Ship Stability

Ch. 10 Hydrostatic Values and Curves

Spring 2018

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

sydlab

Contents

V Ch. 1 Introduction to Ship Stability
V Ch. 2 Review of Fluid Mechanics
च Ch. 3 Transverse Stability Due to Cargo Movement
Ch. 4 Initial Transverse Stability
\square Ch. 5 Initial Longitudinal Stability

- Ch. 6 Free Surface Effect

Ch. 7 Inclining Test
\square Ch. 8 Curves of Stability and Stability Criteria
\square Ch. 9 Numerical Integration Method in Naval Architecture
Ch. 10 Hydrostatic Values and Curves
Ch. 11 Static Equilibrium State after Flooding Due to Damage
Ch. 12 Deterministic Damage Stability
V Ch. 13 Probabilistic Damage Stability

Ch. 10 Hydrostatic Values and Curves

1. Hydrostatic Values
2. Trim and Stability Calculation of a $3,700 \mathrm{TEU}$

Container Ship Including Hydrostatic Values
3. More Examples

Introduction

In general, the document which contains the following list is submitted to ship owner and classification society, and get approval from them 9 months before steel cutting.

- Principle particulars
- General arrangement
- Midship section plan
- Lines plan
- Hydrostatic table
- Bonjean table
- Tank capacity table
- Light weight summary
- Allowable Minimum GM Curve
- Trim \& stability calculation (Intact stability)
- Damage stability calculation
- Freeboard Calculation
- Visibility Check
- Equipment number calculation
\qquad

Hydrostatic Values

∇ Draft $_{\text {MId }}$, Draft $_{\text {scant }}$: Draft from base line, moulded / scantling (m)
\boxtimes Volume $_{\text {Mld }}(\nabla)$, Volume ${ }_{\text {Ext }}$: Displacement volume, moulded / extreme (m^{3})
\boxtimes Displacement $_{\text {Mld }}(\Delta)$, Displacement $_{\text {Ext }}$: Displacement, moulded / extreme (ton)
■ LCB: Longitudinal center of buoyancy from midship (sign: - Aft / + Forward)
LCF: Longitudinal center of floatation from midship (Sign: - Aft / + Forward)
\square VCB: Vertical center of buoyancy above base line (m)
\square TCB: Transverse center of buoyancy from center line (m)
$\nabla \mathbf{K M}_{\mathrm{T}}$: Transverse metacenter height above base line (m)
$\mathbf{K M}_{\mathrm{L}}$: Longitudinal metacenter height above base line (m)
MTC: Moment to change trim one centimeter (ton-m)
TPC: Increase in Displacement ${ }_{\text {MId }}$ (ton) per one centimeter immersion
WSA: Wetted surface area (m^{2})
C_{B} : Block coefficient
C_{wp} : Water plane area coefficient
C_{M} : Midship section area coefficient
C_{p} : Prismatic coefficient
Trim: Trim(= after draft - forward draft) (m)

Hydrostatic Curve

sydtob

$$
M_{W P}=M_{y}=\int x d A
$$

\checkmark Displacement volume ${ }^{\text {sencenece }}$

$\therefore \nabla=\int A(x) d x$

Vertical Moment of Displacement Volume ($M_{\nabla, V}$) and Vertical Center of Buoyancy ($V C B$ or $K B$)

Transverse Moment of Displacement Volume ($M_{\nabla, T}$) and Transverse Center of Buoyancy (TCB)

Transverse Metacentric Radius ($B M$), Longitudinal Metacentric Radius $\left(B M_{L}\right)$, Moment to change Trim 1 Cm (MTC), and Trim

$$
B M_{0}=\frac{I_{T}}{\nabla}\left(1+\tan ^{2} \phi\right)
$$

Example of Offsets Table of a 6,300TEU Container Ship

Example of Lines of a 6,300TEU Container Ship

- Fore Body

Relationship Between Lines and Offsets Table (2/2)

