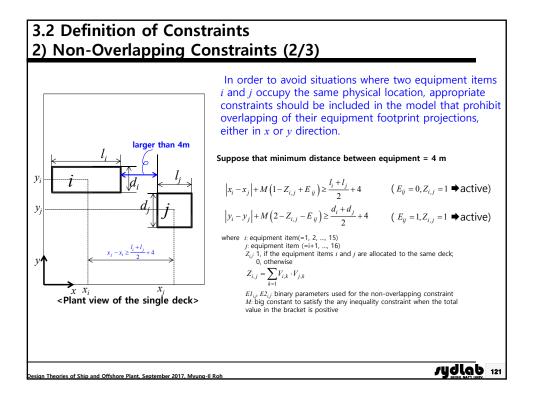


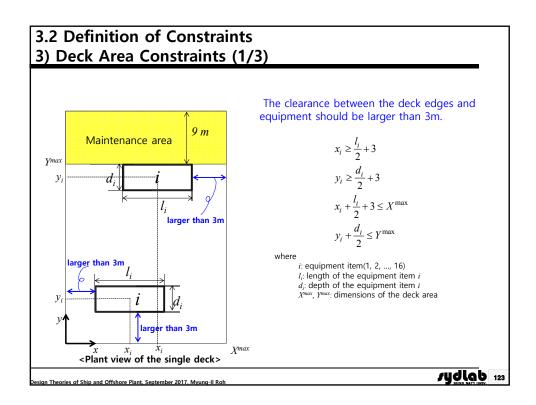

		-	imension of t		
No.	Name	Length	Equipment (n Breadth /Diameter	1) Height	
1	PMR comp. LP suction drum	3.613	3.613	4.603	
2	PMR comp. HP suction drum	3.217	3.217	4.900	1,000 10
3	PMR Compressor	18.809	5.939	5.741	
4	Cooler for PMR com.	2.969	1.979	2.969	
5	Overhead crane for PMR com	22.769	15.839	5.939	
6	SW cooler 1	7.919	1.979	4.949	
7	SW cooler 2	7.919	1.979	4.949	
D de	eck (24 m)				Height Length/Dan Equipment
	eck (24 m)				Height Length/Dia
C de					Height Length/Dia
C de B de	ck (16 m)		, <u> </u>	 ↓4.6 m	Height Length/Dia

