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Motivations

❖ Problem with base and bound relocation

▪ Only one segment per process

• How can two processes share code while keeping private data 

areas (e.g., shared editor)?

I. Segmentation
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Solutions (1)

❖Multiple segments

▪ Permit process to be split between several areas of memory

▪ Use a separate base and bound register pair for each 

segment, and also add two protection bits (read and write)

▪ Each memory reference indicates a segment and offset in 

one or more of three ways

• Segment table holds the bases and bounds for all the 

segments of process

• Top bits of address select segment, low bits the offset

• Segment is selected implicitly by the instruction

– Examples: Code vs. data, stack vs. data, or 8086 prefixes

I. Segmentation
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Solutions (2)

❖Multiple segments (cont’d)

▪ Address mapping gets more complicated

• Memory mapping procedure consists of

“table lookup” + “add” + “compare”

• Example

– PDP–10 with high and low segments

selected by the high-order address bit

• Addresses with a 0 top bit used one base register,

and higher addresses use another

I. Segmentation
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Address Translation (1)

❖MMU for segmentation

I. Segmentation

<CPU +

Memory

Yes

No

Trap to Operating System

Bound Base

STBR

Unmapped

Area

Mapped

Area

Logical 

Address

Physical 

Address



8

Address Translation (2)

❖ Segmentation example

▪ 2 bits of segment number, 12 bits of offset

I. Segmentation

Segment Base Bounds RW

0

1

2

3

0x4000

0x0000

0x3000

0x6FF

0x4FF

0xFFF

10

11

11

00

Segment # Segment Offset

2 bits 12 bits



9

Address Translation (3)

❖ Address space mapping

▪ Where is 0x240, 0x1180, 0x265c?

▪ How about 0x3002, 0x1600?

I. Segmentation
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Address Translation (4)

❖ Address translation examples

▪ 0x240

• 0x0:240 – seg # 0, offset 0x240 → 0x4240

▪ 0x1180

• 0x1:180 – seg # 1, offset 0x180 → 0x0180

▪ 0x3002

• 0x3:002 – seg # 3, offset 002 → invalid address (used)

I. Segmentation
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Supporting Operations (1)

❖Managing segments

▪ Keep copy of segment table in process control block

▪ When creating process, allocate space for segment and

fill in PCB bases and bounds

▪ When process dies, return segments to free pool

❖When there’s no space to allocate a new segment

▪ Compact memory (move all segments, update bases) to get 

all free space together

▪ Or, swap one or more segments to disks to make space and 

then bring segments back in before letting process run

• Must then check during context switching and bring segments 

back in before letting process run

I. Segmentation
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Supporting Operations (2)

❖ To enlarge segment

▪ See if space above segment is free; if so, just update the 

bound and use that space

▪ Or, move the segment above this one to disk, in order to 

make the memory free

▪ Or, move this segment to disk and bring it back into a larger 

hole (or, maybe just copy it to a larger hole)

I. Segmentation
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Pros and Cons

❖ Advantage of segmentation

▪ Segments can be swapped and assigned to storage 

independently

❖ Problems

▪ External fragmentation

• Segments of many different sizes have to be allocated 

contiguously

• This problem also applies to base and bound schemes

I. Segmentation
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Motivations

❖ Problem with segmentation

▪ External fragmentation

▪ Goal of paging

• To make allocation and swapping easier

• To reduce memory fragmentation

II. Paging
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Solutions

❖ Paging

▪ Make all chunks of memory the same size called pages

• Typical sizes range from 512 to 16 Kbytes

▪ For each process, a page table defines

• The base address of each of that process’ pages and 

protection (read-only) and existence bits

▪ Translation process is introduced

II. Paging
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Address Translation (1)

❖ Example: SPARCstation

▪ Translation process

• Page number always comes directly from the address

II. Paging
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Address Translation (2)

❖MMU for paging
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Pros and Cons (1)

❖ Advantage of paging

▪ Easy to allocate

• Keep a free list of available pages and grab the first one

• Easy to swap since everything is the same size, which is 

usually the same size as disk blocks to and from which pages 

are swapped

II. Paging
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Pros and Cons (2)

❖ Problems

▪ Efficiency of access

• Even small page tables are generally too large to get loaded 

into fast memory in the MMU

• Page tables are kept in main memory and the MMU has only 

the page table’s base address

• It thus takes one overhead reference for every real memory 

reference

II. Paging
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Pros and Cons (3)

❖ Problems (cont’d)

▪ Table space

• If pages are small, the table space could be substantial

– Example: 32-bit address space with 1 KB pages

• Page table size = 16 Megabytes

• What if the whole table has to be present at once?