Example of Hydrostatic Tables of a 6,300TEU Container Ship (1/2)

$\begin{gathered} \text { DRAFT } \\ (\mathrm{M}) \end{gathered}$	$\underset{\operatorname{MLD}\left(M^{3}\right)}{\operatorname{DISP}}$	$\begin{gathered} \text { DISP } \\ \text { EXT(Ton) } \end{gathered}$	$\begin{aligned} & V C B \\ & (\mathrm{M}) \end{aligned}$	$\underset{(\mathrm{M})}{L C B}$	$\underset{(\mathrm{M})}{\mathrm{LCF}}$	$\begin{aligned} & K M \\ & (\mathrm{M}) \end{aligned}$	$\underset{(\mathrm{M})}{K M_{2}}$	$\begin{gathered} \text { MTC } \\ (\mathrm{T}-\mathrm{M}) \end{gathered}$	$T P C$ (Ton)	$\underset{\left(\mathrm{M}^{2}\right)}{\text { WSA }}$	C_{B}	$C_{\text {w }}$	C_{P}	C_{M}
4.000	22054.0	22720.3	2.171	-2.732	-1.546	31.537	926.651	795.5	68.5	7474.0	0.5248	0.6332	0.5769	0.9097
4.050	22389.1	23064.3	2.199	-2.714	-1.535	31,314	916.847	798.9	68.7	7507.8	0.5261	0.6349	0.5777	0.9107
4.100	22726.2	23410.3	2.226	-2.697	-1.523	31.098	907.266	802.4	68.9	7541.5	0.5275	0.6367	0.5786	0.9118
4.150	23053.3	23756.4	2.253	-2.680	-1.511	30.889	897.964	805.9	69.1	7575.3	0.5288	0.6384	0.5794	0.9128
4.200	23400.4	24102.4	2.281	-2.663	-1.500	30.686	888.93	809.3	69.3	7609.1	0.5302	0.6402	0.5802	0.9138
4.250	23737.5	24448.5	2.308	-2.646	-1.488	30.490	880.152	812.8	69.5	7642.9	0.5314	0.6420	0.5810	0.9147
4.300	24077.3	24797.2	2.336	-2.630	-1.476	30.300	871.537	816.3	69.7	7676.7	0.5327	0.6437	0.5818	0.9157
4.350	24419.0	25148.0	2.363	-2.614	-1.465	30.115	863.102	819.8	69.9	7710.5	0.5341	0.6454	0.5826	0.9166
4.400	24760.7	25498.8	2.391	-2.598	-1.453	29.936	854.9	823.3	70.1	7744.3	0.5354	0.6472	0.5835	0.9176
4.450	25102.4	25849.6	2.418	-2.582	-1.441	29.762	846.921	826.7	70.3	7778.1	0.5366	0.6489	0.5843	0.9185
...														
7.500	47233.9	48564.4	4.087	-2.084	-2.217	21.918	560.803	1023.9	78.2	9736.7	0.5979	0.7224	0.6283	0.9517
7.550	47615.8	48956.4	4.115	$-2,086$	-2.257	21.852	558.143	1027.2	78.3	9768.7	0.5988	0.7235	0.6290	0.9520
7.600	47999.0	49349.6	4.142	-2.088	-2.302	21.785	555.428	1030.3	78.4	9800.7	0.5996	0.7246	0.6296	0.9523
7.650	48382.1	49742.8	4.170	-2.090	-2.348	21.722	552.756	1033.4	78.6	9832.7	0.6004	0.7256	0.6303	0.9527
7.700	48765.2	50136.0	4.197	-2.092	-2.393	21.659	550.126	1036.6	78.7	9864.6	0.6013	0.7267	0.6309	0.9530
7.750	49148.4	50529.3	4.224	-2.094	-2.438	21.598	547.537	1039.7	78.8	9896.6	0.6021	0.7277	0.6316	0.9533
7.800	49533.1	50924.1	4.252	-2.097	-2.483	21.538	544.992	1042.9	78.9	9928.6	0.6029	0.7288	0.6322	0.9536
7.850	49919.1	51320.2	4.279	-2.100	-2.527	21.481	542.488	1046.1	79.0	9960.7	0.6037	0.7298	0.6329	0.9539
7.900	50305.0	51716.3	4.307	-2.104	-2.571	21.424	540.023	1049.2	79.1	9992.8	0.6045	0.7309	0.6335	0.9542
7.950	50690.9	52112.3	4.334	-2.107	-2.615	21.369	537.595	1052.4	79.2	10024.8	0.6053	0.7319	0.6342	0.9544
...														

