
운영체제의기초:

Segmentation and Paging

2023년 5월 4, 9, 11, 16일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수

2

Agenda

I. Segmentation

II. Paging

III. Paged Segmentation

IV. Enhancing Mechanisms

Segmentation and Paging

I. Segmentation

4

Motivations

❖ Problem with base and bound relocation

▪ Only one segment per process

• How can two processes share code while keeping private data

areas (e.g., shared editor)?

I. Segmentation

5

Solutions (1)

❖Multiple segments

▪ Permit process to be split between several areas of memory

▪ Use a separate base and bound register pair for each

segment, and also add two protection bits (read and write)

▪ Each memory reference indicates a segment and offset in

one or more of three ways

• Segment table holds the bases and bounds for all the

segments of process

• Top bits of address select segment, low bits the offset

• Segment is selected implicitly by the instruction

– Examples: Code vs. data, stack vs. data, or 8086 prefixes

I. Segmentation

6

Solutions (2)

❖Multiple segments (cont’d)

▪ Address mapping gets more complicated

• Memory mapping procedure consists of

“table lookup” + “add” + “compare”

• Example

– PDP–10 with high and low segments

selected by the high-order address bit

• Addresses with a 0 top bit used one base register,

and higher addresses use another

I. Segmentation

7

Address Translation (1)

❖MMU for segmentation

I. Segmentation

<CPU +

Memory

Yes

No

Trap to Operating System

Bound Base

STBR

Unmapped

Area

Mapped

Area

Logical

Address

Physical

Address

8

Address Translation (2)

❖ Segmentation example

▪ 2 bits of segment number, 12 bits of offset

I. Segmentation

Segment Base Bounds RW

0

1

2

3

0x4000

0x0000

0x3000

0x6FF

0x4FF

0xFFF

10

11

11

00

Segment # Segment Offset

2 bits 12 bits

9

Address Translation (3)

❖ Address space mapping

▪ Where is 0x240, 0x1180, 0x265c?

▪ How about 0x3002, 0x1600?

I. Segmentation

PhysicalLogical

0x3000

0x4000

0x2000

0x1500

0x1000

0x0700

0x0000

0x4700

0x4000

0x3000

0x0500

0x0000

10

Address Translation (4)

❖ Address translation examples

▪ 0x240

• 0x0:240 – seg # 0, offset 0x240 → 0x4240

▪ 0x1180

• 0x1:180 – seg # 1, offset 0x180 → 0x0180

▪ 0x3002

• 0x3:002 – seg # 3, offset 002 → invalid address (used)

I. Segmentation

Segment Base Bounds RW

0

1

2

3

0x4000

0x0000

0x3000

0x6FF

0x4FF

0xFFF

10

11

11

00

11

Supporting Operations (1)

❖Managing segments

▪ Keep copy of segment table in process control block

▪ When creating process, allocate space for segment and

fill in PCB bases and bounds

▪ When process dies, return segments to free pool

❖When there’s no space to allocate a new segment

▪ Compact memory (move all segments, update bases) to get

all free space together

▪ Or, swap one or more segments to disks to make space and

then bring segments back in before letting process run

• Must then check during context switching and bring segments

back in before letting process run

I. Segmentation

12

Supporting Operations (2)

❖ To enlarge segment

▪ See if space above segment is free; if so, just update the

bound and use that space

▪ Or, move the segment above this one to disk, in order to

make the memory free

▪ Or, move this segment to disk and bring it back into a larger

hole (or, maybe just copy it to a larger hole)

I. Segmentation

13

Pros and Cons

❖ Advantage of segmentation

▪ Segments can be swapped and assigned to storage

independently

❖ Problems

▪ External fragmentation

• Segments of many different sizes have to be allocated

contiguously

• This problem also applies to base and bound schemes

I. Segmentation

II. Paging

15

Motivations

❖ Problem with segmentation

▪ External fragmentation

▪ Goal of paging

• To make allocation and swapping easier

• To reduce memory fragmentation

II. Paging

16

Solutions

❖ Paging

▪ Make all chunks of memory the same size called pages

• Typical sizes range from 512 to 16 Kbytes

▪ For each process, a page table defines

• The base address of each of that process’ pages and

protection (read-only) and existence bits

▪ Translation process is introduced

II. Paging

17

Address Translation (1)