– Partial solution: Keep base and bound for page table, so only large 

processes have to have large tables

• Internal fragmentation

– Page size doesn’t match up with information size

– The larger the page, the worse this is

II. Paging
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Motivations

❖ Problems with paging

▪ The same as single segment per process

• But not always true, either

▪ Going from paging to P+S is like going from single segment 

to multiple segments, except at a higher level

III. Paged Segmentation
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Solutions

❖ Paging and segmentation combined

▪ Instead of having a single page table, have many page 

tables with a base and bound for each

▪ Call the stuff associated with each page table a segment

• Use two levels of mapping to make tables manageable

• Each segment contains one or more pages

• Segments correspond to logical units: Code, data, stack

– Segments vary in size and are often large

▪ Pages are for the use of the OS

• They are fixed-sized to make it easy to manage memory

III. Paged Segmentation
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Address Translation (1)

❖MMU for paged segmentation

III. Paged Segmentation
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Address Translation (2)

❖ System 370 example

▪ 24-bit logical address space

• 4 bits of segment number, 8 bits of page number,

12 bits of offset

▪ Segment table contains physical address of page table along 

with the length of the page table (a sort of bounds register 

for the segment)

• Page table entries are only 12 bits long occupying 16 bits

• Real addresses are 24 bits long

III. Paged Segmentation
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Address Translation (3)

❖ Example of S/370 paging

III. Paged Segmentation
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Address Translation (4)

❖ Address translation examples

▪ 0x002070 read: 0x0:02:070

• Seg 0, page 2; PTE @ 0x002004; phy addr = 0x003070

▪ 0x202016 read: 0x2:02:016

• Seg 2, page 2; PTE @ 0x001004; phy addr = 0x004016

▪ 0x104C84 read: 0x1:04:C84

• Seg 1, page 4; PTE @ (Protection Error)

▪ 0x011424 read: 0x0:11:424

• Seg 0, page 17; PTE @ 0x002022; phy addr = 0x01F424

▪ 0x210014 write: 0x2:10:014

• Seg 2, page 16; PTE @ (Bounds Violation)

III. Paged Segmentation
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Pros and Cons (1)

❖ Advantages of P+S

▪ If a segment isn’t used, then there’s no need to even have a 

page table for it

▪ Can share at two levels

• Single page

• Single segment (whole page table)

▪ Pages eliminate external fragmentation and make it possible 

for segments to grow without any reshuffling

▪ If page size is small compared to most segments, then 

internal fragmentation is not too bad

▪ User is not given access to the paging tables

III. Paged Segmentation
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Pros and Cons (2)

❖ Problems

▪ Too big table space if pages are too small

• Page tables are contiguous in physical memory

▪ If translation tables are kept in main memory, overhead 

could be very high

• 1 or 2 overhead references for every reverence

III. Paged Segmentation
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Solutions to P+S Problems (1)

❖ Large page table size: The VAX case

▪ Address is 32 bits, top two select segment

• Four base-bound pairs define page tables

– System, P0, P1, unused

– One segment contains operating system stuff, two contain stuff of 

current user process

▪ Read-write protection information is contained in the page 

table entries, not in the segment table

▪ Pages are 512 bytes long

• Too small

III. Paged Segmentation
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Solutions to P+S Problems (2)

❖ Large page table size: The VAX case (cont’d)

▪ Use the system page table to map the user page tables so 

the user page tables can be scattered

• System base-bound pairs are physical addresses, system 

tables must be contiguous

• User base-bound pairs are virtual addresses in the system 

space

– This allows the user page tables to be scattered in non-contiguous 

pages of physical memory

III. Paged Segmentation
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Solutions to P+S Problems (3)

❖ Large page table size: The VAX case (cont’d)

▪ The result is a two level scheme

III. Paged Segmentation

System VM

User Page Table

User VM

① User generates address

② Lookup in User Page Table

③ Lookup in System Page Table

④ Access physical address

0



34

Solutions to P+S Problems (4)

III. Paged Segmentation
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Solutions to P+S Problems (5)

❖ Address translation overhead

▪ Extra memory references to access translation tables can 

slow programs down by a factor of two or three

▪ Too many entries in translation tables to keep them all 

loaded in fast processor memory

• Remember notion of locality

– At any given time a process is only using a few pages or segments

▪ Solution: Translation lookaside buffer (TLB)

III. Paged Segmentation
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TLB (1)

❖ Translation Lookaside Buffer (TLB)

▪ Used to cache a few of translation table entries

▪ It’s very fast, but only stores a small number of entries

▪ On each memory reference,

• First ask TLB if it knows about the page

• If so, the reference proceeds fast

• If TLB has no info for the page,

MMU must go through page tables to get the info

– Reference takes a long time, but TLB is given the info for this page

so it will know it for the next reference

• TLB must forget one of its current entries

in order to record a new one

▪ Also called a Translation Buffer (TB)

IV. Enhancing Mechanisms
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TLB (2)

IV. Enhancing Mechanisms

Source: Silberschatz, Galvin and Gagne, Operating System Concepts, 2008
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TLB (3)

❖ Effective memory access time: 𝜏

𝜏 = ( + 𝜇)  + ( + 2 𝜇)(1 – )

=  + (2 – ) 𝜇

▪ “”: associative lookup time (10 ns)

▪ “𝜇”: memory cycle time (100 ns)

▪ “”: TLB hit ratio

• Percentage of times that a page number is found in TLB

• Dependent on  the number of TLB lines

IV. Enhancing Mechanisms
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TLB (4)

❖ TLB organization

▪ TLB is cache memory

• Cache is memory with some comparators

▪ Typical sizes of memory: 64 to 2K entries

▪ Each entry holds a virtual page number (VPN) and

the corresponding physical page number (PPN)

IV. Enhancing Mechanisms
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TLB (5)

❖ TLB organization (cont’d)

▪ How can cache lines be organized to find an entry quickly?