$\underset{(\mathrm{M})}{\text { DRAFT }}$	$\underset{\operatorname{MLD}\left(\mathrm{M}^{3}\right)}{\operatorname{DISP}}$	$\begin{gathered} \text { DISP } \\ \text { EXT(Ton) } \end{gathered}$				$\begin{aligned} & K M \\ & \text { (M) } \end{aligned}$			$\begin{gathered} \text { TPC } \\ \text { (Ton) } \end{gathered}$		$C^{\prime \prime}$	C_{w}	C_{F}	C_{M}
11.750	81677.2	83912.8	6.431	. 98	-8.607	18.91	430.346	1347.2	88.1	5.4	. 593	. 8134	0.6803	92
11.800	82107.4	8354.3	6.459	-3.326	-8.710	18.912	430.028	1353.1	88.2	12631.3	0.6600	0.8148	0.6809	0.9693
11.850	8253	84797.3	6.	-35	-8.	18.905	429.787	1359.4	88.4	67.6	. 606	8162	0.6815	. 695
11.900	82970.8	85240.4	6.515	-3.384	-8.923	18.90	429.5	1365	88.5	12703.9	0.6613	0.8176	0.6820	0.9696
11.950	83402.4	683	6.543	退	-9.0.	18.89	429.31	1371.	88.7	740.2	0.620	819	0.6826	7
12.000	83634.1	86126.4	6.571	-3.442	-9.136	18.88	429.08	1378.1	88.8	12776.5	0.6626	0.8204	0.6832	. 698
12,050	84267.9	86571.6	6.599	-3.471	-9.233	18.87	428,885	1384.5	89.0	12812.5	0.6633	0.8218	0.6838	700
12.100	84703.3	87018.4	6.627	-3.501	-9.32	18.86	428.71	1391.	89.1	12848.3	0.663	0.8231	0.6844	0.9701
12.150	85138.6	8465.1	6.6	-3.531	-9.413	18.85	428.55	1397.	89.3	12884.0	0.6646	0.8245	0.6850	. 9702
12.200	85573.9	87911.9	6.683	-3.561	-9.50	18.840	428.38	1404	89.4	12919.8	0.665	0.8258	0.6856	0.9703
12.250	86	88358.7	6.711	-3.59	-9.593	18.82	428.22	1410	89.5	12955	0.665	0.8271	0.686	0.9705
...														
14.250	104062.4	10688	7.843	-4.937	-12.78	18.	423.	1683.1	95.4	391	6924	. 8808	0.7105	6
14.300	104528.0	107363.1	7.872	-4.973	-12.837	18.604	423.328	1689.2	95.5	14426.2	0.6931	0.8819	0.7111	0.9747
14.350	104995.0	107842.2	7.9	. 008	-12.880	18.68	423.0	1695	95.6	1461.0	0.693	0.8831	0.7117	0748
14.400	105451.9	108321.3	7.929	-5.042	-12.940	18.68	422.78	1701.	95.7	14495.8	0.694	0.8843	0.7123	0.9749
14.450	105928.8	108800	7.9	-5.	-12.992	18.682	422.5	1708	95.9	14530	0.695	. 88	0.71	0.9750
14.500	106395	109279	7.986	-5.112	-13.043	18,68	422.2	1714.5	96.0	14565.	0.6957	0.8866	0.7135	0.9751
14.550	106864.4	109760.5	8.015	147	-13.090	18.68	422.0	1720	96.1	14600.3	0.6964	0.8878	0.714	. 9751
14.600	107334.5	110242.8	8.043	-5.182	-13.133	18.681	421.779	1727.4	96.2	14635.1	0.6971	0.8889	0.7148	0.9752
14.650	107804.5	110725.1	8.072	-5.217	-13.176	18.681	421.55	1733.9	96.4	14970.0	0.6977	0.8901	0.7154	0.9753
14.700	108274.5	111207	8.101	-5.251	-13.219	18.681	421.32	1740.3	96.5	14704.9	0.6984	0.8912	0.7160	97