❖ Example: SPARCstation

▪ Translation process

• Page number always comes directly from the address

II. Paging

Page # Page Offset

Page Table

Frame # Page Offset

Page # Page Offset

20 bits 12 bits

18

Address Translation (2)

❖MMU for paging

II. Paging

PFNCPU

Memory

Logical

Address

PTBR

Unmapped

Area

Mapped

AreaPage

Offset Physical

Address

19

Pros and Cons (1)

❖ Advantage of paging

▪ Easy to allocate

• Keep a free list of available pages and grab the first one

• Easy to swap since everything is the same size, which is

usually the same size as disk blocks to and from which pages

are swapped

II. Paging

20

Pros and Cons (2)

❖ Problems

▪ Efficiency of access

• Even small page tables are generally too large to get loaded

into fast memory in the MMU

• Page tables are kept in main memory and the MMU has only

the page table’s base address

• It thus takes one overhead reference for every real memory

reference

II. Paging

21

Pros and Cons (3)

❖ Problems (cont’d)

▪ Table space

• If pages are small, the table space could be substantial

– Example: 32-bit address space with 1 KB pages

• Page table size = 16 Megabytes

• What if the whole table has to be present at once?

– Partial solution: Keep base and bound for page table, so only large

processes have to have large tables

• Internal fragmentation

– Page size doesn’t match up with information size

– The larger the page, the worse this is

II. Paging

III. Paged Segmentation

23

Motivations

❖ Problems with paging

▪ The same as single segment per process

• But not always true, either

▪ Going from paging to P+S is like going from single segment

to multiple segments, except at a higher level

III. Paged Segmentation

24

Solutions

❖ Paging and segmentation combined

▪ Instead of having a single page table, have many page

tables with a base and bound for each

▪ Call the stuff associated with each page table a segment

• Use two levels of mapping to make tables manageable

• Each segment contains one or more pages

• Segments correspond to logical units: Code, data, stack

– Segments vary in size and are often large

▪ Pages are for the use of the OS

• They are fixed-sized to make it easy to manage memory

III. Paged Segmentation

25

Address Translation (1)

❖MMU for paged segmentation

III. Paged Segmentation

<CPU

Memory

Yes

No

Logical

Address

Physical

Address

Trap to Operating System

Bound PTBase

STBR

Unmapped

Area

Mapped

Area
PFN

Page

Offset

26

Address Translation (2)

❖ System 370 example

▪ 24-bit logical address space

• 4 bits of segment number, 8 bits of page number,

12 bits of offset

▪ Segment table contains physical address of page table along

with the length of the page table (a sort of bounds register

for the segment)

• Page table entries are only 12 bits long occupying 16 bits

• Real addresses are 24 bits long

III. Paged Segmentation

Segment # Page # Page Offset

4 bits 8 bits 12 bits

27

Address Translation (3)

❖ Example of S/370 paging

III. Paged Segmentation

Segment table

Base

0x2000

0x0000

0x1000

Bound

0x14

0x00

0x0D

Prot

R

RW

0x001F

0x0011

...

0x0003

0x002A

0x0013

0x000C

0x0007

...

0x0004

0x000B

0x0006

Memory

0x2022

0x2020

…

0x2004

0x2002

0x2000

0x1022

0x1020

…

0x1004

0x1002

0x1000

28

Address Translation (4)

❖ Address translation examples

▪ 0x002070 read: 0x0:02:070

• Seg 0, page 2; PTE @ 0x002004; phy addr = 0x003070

▪ 0x202016 read: 0x2:02:016

• Seg 2, page 2; PTE @ 0x001004; phy addr = 0x004016

▪ 0x104C84 read: 0x1:04:C84

• Seg 1, page 4; PTE @ (Protection Error)

▪ 0x011424 read: 0x0:11:424

• Seg 0, page 17; PTE @ 0x002022; phy addr = 0x01F424

▪ 0x210014 write: 0x2:10:014

• Seg 2, page 16; PTE @ (Bounds Violation)

III. Paged Segmentation

29

Pros and Cons (1)

❖ Advantages of P+S

▪ If a segment isn’t used, then there’s no need to even have a

page table for it

▪ Can share at two levels

• Single page

• Single segment (whole page table)

