Peak Shape Modelling

Bish & Post Chap 8

Young Chap 7 Jenkins & Snyder page 302

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

- Precision reproducibility
- Accuracy approach to the "true" value
- ➤ Improperly calibrated instruments, inadequate correction for systematic errors → highly precise but inaccurate measurement

Resolution test: Five fingers of quartz: FOM= 2.29

Full Width Half Maximum

- All peak shape functions incorporate dependence of half width of Bragg peaks or FWHM.
- > FWHM shows angular dependence expressed by the **Caglioti** function.

$H^2 = U \tan^2\theta + V \tan^2\theta + W$

- \checkmark H = half width
- ✓ U, V, W = refinable parameters

- > Convolution product of two functions is integrated over all spaces.
- > Deconvolution (f*g)(t) = f(t)*g(t)

$$= \int_0^t f(t-\tau)g(\tau) d\tau = \int_0^t f(\tau)g(t-\tau) d\tau$$

- Intrinsic profile (specimen profile) (S)
- Spectral distribution (radiation source contribution) (W)
- > Instrumental contribution (G)
- \succ Observed profile; h(x)
- h(x) = (W * G) * S + background

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Intrinsic profile (specimen profile) (S)

- ➢ Darwin width
 - ✓ Inherent width of a diffraction peak
 - ✓ Result of uncertainty principle ($\Delta p \Delta x = h$)
 - Location of a photon in a crystal is restricted to a small volume. (\leftarrow absorption coefficient) $\rightarrow \Delta p$ must be finite. $\rightarrow \Delta \lambda$ ($\Delta p = h/\Delta \lambda$; de Broglie relation) must be finite. \rightarrow produces a finite width to a diffraction peak.

> Two sample effects which broaden the profile shape functions

- ✓ Size $β_{size} = I/(tcosθ)$
- ✓ Microstrain $\beta_{strain} = 4e \tan \theta$

Spectral Distribution (radiation source contribution) (W)

- ➤ The inherent spectral profile of the K-alpha1 line from a Cu target has a breadth of 0.518 x 10⁻³ Å (approximately Lorenzian and asymmetric).
- > The inherent width & asymmetry is usually overwhelmed by the fact that various components of radiation $(K_{\alpha 1}, K_{\alpha 2}, K_{\alpha 3, 4}, ---)$ in a polychromatic beam will each spread out as 2theta increases.
- This <u>spectral dispersion</u> is so great that it can dominate the diffraction profiles <u>at high angle</u>, making them <u>quite broad & relatively symmetric</u>.
- Monochromatization can limit the breadth of W to the Darwin width of the monochromator crystal and its mosaicity.

 $H^2 = U \tan^2 \theta + V \tan \theta + W$

7

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Instrumental contribution (G), Observed profile h(x)>5 principal non-spectral contribution to the instrumental profile (G) X-ray source image Flat specimen \rightarrow asymmetry Axial divergence of incident beam \rightarrow asymmetry Specimen transparency \rightarrow asymmetry Receiving slit Intrinsic profile (S) Spectral distribution (radiation source contribution) (W) Instrumental contribution (G) h(x) = (W * G) * S + background (*; convolution) (W * G); fixed for a particular instrument/target system \rightarrow instrumental profile q(x)h(x) = q(x) * S + background LaB_{6} (SRM 660c) Very asymmetric profile in sealed tube parafocusing system \geq Symmetric Gaussian profile in neutron & synchrotron X-ray \triangleright 8 CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses From presentation of Nicola Döbelin, RMS Foundation, Switzerland 10

Direct convolution approach > Fundamental Parameters Approach (FPA)

- > Calculate the peak profile from the device configuration.
- > Take into account the contributions of:
 - \checkmark Source emission profile (X-ray wavelength distribution from Tube).
 - \checkmark Every optical element in the beam path (position, size, etc.).
 - \checkmark Sample contributions (peak broadening due to crystallite size & strain).

FPA needs:

- Very detailed and complete description of the instrument configuration.
- Very well aligned instrument.

From presentation of Nicola Döbelin, RMS Foundation, Switzerland

- Background fitting (this should not affect the apparent Bragg intensities if it is done correctly)
- Extinction
- Preferred Orientation (Texture)
- Absorption & Surface Roughness
- Other Geometric Factors

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

- Need to know precisely the nature of <u>contributions from both instrument</u> and specimen.
- PSF representing instrument can be obtained by measuring a set of lines from a specimen.
 - ✓ Free of crystallite size broadening and lattice defects
 - ✓ Sufficiently small mean particle size and narrow size distribution without having particles so small as to introduce line broadening
 - ✓ Line profile standard, LaB₆ NIST SRM