Example of Hydrostatic Curves of a 6,300TEU Container Ship

Example of Programming for Calculation of the Hydrostatics - Example of Hydrostatic Tables of a 320K VLCC (1/2)

Example of Programming for Calculation of the Hydrostatics

- Example of Hydrostatic Tables of a 320K VLCC (2/2)

Example of Programming for Calculation of the Hydrostatics - Example of Hydrostatic Curves of a 320K VLCC

2. Trim and Stability Calculation of a 3,700TEU Container Ship Including Hydrostatic Values

Midship Section in G/A

Name	Specific Gravity	Filling Ratio*
Heavy Fuel Oil	0.990	98%

$1,214.6 \times 0.99=1,202.4$
$1,118.6 \times 0.99=1,107.4$

$$
L C G_{D W T}=\frac{\sum L C G_{i} \times \rho_{i} V_{i}}{D W T}
$$

$=$
\qquad

Lightweight Summary

Hydrostatic Tables

Loading Conditions: Lightship Condition (1/6)

- Lightship condition: Condition that loaded nothing (no cargo, imaginary condition)

Naval Architectural Calculation, Spring 2018, Myung-|| Roh
sydab

ORAUGHT F.P	=	1.526		K.M. T	=	21.296 M
QRAUGHT MIDSHIP	=	3.806	M	KG (SOLID)	=	13.200 M
DRAUGHT A.P	=	6.086	M	GM (SOLID)	=	8.096 M
TRIM BY STERN	=	4.560	M	FREE SUAF . CORA (GGo)	=	000 M
PROPELLEA I/D	=	74.0	\%	GoM (FLUID)	=	8.096 M
DISPLACEMENT	$=$	15998.1	T	KGo ACTUAL (FLUID)	$=$	13.200 M
DRAUGHT AT LCF	=	3.871		(1) TRIM (DIS*A)/(MTC*100)	$=$	4. 560 M
L.CB FROM A.P	=	118.416		FREE SURF. MOM	$=$	0 T-M
LCG FROM A.P	=	103.228		M. T. C	=	532.8 T-M
TRIM LEVER : A	=	15.188	M	LCF FROM A.P	=	119.110 M

(1) In hydrostatic tables

DRAFT (M)	$\begin{aligned} & \text { DISP } \\ & \text { MLD(M3) } \end{aligned}$	$\begin{gathered} \text { OISP } \\ \operatorname{EXT}(T) \end{gathered}$	VCB (M)	$\begin{aligned} & \text { LCB } \\ & (M) \end{aligned}$	$\begin{aligned} & \text { L.CF } \\ & (M) \end{aligned}$	KMT (M)	$\begin{aligned} & \text { KML } \\ & (M) \end{aligned}$	$\begin{aligned} & \text { MTC } \\ & (T-M) \end{aligned}$	$\begin{gathered} \text { TPC } \\ \text { (TON) } \end{gathered}$	WSA (M2)	C B	C W	$C P$	CM
3.75	14919.7	15400.8	2.025	18.39	9.002	21.691	838.95	525.6	49.7	5602.1	. 5072	. 6127	. 5421	. 9356
380	151608	15648.4	2051	18	19018	21.524	830.12	528.6	19.9	56317	5086	6145	5431	9364
3.85	15401.8	15896.1	2.076	118.412	119.093	21.362	822.15	531.6	50.0	5661.4	. 5099	6163	. 5441	. 9372
3.90	15644.8	16145.8	2.103	118.422	119.132	21.201	813.71	534.3	50.1	5690.8	. 5113	6180	. 5451	. 9380
3.95	15891.1	16398.8	2.133	718.434	Y. 159	21.031	804.83	536.7	50.3	5719.8	. 5121	. 6196	. 5462	. 9388