▪ Pages eliminate external fragmentation and make it possible

for segments to grow without any reshuffling

▪ If page size is small compared to most segments, then

internal fragmentation is not too bad

▪ User is not given access to the paging tables

III. Paged Segmentation

30

Pros and Cons (2)

❖ Problems

▪ Too big table space if pages are too small

• Page tables are contiguous in physical memory

▪ If translation tables are kept in main memory, overhead

could be very high

• 1 or 2 overhead references for every reverence

III. Paged Segmentation

31

Solutions to P+S Problems (1)

❖ Large page table size: The VAX case

▪ Address is 32 bits, top two select segment

• Four base-bound pairs define page tables

– System, P0, P1, unused

– One segment contains operating system stuff, two contain stuff of

current user process

▪ Read-write protection information is contained in the page

table entries, not in the segment table

▪ Pages are 512 bytes long

• Too small

III. Paged Segmentation

32

Solutions to P+S Problems (2)

❖ Large page table size: The VAX case (cont’d)

▪ Use the system page table to map the user page tables so

the user page tables can be scattered

• System base-bound pairs are physical addresses, system

tables must be contiguous

• User base-bound pairs are virtual addresses in the system

space

– This allows the user page tables to be scattered in non-contiguous

pages of physical memory

III. Paged Segmentation

33

Solutions to P+S Problems (3)

❖ Large page table size: The VAX case (cont’d)

▪ The result is a two level scheme

III. Paged Segmentation

System VM

User Page Table

User VM

① User generates address

② Lookup in User Page Table

③ Lookup in System Page Table

④ Access physical address

0

34

Solutions to P+S Problems (4)

III. Paged Segmentation

Seg # Page # Uoffset

+

Seg # Page # Soffset

+

User page table base

address register

System page table base

address register

User page table

in system segment

frame #

Physical memory

frame #

System page table

in system segment

+ Soffset

+ Uoffset

User address Physical addressSystem address Physical address

35

Solutions to P+S Problems (5)

❖ Address translation overhead

▪ Extra memory references to access translation tables can

slow programs down by a factor of two or three

▪ Too many entries in translation tables to keep them all

loaded in fast processor memory

• Remember notion of locality

– At any given time a process is only using a few pages or segments

▪ Solution: Translation lookaside buffer (TLB)

III. Paged Segmentation

IV. Enhancing Mechanisms

37

TLB (1)

❖ Translation Lookaside Buffer (TLB)

▪ Used to cache a few of translation table entries

▪ It’s very fast, but only stores a small number of entries

▪ On each memory reference,

• First ask TLB if it knows about the page

• If so, the reference proceeds fast

• If TLB has no info for the page,

MMU must go through page tables to get the info

– Reference takes a long time, but TLB is given the info for this page

so it will know it for the next reference

• TLB must forget one of its current entries

in order to record a new one

▪ Also called a Translation Buffer (TB)

IV. Enhancing Mechanisms

38

TLB (2)

IV. Enhancing Mechanisms

Source: Silberschatz, Galvin and Gagne, Operating System Concepts, 2008

39

TLB (3)

❖ Effective memory access time: 𝜏

𝜏 = ( + 𝜇)  + ( + 2 𝜇)(1 – )

=  + (2 – ) 𝜇

▪ “”: associative lookup time (10 ns)

▪ “𝜇”: memory cycle time (100 ns)

▪ “”: TLB hit ratio

• Percentage of times that a page number is found in TLB

• Dependent on the number of TLB lines

IV. Enhancing Mechanisms

40

TLB (4)

❖ TLB organization

▪ TLB is cache memory

• Cache is memory with some comparators

▪ Typical sizes of memory: 64 to 2K entries

▪ Each entry holds a virtual page number (VPN) and

the corresponding physical page number (PPN)

IV. Enhancing Mechanisms

Page Number Page Frame Number

41

TLB (5)

❖ TLB organization (cont’d)

▪ How can cache lines be organized to find an entry quickly?