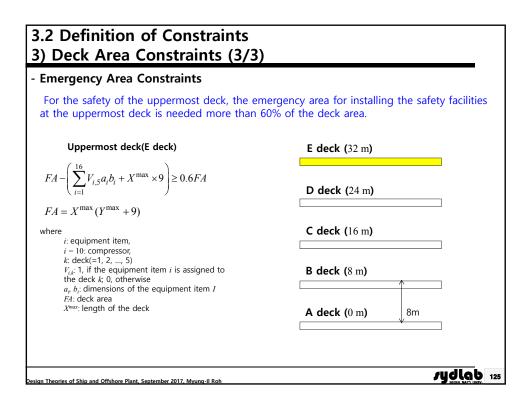


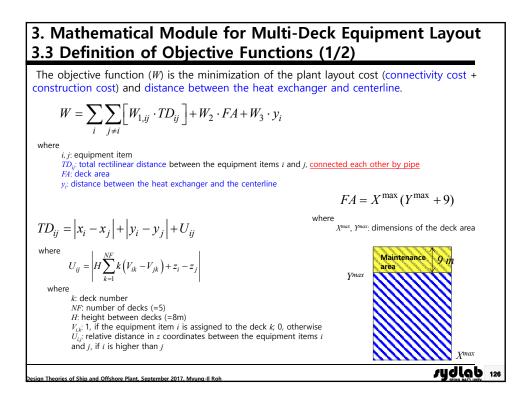


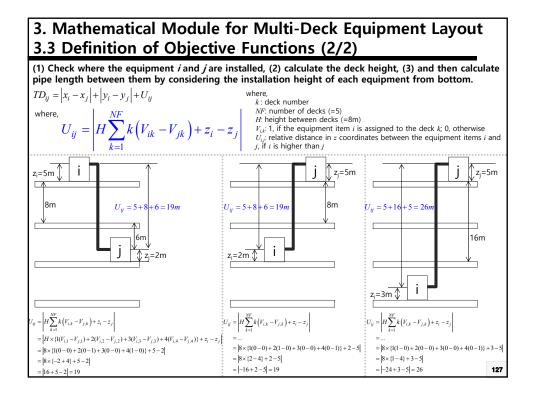


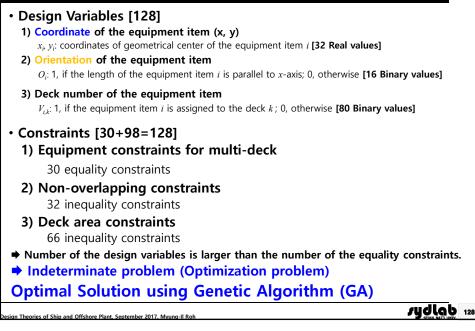


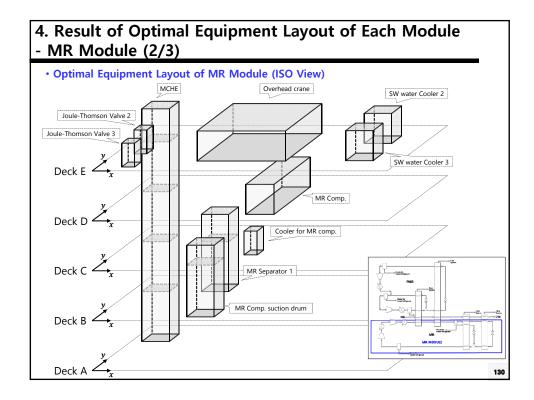


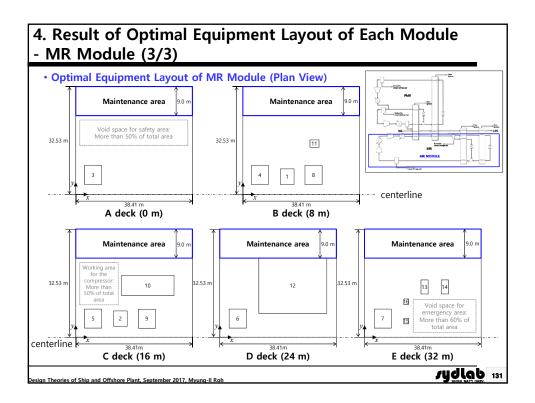




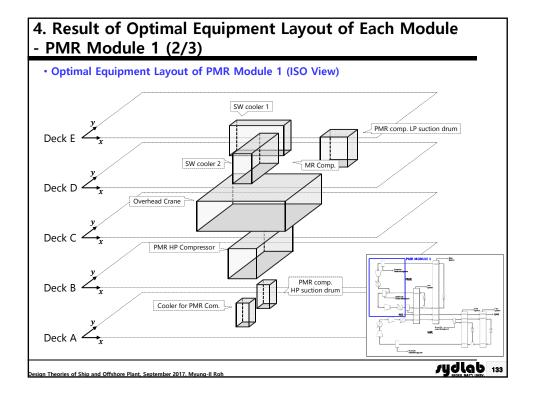

3.2 Definition o 2) Non-Overlap		nts (3/3)	
$ x_{i} - x_{j} + M(1 - Z_{i,j} + E_{ij}) \ge \frac{l_{i} + l}{2}$ $ y_{i} - y_{j} + M(2 - Z_{i,j} - E_{ij}) \ge \frac{d_{i} + l}{2}$		➡ active)	$Z_{i,j}$ 1, if the equipment items i and j are allocated to the same deck; 0, otherwise $Z_{i,j} = \sum_{k=1} V_{i,k} \cdot V_{j,k}$ $EI_{i,j} \cdot E2_{i,j}$ binary parameters used for the non-overlapping constraint
If two equipment are on different decks C deck (16 m) i B deck (8 m) j A deck (0 m)	$\begin{split} & Z_{i,j} = \sum_{k=1}^{V} V_{i,k} \cdot V_{j,k} \\ & = V_{i,1} \cdot V_{j,1} + V_{i,2} \cdot V_{j,2} + V_{i,1} \cdot V_{j,3} \\ & = 0 \times 0 + 0 \times 1 + 1 \times 0 = 0 \end{split}$ Two constraints above are calculated as below because Z is 0. $& \left x_i - x_j \right + M \left(1 + E_{ij} \right) \geq \frac{l_i + l_j}{2} + 4 \\ & \left y_i - y_j \right + M \left(2 - E_{ij} \right) \geq \frac{d_i + d_j}{2} + 4 \end{split}$	If two equipment ar on same decks C deck (16 m B deck (8 m) A deck (0 m)	$Z_{i,j} = \sum_{k=1}^{N} V_{i,k} \cdot V_{j,k}$
	Two equations above are always satisfied regardless of values of E and positions of the equipment. That is, we don't need to consider equipment overlapping.	$\begin{array}{c c} \text{if } E_{ij} = 0 \text{ then} \\ \hline \\ \text{Plan view} \\ \hline \\ \hline \\ \text{i} \\ \hline \\ \text{if } E_{ij} = 1 \text{ then} \\ \hline \\ \text{Plan view} \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array}$	Always satisfied regardless of the y position of the equipment. Thus, equipment overlapping in the x direction should be considered.