By linear interpolation, draft at $\mathrm{LCF}=3.871[\mathrm{~m}], V C B(=K B)=2.087[m]$,

ORAUGHT F.P	=	1.526 M	K.M. T	$=$	21.296 M
DRAUGHT MIDSHIP	=	3.806 M	KG (SOLID)	=	13. 200 M
DRAUGHT A.P	=	6.086 M	GM (SOLID)	$=$	8.096 M
TRIM BY STERN	=	4.550 M	FREE SUAF. CORA (GGo)	=	000 M
PROPELLEA I/D	=	74.0%	Gom (FLUID)	$=$	8.096 M
DISPLACEMENT	=	15998.1 T	KGo ACTUAL (FLUID)	=	13.200 M
draught at lcF	=	3.871 M	TRIM (DIS*A) / (MTC* 100)	$=$	4.560 M
LCB FROM A.P	$=$	118.416 M	FREE SURF. MOM	\cdots	$0 \mathrm{~T}-\mathrm{M}$
LCG FROM A.P	$=$	103.228 M	M. T. C	=	532.8 T-M
TRIM LEVER : A	=	15.188 M	LCF FROM A.P	=	119.110 M

(2)
(3) Trim $[\mathrm{m}]=\frac{\Delta \times \text { Trim Lever }}{M T C \times 100}=\frac{15,998.1 \times 15.188}{532.8 \times 100}=4.560[\mathrm{~m}]$

Loading Conditions: Ballast Departure Condition (1/6)

- Ballast departure condition: Condition that loaded ballast water and consumable cargo

Naval Architectural Calculation, Spring 2018, Myung-II Roh 47

QRAUGHT F.P	=	5.553		K.M. T	=	15.728	M
QRAUGHT MIDSHIP	=	6.998	M	KG (SOLID)	$=$	9.584	M
ORAUGHT A.P	=	8.443	M	GM (SOLID)	=	6.144	M
TRIM BY STERN	$=$	2.890		FREE SURF. CORR (GGo)	=	177	M
PROPELLER I/D	$=$	105.1		Gom (FLUTO)	=	5.967	M
DISPLACEMENT	=	32980.1		KGo ACTUAL (FLUID)	$=$	9.761	M
DRAUGHT AT LCF	=	7.044			$=$		
LCB FROM A.P		118.910		1) FREF SUAF MOM	$=$	5847	T-M
LCG FPRM A.P	=	113.116		M.T.C.	$=$	661.3	T-M
TRIM LEVER: A	$=$	5.794		LCF FHOMM A	=	118.107	