1. One possibility (naïve)

– Search the whole table from the start on every reference

– Sequential table search

– Not acceptable due to low performance

IV. Enhancing Mechanisms
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TLB (6)

❖ TLB organization (cont’d)

2. Second possibility (direct-mapped cache)

– Restrict the page table entry for any given virtual page

to fall in exactly one location in the cache memory

• Use the “low-order” bits of the virtual page numbers

as the index into the memory (like an array)

• Then only need to check that one location with a tag

3. Third possibility (fully associative cache)

– Check all entries in parallel (expensive but fast)

IV. Enhancing Mechanisms
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TLB (7)

❖ TLB organization (cont’d)

4. Another approach (m-way set-associative cache)

– Restrict the page table entry for any given virtual page

to fall in exactly one of the 2n sets in the cache memory

• Use the “low-order” bits of the virtual page numbers

as the index into the sets

– Each set has 2m lines (m-way)

• The page table entry can be in any of them

• Use m comparators and the rest of the bits of the page number

as a tag to find the matching entry

– About as fast as the simple scheme, but a bit more expensive

• The m comparators instead of one

• Have to decide which entry to replace to bring in a new entry

– This is between the second and third possibility

IV. Enhancing Mechanisms
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TLB (8)

❖ TLB example

▪ MIPS R2000/R3000

• CPU used in DecStations and SGI machines

• Addresses are 32 bits: 12-bit page offset (i.e., 4K pages)

• TLB entry format: 64 bits

• 64 TLB entries

IV. Enhancing Mechanisms
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TLB (9)

❖ TLB example (cont’d)

▪ MIPS R2000/R3000

IV. Enhancing Mechanisms

20 6 6 20 1 1 1 1 8

VPN PID 0 PFN N D V G 0

G      — Global, valid for any PID

V      — Entry is valid

D      — Dirty bit, page has been modified

N      — Don’t cache the page

PFN  — Physical address of the page

PID   — Process ID for entry (or called ASID)

VPN  — Virtual page number
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TLB (10)

❖ In practice, TLB’s have been extremely successful

▪ 98% ratio is typical for 128 entries

❖ Interactions with OS

▪ TLB can be mostly hidden from OS

• Possible exception: Context switches

– Must either:

• Flush TLB during each context switch

• Or, store a Process ID (PID) in the TLB entry

IV. Enhancing Mechanisms
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TLB (11)

❖ Obtaining TLB entries

▪ Software-managed TLB

• OS loads the entries via a TLB miss fault

– Issued when a process tries to access an address that is not in the 

TLB

▪ Hardware-managed TLB

• Hardware searches page table itself to get the missing entry

– OS never sees TLB miss faults: they are handled in hardware

• Pro

– Faster

• Con:

– OS must set up the page table in a fixed way that the hardware 

understand

IV. Enhancing Mechanisms
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User Memory Access in OS (1)

❖ How does OS get information from user memory?

▪ Example: I/O buffers, parameter blocks

▪ Note that the user passes the OS virtual addresses

▪ Note addresses that are contiguous in the virtual address 

space may not be contiguous physically

• I/O operations may have to be split up into multiple blocks

IV. Enhancing Mechanisms
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User Memory Access in OS (2)

❖ Varies depending on OS/user memory configurations

❖ Three different cases

① Run the OS unmapped

• OS reads the page tables and translate user addresses in 

software

• I/O operations may have to be split up into multiple blocks

IV. Enhancing Mechanisms
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User Memory Access in OS (3)

② Run the OS mapped to a separate address space

• OS and user run mapped in different address spaces

• It must generate a page table entry for the user area

• Some machines provide special instructions to get the user 

stuff

– Note that under no circumstances should users be given access to 

mapping tables (sun4u SPARC V9)

IV. Enhancing Mechanisms
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User Memory Access in OS (4)

③ Run the OS mapped to users’ address spaces

• Both OS and user run mapped in the same address space

• Translate both OS and I/O addresses thru the TLB

– Ex: SunOS on a SPARC Station (SPARC V7)

• Both system and user information visible at once

– Can’t touch system stuff unless running with protection bit set

• IO devices DMA into virtual addresses

IV. Enhancing Mechanisms

Code

Data

Stack

0xFFFFFFFF

0x000000000

OS

0xFFFFFFFF

0x000000000

Data

Stack

OS

Code


