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Peak Shape
Modelling

Bish & Post Chap 8
Young Chap 7
Jenkins & Snyder page 302
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Peak shape modelling

Cuka, & CuKa, duplet

All these signals are generated
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Analytical profile fitting

> Fit a numerical function (profile shape function; PSF)
to a measured diffraction pattern.

» PSF > 26, |, FWHM

> An optimization algorithm is employed to adjust
parameters of PSF until the difference between the

measured and calculated lines are minimized.
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» Analytical profile fitting

» Direct convolution approach

The Rietveld Method, RA Young

Direct convolution approach
(Fundamental Parameters Approach)
» Profiles are generated by convolution

where various functions are convoluted

to form the observed profile shape.

» Calculate peak profile from device

configuration.
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Precision vs. Accuracy
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» Precision - reproducibility

» Accuracy — approach to the "true” value

» Improperly calibrated instruments, inadequate correction for systematic errors - highly

precise but inaccurate measurement
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Full Width Half Maximum

> All peak shape functions incorporate dependence of half width of Bragg
peaks or FWHM.

> FWHM shows angular dependence expressed by the Caglioti function.

H?Z =Utan<60 + Vitan 6 + W
v H = half width

v U, V, W = refinable parameters

FYWHM
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» Convolution — product of two functions is integrated over all spaces.

» Deconvolution (F2)(H = AD*g(d

_ frﬂr—r)g('r)dr: frf('r)g(r—r)d'r
{ {

> Intrinsic profile (specimen profile) (S)
» Spectral distribution (radiation source contribution) (W)

> Instrumental contribution (G)

» Observed profile; h(x)
»hx) = (W*G)*S + background
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Intrinsic profile (specimen profile) (S)
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» Darwin width
v" Inherent width of a diffraction peak

v" Result of uncertainty principle (ApAx = h)

» Location of a photon in a crystal is restricted to a small volume. (& absorption
coefficient) = Ap must be finite. > AX (Ap = h/AM\; de Broglie relation) must be

finite. > produces a finite width to a diffraction peak.
» Two sample effects which broaden the profile shape functions

v’ Size B.ize = I/(tcosb)

v Microstrain Bstrain = 4e tand
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Spectral Distribution (radiation source contribution) (W)

SEOUL NATIONAL UNIVERSITY

» The inherent spectral profile of the K-alphal line from a Cu target has a

breadth of 0.518 x 10-3 A (approximately Lorenzian and asymmetric).

» The inherent width & asymmetry is usually overwhelmed by the fact that

various components of radiation (K, Kyp, Ky34,-=-) in @ polychromatic beam

will each spread out as 2theta increases.

» This spectral dispersion is so great that it can dominate the diffraction

profiles at high angle, making them quite broad & relatively symmetric.

» Monochromatization can limit the breadth of W to the Darwin width of the

monochromator crystal and its mosaicity.

H?Z =Utan?0 + Vitan 8 + W
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Instrumental contribution (G), Observed profile h(x)
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» 5 principal non-spectral contribution to the instrumental profile (G)

X-ray source image Flat specimen - asymmetry
Axial divergence of incident beam = asymmetry

Specimen transparency > asymmetry Receiving slit

Intrinsic profile (S)
Spectral distribution (radiation source contribution) (W)

Instrumental contribution (G)

h(x) = (W * G) * S + background (*; convolution)
(W * G) ; fixed for a particular instrument/target system = instrumental profile g(x)
h(x) = g(x) * S + background
LaB, (SRM 660c¢)

Very asymmetric profile in sealed tube parafocusing system

Symmetric Gaussian profile in neutron & synchrotron X-ray
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Analytical profile shape functions (PSFs)

: 5 i SEOUL NATIONAL UNIVERSITY
Table 1.2 Some symmetric analytical profile functions that have been used

Function Name
Cci? N :
(a) o exp(— Co(20; — 205)%/HE) Gaussian (‘G’)
KT .
o | i gl » Gaussian
(b) = l’/ |:l +C,; ]Tzk :| Lorentzian (‘L’)
THg | K
eyt | 20, — 20,)* 1
(&) —21 /’|:1 + Cz( - ) :I Mod 1 Lorentzian > LO rentZIan
nH, | H2
S I N .
dy =—1/{1+C —— Mod 2 Lorentzian £ P
T | » Modified Lorentzian
() nL + (1 —n)G pseudo-Voigt (‘pV’)
The mixing parameter, #, can be refined as a linear function . .
of 20 wherein the refinable variables are NA and NB: > | ntermed | ate I_O rentZI a n
= NA + NB*(20)
G, ) 20, — 20,)° ™™ 1
(f) HA [I +4*(2""’—1)§ = e K),] Pearson VII > PSGUdO-VOlqt
K K
m can be refined as a function of 26,
m=NA + NB20 + NC/Q20)%, » Pearson VII
where the refinable variables are NA, NB, and NC.
(g) Modified Thompson—Cox—Hastings pseudo-Voigt, (Mod-TCH pV) 1
Mg > Split Pearson VI
TCHZ =L + (1 — )G
where
n = 1.36603g — 0.47719¢> + 0.11164°
g=Tyr
I'= (3 + AT¢L, + BU3T} + CT2T; + DIy + I7)%2 = Hy
A =2.69269 B = 242843
C =447163 D = 0.07842