(1) In hydrostatic tables

DRAFT (N)	$\begin{aligned} & \text { OISP } \\ & \text { MLD(M3) } \end{aligned}$	$\begin{gathered} \text { OISP } \\ \operatorname{EXT}(T) \end{gathered}$	$\begin{aligned} & \text { VCB } \\ & (M) \end{aligned}$	$\begin{aligned} & \mathrm{LCB} \\ & (M) \end{aligned}$	$\begin{aligned} & \mathrm{LCF} \\ & (\mathrm{M}) \end{aligned}$	KMT (M)	KML (M)	$\begin{aligned} & \text { MTC } \\ & (T-M) \end{aligned}$	$\begin{gathered} \text { TPC } \\ \text { (TON) } \end{gathered}$	WSA (M2)	C B	C W	C P	C M
7.00	31782.0	32730.5	3.802	118.912	18.753	15.763	498.01	659.6	56.4	7422.2	. 5770	. 6945	. 5976	9655
7.05	32056.1	33012.2	3.829	118.910	18.701	15.724	495.22	661.5	56.5	7450.0	. 5779	6956	. 5983	9658
7.10	उ<332.2	3×250.0	3.858	178.907	178.639	15.686	492.45	663.4	56.5	7478.0	5787	6966	. 5991	9660
7.15	32608.3	33579.8	3.886	118.903	118.577	15.649	489.74	665.3	56.6	7506.0	5796	. 6977	. 5998	9662
7.20	32884.4	33863.6	3.914	118.900	118.516	15.613	487.07	667.2	56.7	7534.1	5804	. 6987	6005	9665

$$
V C B(=K B)=3.826[\mathrm{~m}],
$$

(2)
(3) Trim $[m]=\frac{\Delta \times \text { Trim Lever }}{M T C \times 100}=\frac{32,980.1 \times 5.794}{661.3 \times 100}=2.890[\mathrm{~m}]$

DRAUGHT F.P DRAUGHT MIDSHIP ORAUGHT A.P TRIM BY STERN PROPELLER I/D DISPLACEMENT	$=$ $=$ $=$ $=$ $=$ $=$	5.553 M 6.998 M 8.443 M 2.890 M 105.1 m 32980.1 T	K.M. T KG (SOLID) GM (SOLID) FREE SURF. CORR. (GGO) GOM (FLUIO) KGO ACTUAL (FLUID)	$=$ $=$ $=$ $=$ $=$	15.728 M 9.584 M 6.144 M .177 M 5.967 M 9.761 M
DRAUGHT AT LCF LCB FROM A.P LCG FROM A.P TRIM LEVER : A	$=$ $=$ $=$ $=$	$\begin{array}{r} 7.044 \mathrm{M} \\ 118.910 \mathrm{M} \\ 113.116 \mathrm{M} \\ 5.794 \mathrm{M} \end{array}$	```TRIM (DIS*A)/(MTC*100) FREE SURF. MOM. M.T.C. LCF FROM A.P```	$=$ $=$ $=$ $=$	$\begin{array}{r} 2.890 \mathrm{M} \\ 5847 \mathrm{~T}-\mathrm{M} \\ 661.3 \mathrm{~T}-\mathrm{M} \\ 118.707 \mathrm{M} \end{array}$

[Example] Calculation of an Angle of Heel (1/2)
A box-shaped barge ($L \times B \times D: 100 m \times 20 m \times 12 m$) is floating in freshwater on an even keel at draft of 6 m . Vertical center of mass of the barge is 4 m from baseline. When an external moment about x axis of 3,816 ton-m is applied on the ship, calculate an angle of heel.

[Example] Calculation of an Angle of Heel (2/2)

syd్ab 55

Given
L: $100 \mathrm{~m}, \mathrm{~B}: 20 \mathrm{~m}, \mathrm{D}: 10 \mathrm{~m}, \mathrm{~T}: 5 \mathrm{~m}, \mathrm{KG}: 7 \mathrm{~m}$
Cargo Load: 1,000ton
(At 20 m in front of the center of the ship and 4 m
above the baseline)
Find: The draft at the aft perpendicular of the ship