1. One possibility (naïve)

– Search the whole table from the start on every reference

– Sequential table search

– Not acceptable due to low performance

IV. Enhancing Mechanisms

42

TLB (6)

❖ TLB organization (cont’d)

2. Second possibility (direct-mapped cache)

– Restrict the page table entry for any given virtual page

to fall in exactly one location in the cache memory

• Use the “low-order” bits of the virtual page numbers

as the index into the memory (like an array)

• Then only need to check that one location with a tag

3. Third possibility (fully associative cache)

– Check all entries in parallel (expensive but fast)

IV. Enhancing Mechanisms

43

TLB (7)

❖ TLB organization (cont’d)

4. Another approach (m-way set-associative cache)

– Restrict the page table entry for any given virtual page

to fall in exactly one of the 2n sets in the cache memory

• Use the “low-order” bits of the virtual page numbers

as the index into the sets

– Each set has 2m lines (m-way)

• The page table entry can be in any of them

• Use m comparators and the rest of the bits of the page number

as a tag to find the matching entry

– About as fast as the simple scheme, but a bit more expensive

• The m comparators instead of one

• Have to decide which entry to replace to bring in a new entry

– This is between the second and third possibility

IV. Enhancing Mechanisms

44

TLB (8)

❖ TLB example

▪ MIPS R2000/R3000

• CPU used in DecStations and SGI machines

• Addresses are 32 bits: 12-bit page offset (i.e., 4K pages)

• TLB entry format: 64 bits

• 64 TLB entries

IV. Enhancing Mechanisms

45

TLB (9)

❖ TLB example (cont’d)

▪ MIPS R2000/R3000

IV. Enhancing Mechanisms

20 6 6 20 1 1 1 1 8

VPN PID 0 PFN N D V G 0

G — Global, valid for any PID

V — Entry is valid

D — Dirty bit, page has been modified

N — Don’t cache the page

PFN — Physical address of the page

PID — Process ID for entry (or called ASID)

VPN — Virtual page number

46

TLB (10)

❖ In practice, TLB’s have been extremely successful

▪ 98% ratio is typical for 128 entries

❖ Interactions with OS

▪ TLB can be mostly hidden from OS

• Possible exception: Context switches

– Must either:

• Flush TLB during each context switch

• Or, store a Process ID (PID) in the TLB entry

IV. Enhancing Mechanisms

47

TLB (11)

❖ Obtaining TLB entries

▪ Software-managed TLB

• OS loads the entries via a TLB miss fault

– Issued when a process tries to access an address that is not in the

TLB

▪ Hardware-managed TLB

• Hardware searches page table itself to get the missing entry

– OS never sees TLB miss faults: they are handled in hardware

• Pro

– Faster

• Con:

– OS must set up the page table in a fixed way that the hardware

understand

IV. Enhancing Mechanisms

48

User Memory Access in OS (1)

❖ How does OS get information from user memory?

▪ Example: I/O buffers, parameter blocks

▪ Note that the user passes the OS virtual addresses

▪ Note addresses that are contiguous in the virtual address

space may not be contiguous physically

• I/O operations may have to be split up into multiple blocks

IV. Enhancing Mechanisms

User UM Physical Memory

49

User Memory Access in OS (2)

❖ Varies depending on OS/user memory configurations

❖ Three different cases

① Run the OS unmapped

• OS reads the page tables and translate user addresses in

software

• I/O operations may have to be split up into multiple blocks

IV. Enhancing Mechanisms

50

User Memory Access in OS (3)

② Run the OS mapped to a separate address space

• OS and user run mapped in different address spaces

• It must generate a page table entry for the user area

• Some machines provide special instructions to get the user

stuff

– Note that under no circumstances should users be given access to

mapping tables (sun4u SPARC V9)

IV. Enhancing Mechanisms

Code

Data

Stack
0xFFFFFFFF

0x000000000

OS

0xFFFFFFFF

0x000000000

51

User Memory Access in OS (4)

③ Run the OS mapped to users’ address spaces

• Both OS and user run mapped in the same address space

• Translate both OS and I/O addresses thru the TLB

– Ex: SunOS on a SPARC Station (SPARC V7)

• Both system and user information visible at once

– Can’t touch system stuff unless running with protection bit set

• IO devices DMA into virtual addresses

IV. Enhancing Mechanisms

Code

Data

Stack

0xFFFFFFFF

0x000000000

OS

0xFFFFFFFF

0x000000000

Data

Stack

OS

Code