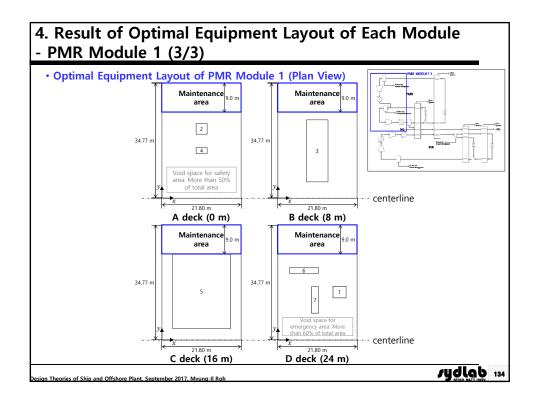

3.2 Definition of Constraints3) Deck Area Constraints (2/3)	
- Working Space Area Constraints	
For the A deck and the deck where the compre- decks is needed more than a 50% of the deck an	
A deck	E deck (32 m)
$FA - \left(\sum_{i=1}^{16} V_{i,1}a_ib_i + X^{\max} \times 9\right) \ge \frac{1}{2}FA$ $FA = X^{\max}(Y^{\max} + 9)$	D deck (24 m)
	C deck (16 m)
where <i>i</i> : equipment item, <i>i</i> = 10: compressor, <i>k</i> : deck(=1, 2,, 5) <i>V</i> _{ik} : 1, if the equipment item <i>i</i> is assigned to	B deck (8 m)
the deck k ; 0, otherwise a_{i} , b_{j} : dimensions of the equipment item i FA: deck area X^{max} : length of the deck	A deck (0 m) 8m
Design Theories of Ship and Offshore Plant. September 2017. Myung-II Roh	

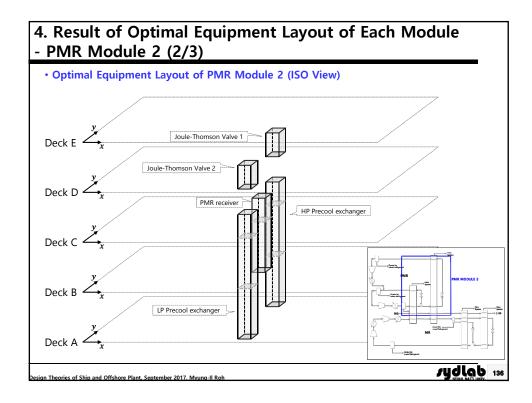


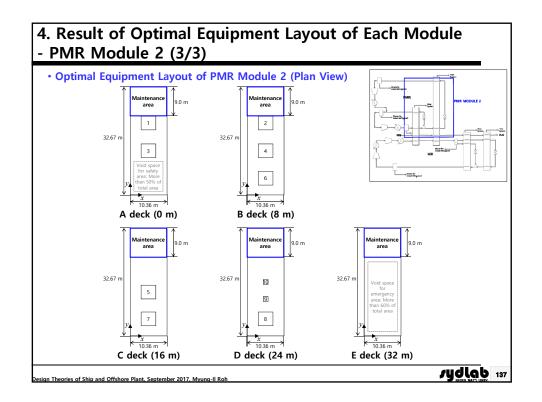


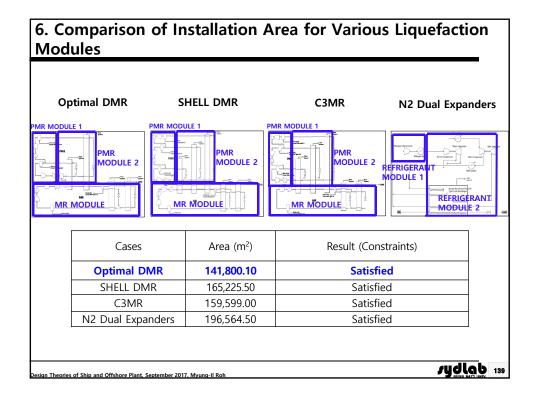
3. Mathematical Module for Multi-Deck Equipment Layout 3.4 Model for Optimal Equipment Layout of MR Module


Opt	imal Values of Design Variabl	les for	MR M	odule					
	Equipment	xi	y _i				V _{i,k}		
No.	Name	[m]	[<i>m</i>]	O _i	V _{i,1}	V _{i,2}	V _{i,3}	V _{i,4}	V _{i,5}
1	MR Separator 1 on lower deck	17	13	1	0	1	0	0	0
2	MR Separator 1 on upper deck	17	13	1	0	0	1	0	0
3	MCHE on A deck	16	4	1	1	0	0	0	0
4	MCHE on B deck	16	4	1	0	1	0	0	0
5	MCHE on C deck	16	4	1	0	0	1	0	0
6	MCHE on D deck	16	4	1	0	0	0	1	0
7	MCHE on E deck	16	4	1	0	0	0	0	1
8	MR Comp. suction drum on lower deck	4	20	1	0	1	0	0	0
9	MR Comp. suction drum on upper deck	4	20	1	0	0	1	0	0
10	MR Comp.	8	10	0	0	0	0	1	0
11	Cooler for MR comp.	8	10	0	0	0	1	0	0
12	Overhead crane	8	10	0	0	0	0	0	1
13	SW water Cooler 2	8	8	1	0	0	0	0	1
14	SW water Cooler 3	8	14	1	0	0	0	0	1
15	Joule-Thomson Valve 2	17	9	1	0	0	0	0	1
16	Joule-Thomson Valve 3	17	9	1	0	0	0	0	1