(1) Calculation of the change of the draft (T)
$\delta \Delta=T P C \cdot \delta T$
(2)-2) Calculation of $G M_{L 1}$
$K B_{1}=2.744 \mathrm{~m}$ -
\square
(3) Calculation of the draft at the aft perpendicular of the ship

$$
T_{A f, F \text { Fore }}=T_{1} \pm \frac{\operatorname{trim}}{2}
$$

syd్ab 63
4

[Example] Calculation of Trim for a Barge Ship When the Cargo is Moved

A barge ship is 20 m length, 12 m breadth, 4 m depth, and is floating at 2 m draft in the fresh water. When a 10ton cargo which is loaded on the center of the deck is moved to 4 m in the direction of the forward perpendicular and 2 m in the direction of the starboard, determine the draft at the forward perpendicular (FP), after perpendicular (AP), portside, and starboard of the ship. KG of the ship is given as 2 m .

sydlab

1. Change of draft caused by trim

$$
\operatorname{Trim}[\mathrm{m}]=\frac{\sum \text { Trim Moment }}{M T C \cdot 100}
$$

sydion 67

- Trim moment caused by moving the cargo in the direction of the forward perpendicular
 Trim Moment $=10 \cdot 4 \cdot \cos \theta \approx 40$ ton $\cdot m$

\square

$$
\delta y_{G}^{\prime}=\frac{w \cdot l_{T}}{\Delta}=0.04 \mathrm{~m}
$$

$\square=$
If the inclination angles are small, the difference of the
approximate solution and exact solution will be small.
The linearized terms in the solving procedure

- Trim moment $w \cdot l \cdot \cos \theta \cong w \cdot l$
$-I_{L} I_{T}$
- AWP
- TPC, MTC
$-\mathrm{KB}_{1}$
$-\mathrm{LCB}_{1}$

[Example] Calculation of Trim of a Ship (2/7)

Given:
L: $180 \mathrm{~m}, \mathrm{~B}: 30 \mathrm{~m}, \mathrm{D}: 10 \mathrm{~m}, \mathrm{~T}: 8 \mathrm{~m}$
Density of the ship material $\rho_{m}=1.0 \mathrm{ton} / \mathrm{m}^{3}$.
The ship is floating in fresh water.
Find:
(1) Displacement (A)
(2) $\mathrm{LCF}, \mathrm{LCB}, \mathrm{LCG}, \mathrm{KG}$
(3) When the all cargo hold are full with the load
whose density is $0.6 \mathrm{ton} / \mathrm{m}^{3}$ homogeneously,
DWT and LWT?
(4) How do we calculate the change of the trim
when the cargo is loaded or unloaded?
$\mathbf{F}=\mathbf{A x}$
(2) LCF, LCB, LCG, KG
(3) When the all cargo hold are full with the load DWT and LWT?
(4) How do we calculate the change of the trim when the cargo is loaded or unloaded?

Given:
L: $180 \mathrm{~m}, \mathrm{~B}: 30 \mathrm{~m}, \mathrm{D}: 10 \mathrm{~m}, \mathrm{~T}: 8 \mathrm{~m}$
L: $180 \mathrm{~m}, \mathrm{~B}: 30 \mathrm{~m}, \mathrm{D}: 10 \mathrm{~m}, \mathrm{~T}: 8 \mathrm{~m}$
Density of the ship material: $\rho_{m}=1.0$ ton $/ \mathrm{m}^{3}$
The ship is floating in fresh water.
Find:
(1) Displacement (Δ)
(2) LCF, LCB, LCG, KG
(3) When the all cargo hold are full with the
load whose density is 0.6 ton $/ \mathrm{m}^{3}$
homogeneously.
What is the DWT and LWT?
(4) How do we calculate the change of the trim when the cargo is loaded or unloaded?

\square	
\square	
\square	

(3) When the all cargo hold are full with the load whose density is 0.6 ton $/ \mathrm{m}^{3}$ homogeneously. What is the DWT and LWT?

$$
D W T=A_{W P_{-} \text {Hold }} \cdot D \cdot \rho_{\text {cargo }}
$$

\square

[Example] Calculation of Barge Ship's Trim and Heel Angles (1/18)

A barge ship of 28 m length, 18 m breadth, 9 m height, 1 m shell plate thickness, density of shell plate $\rho_{m}=1.0$ ton $/ \mathrm{m}^{3}$ is shown below.
(1) Calculate ship's lightweight and draft
 in fresh water under the condition of "light ship" loading condition. And if the 10 m barge ship is floating in sea water, what is the draft?
(2) The barge ship floats in fresh water and it carries the loads as shown in the table.