Iy = (Utan® 0 + Vtan 0 + W + Z/cos? O)'/?
I = X tan 0 + Y/cos 0
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Analytical profile fitting > Gaussian, Lorentzian, Pseudo Voigt profile
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» Most instruments are more Gaussian at low angles and

more Lorentzian at high angles (wavelength dispersion).

Pseudo Voigt profile; nL + (1-n)G

Lorentzian profile Gaussian profile

/\ Same FWHM (H) in
o H2 = U tan20 + V tan® + W

/ \ 4 '

.

Lorentzian (n = 1.0) -..Gaussian (n = O) Pseudo Voigt (n = 0.5)
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Analytical profile shape functions
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Split Pearson VIl
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»The two half profiles share a common Bragg

angle 26, and peak intensity 1(0).

Intensity
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T

.44
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» Their different fwhm's Hy, and exponents m

allow the profile to model an asymmetric line
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Direct convolution approach

h=W?*G)*S

SEOUL NATIONAL UNIVERSITY

contributions

» Line shape € convolution of (W*G) and (S)

S; Intrinsic profile (specimen profile)
W; Spectral distribution (radiation source

contribution)

G; Instrumental contribution

W*G; instrument

Integrated intensity of the peak remains the
same while the peak broadens and the

peak intensity decreases.

Need to know precisely the nature of

contributions from both instrument & specimen.

S W *G h
1000
Specimen
Profile Convolution
800, 10,000) Product
2 600} Instrument Crystallite
g Profile size
T 400t
200t
286 nm
0 t f |
1000
Instrument
800 Profile
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200 r
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200 +
70 nm
0 + t {
53.5 54.6 56.8 57.9 59.0
Two—Theta 1alyses
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Direct convolution approach > Fundamental Parameters Approach (FPA)

» Calculate the peak profile from the device configuration.

» Take into account the contributions of:

SEOUL NATIONAL UNIVERSITY

v Source emission profile (X-ray wavelength distribution from Tube).

v" Every optical element in the beam path (position, size, etc.).

v" Sample contributions (peak broadening due to crystallite size & strain).

x x x x
o L4 - — 0=
Emission Profile Target Slit Width Horizontial aial Crystallite Size
tan(d ) Divergence Divergence 1/ cos(2i) CS
o’ cot(i) SL? cot(d )

Tube

FPA needs:

Device Configuration

Sample

- Very detailed and complete description of the instrument configuration.

- Very well aligned instrument.

From presentation of Nicola Débelin, RMS Foundation, Switzerland
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Factors that affect the integrated peak intensity and not the peak shape

SEOUL NATIONAL UNIVERSITY

» Background fitting (this should not affect the apparent Bragg intensities

if it is done correctly)
» Extinction
> Preferred Orientation (Texture)
» Absorption & Surface Roughness

» Other Geometric Factors
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> Need to know precisely the nature of contributions from both instrument

and specimen.

> PSF representing instrument can be obtained by measuring a set of lines

from a specimen.

v' Free of crystallite size broadening and lattice defects

v Sufficiently small mean particle size and narrow size distribution without

having particles so small as to introduce line broadening

v’ Line profile standard, LaBs NIST SRM

CHAN PARK, MSE, SNU  Spring-2022  Crystal Structure Analyses 16




Standard Reference Materials (SRMs)

SEOUL NATIONAL UNIVERSITY

» Powder Line Position + Line Shape Std for Powder Dif
v Silicon (SRM 640f); $745/7.5g
> Line position - Fluorophlogopite mica (SRM 675); $809/7.5g

> Line profile - LaBg (SRM 660c); $907/69 No broadening
from size & strain

> Intensity
v' Zn0O, TiO, (rutile), Cr,O3, CeO, (SRM 674b); out of stock
» Quantitative phase analysis
v Al,O3 (SRM 676a ); out of stock, Silicon Nitride (SRM 656); $580/ 20g
> Instrument Response Std

v Alumina plate (SRM 1976c¢); $721/1 disc

Gold
$58.66 / gram

! (2021-06-17)
Prices; 2021-06-17

) . oldprice.or
www.nist.gov/srm/index.cfm Dbl 9
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Line (peak) profile analysis The danger of profile fitting
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