4. Result of Optimal Equipment Layout of Each Module	
- PMR Module 1 (1/3)	


1 PMR comp. LP suction drum 10.9 7.1 0 0 0 0 1		Equipment	xi	y_i			I	i,k	
2 PMR comp. HP suction drum 10.9 14.35 0 1 0 0 0 3 PMR HP Compressor 10.9 14.35 0 0 1 0 0 0 4 Cooler for PMR Com. 10.9 14.35 0 1 0 0 0 5 Overhead Crane 10.9 14.35 0 0 0 1 0 0 0 6 SW cooler 1 17.45 14.35 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0	No.	Name	[<i>m</i>]	[m]	O_i	V _{i,I}	V _{i,2}	V _{i,3}	V _{i,4}
3 PMR HP Compressor 10.9 14.35 0 0 1 0 0 4 Cooler for PMR Com. 10.9 14.35 0 1 0 0 0 5 Overhead Crane 10.9 14.35 0 0 0 1 0 0 0 6 SW cooler 1 17.45 14.35 0 0 0 0 1 0	1	PMR comp. LP suction drum	10.9	7.1	0	0	0	0	1
4 Cooler for PMR Com. 10.9 14.35 0 1 0 0 0 5 Overhead Crane 10.9 14.35 0 0 0 1 0 0 0 6 SW cooler 1 17.45 14.35 0 0 0 0 1 0	2	PMR comp. HP suction drum	10.9	14.35	0	1	0	0	0
5 Overhead Crane 10.9 14.35 0 0 0 1 0 6 SW cooler 1 17.45 14.35 0 0 0 0 1 0	3	PMR HP Compressor	10.9	14.35	0	0	1	0	0
6 SW cooler 1 17.45 14.35 0 0 0 0 1	4	Cooler for PMR Com.	10.9	14.35	0	1	0	0	0
	5	Overhead Crane	10.9	14.35	0	0	0	1	0
7 SW cooler 2 4.35 14.35 0 0 0 0 1	6	SW cooler 1	17.45	14.35	0	0	0	0	1
	7	SW cooler 2	4.35	14.35	0	0	0	0	1



	Equipment	x_i	y _i				$V_{i,k}$		
No.	Name	[<i>m</i>]	[<i>m</i>]	Oi	V _{i,1}	V _{i,2}	V _{i,3}	$V_{i,4}$	$V_{i,5}$
1	PMR receiver on lower deck	7	8	1	0	1	0	0	0
2	PMR receiver on upper deck	7	8	1	0	0	1	0	0
3	LP Precool exchanger on B deck	15	17	1	1	0	0	0	0
4	LP Precool exchanger on C deck	15	17	1	0	1	0	0	0
5	LP Precool exchanger on D deck	15	17	1	0	0	1	0	0
6	HP Precool exchanger on B deck	15	8	1	1	0	0	0	0
7	HP Precool exchanger on C deck	15	8	1	0	1	0	0	0
8	HP Precool exchanger on D deck	15	8	1	0	0	1	0	0
9	Joule-Thomson Valve 1	11	11	1	0	0	0	1	0
10	Joule-Thomson Valve 2	11	17	1	0	0	0	1	0

Deck Area			
Deck Alea	Results	Area (m²)	Deck Area
	38.41 m * 32.53 m	1,249.48	A Deck
	38.41 m * 32.53 m	1,249.48	B Deck
MR Module	38.41 m * 32.53 m	1,249.48	C Deck
	38.41 m * 32.53 m	1,249.48	D Deck
	38.41 m * 32.53 m	1,249.48	E Deck
	21.80 m * 34.77 m	757.99	A Deck
PMR Module 1	21.80 m * 34.77 m	757.99	B Deck
	21.80 m * 34.77 m	757.99	C Deck
	21.80 m * 34.77 m	757.99	D Deck
	10.36 m * 32.67 m	338.46	A Deck
	10.36 m * 32.67 m	338.46	B Deck
PMR Module 2	10.36 m * 32.67 m	338.46	C Deck
	10.36 m * 32.67 m	338.46	D Deck
	10.36 m * 32.67 m	338.46	D Deck