Item	Unit Mass	\# of Cargoes	Loading position (m)		
			x	y	z
		3	0	0	1
Freight 1	100 ton	2	-5	0	1
Freight 2	150 ton	2			

Calculate the ship's (a) deadweight (DWT) (b) TPC © MTC © Trim © Fore and after drafts (f) LCB © LCG.
(3) From the result of the question (2), if the freight 2 is unloaded from the barge ship, calculate LCB and LCG.
(4) From the result of the question (3), if the freight 1 moves 5 m along the positive y direction. calculate the barge ship's heel angle.
[Example] Calculation of Barge Ship's Trim and Heel Angles (2/18)
Given:
L: $30 \mathrm{~m}, \mathrm{~B}$: $20 \mathrm{~m}, \mathrm{D}$: 10 m , Shell plate thickness:
1m
Density of the shell plate: $\rho_{m}=1.0$ ton $/ \mathrm{m}^{3}$

$\Delta_{L W T}=A_{w P} \cdot T_{f w} \cdot \rho_{f w}$
(2) When the freight 1 and 2 are loaded in fresh water (a) Deadweight (DWT) (b) TPC © MTC (d) Trim (e) Fore and after drafts \oplus LCB (9) LCG

(1) LWT, Draft in fresh water (T_{fw}), Draft in sea water $\left(\mathrm{T}_{\mathrm{sw}}\right)$

$\Delta_{L w T}=\overline{A_{w p}} \cdot T_{f w} \cdot \rho_{f w}$
fydab 85
(b) TPC is calculated as follows:

$$
T P C=\frac{A_{W P} \cdot \rho_{f w}}{100}=\frac{20 \cdot 30 \cdot 1.0}{100}=6 \mathrm{ton} / \mathrm{cm}
$$

$$
\begin{aligned}
G M_{L} & =K B+B M_{L}-K G \\
& =1.72+21.8-2.09=21.43 \mathrm{~m}
\end{aligned}
$$

(d) Loading of the freight 2 leads to

Trim Moment $=-5 \cdot(150 \cdot 2)=-1,500$ ton $\cdot m$

-1
$=$
fydab ${ }^{\mathbf{S o n}}$

(3) Freight 2 is unloaded from (2), calculate LCB, LCG.

If the freight 2 is unloaded from the condition (2), the ship's trim becomes zero. Hence $\mathrm{LCB}=\mathrm{LCG}=0$. At this time, the displacement Δ is 1,764 ton, draft is $1,764 /(30 \cdot 20)=2.94 \mathrm{~m}$.

[Example] Calculation of Barge Ship's Trim and Heel Angles (15/18)

lacement Δ is 1,764 ton, draft is $1,764 /(30 \cdot 20)=2.9$

Restoring moment is obtained using the following equation. $G Z=G M \cdot \sin \phi=(K B+B M-K G) \cdot \sin \phi$

Because the barge ship's shape is box-shape

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (1/9)

sydtob 99
[Example] Practical Calculation of a Ship's Fore and Aft Drafts (2/9)

Trim $[\mathrm{m}]=\frac{\sum \text { Trim Moment }}{M T C \cdot 100}$

i) Full loading condition

Ship's total weight at full loading condition: $\Delta=168,962$ ton

$M T C=\frac{\Delta \cdot \overline{G M_{L}}}{100 \cdot L_{B P}}$

$1 \times$

Change in trim: $\delta t=8.937 \mathrm{~m}$
\qquad

(1) Calculation of parallel rise (draft change)

- Tones per 1 cm immersion (TPC)

