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7.6 Stress in symmetrical elastic beam transmitting both 
shear force and bending moment 
à It is more difficult to obtain an exact solution to this problem since 

the presence of the shear force means that the bending moment 
varies along the beam and hence many of the symmetry arguments 
of Sec 7.2 are no longer applicable. Therefore, in this section we 
shall describe what is frequently referred to as the engineering 
theory of the stresses in beam. 

▶ Engineering theory of beams 

▷ Assumption 
à The bending-stress distribution (7.16) is valid even when the 

bending moment varies along the beam, i.e., when a shear force is 
present.  =  = − 	 	 (7.16) 

 
▷ Analysis 

i) Fig. (a) 
à We take the case where there is no external transverse load acting 

on the element so that the transverse shear force   is 
independent of . 

à We assume the shear force is constant through the beam to 
simplify the analysis. 

 
ii) Fig. (b) 
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à Due to the increase ∆, in the bending moment over the length ∆, the bending stresses acting on the positive  face of the beam 
element will be somewhat larger than those on the negative  
face. 

à We assume that the bending stresses are given by (7.16). 
 

 
 

iii)  Fig. (c), Fig. (d) 
à We next consider the equilibrium of the segment of the beam 

shown in Fig. 7.13 (c), which we obtain by isolating that part of 
the beam element of Fig. 7.13 (b) above the plane defined by  =. Due to the unbalance of bending stresses on the ends of this 
segment, there must be a force ∆  acting on the negative  
face to maintain force balance in the  direction. 

 ∑ = ∫ 	 ∆ − ∆ − ∫ 	  = 0  (7.18) 

 → ∆ = −∫ (∆) 	 + ∫  	   = − ∆ ∫ 	  (7.19) 

 
 ∴  = lim∆→ ∆∆ = −   ∫ 	   (7.20) 
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where   =    (7.22 a) = −  (3.12)∫ 	 =  (7.22 b)∴ 		  =    (7.23) 

 
à The quantity  , which is the total longitudinal shear force 

transmitted across the plane defined by  =  per unit length 
along the beam, is called the shear flow. The shear flow   
obviously is the resultant of a shear stress   distributed across 
the width  of the beam. If we make the assumption that the 
shear stress is uniform across the beam, we can estimate the shear 
stress   at  =  to be 

  =  =  =    (7.24)(7.25) 

 
  

i) The foregoing theory can be proved to be internally consistent 
in that it can be shown that for a beam of arbitrary cross section 
the resultant of the stress distribution (7.25) over the cross 
section is in fact the shear force . 

ii) The shear stress distribution at the bottom and the top is zero. 
 

 

▶ Shear stress distribution in rectangular beam 
à The equilibrium equations (4.13) apply.  +  = 0 +  = 0  (4.13) 

à If we deal with a case where the shear force does not vary with , 
the shear stress also will be independent of , and the second of 
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(4.13) is automatically satisfied since the normal stress  has 
been assumed to be zero. 

 ∴ 1st	equation	is;  −  =  =  −  =    (7.26) ∴ 		− ∫  	/ =  ∫ 	/ =   /  ∴ 	−/ +  =  	 −   (7.27) 

à The shear stress is a maximum at the neutral surface and falls off 
parabolically, as illustrated in Fig. 7.15. 
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▷ The relation between shear stress and shear strain in a rectangular beam 
i) By substituting the stress distribution (7.27) into Hooke’s law 

(5.2), we find that the shear strain  , also varies parabolically 
across the section. 

ii) If the shear force is constant along the length of the beam, any 
longitudinal line   does not change its length as it deforms into 
the position . From this we would suppose that the presence 
of a constant shear force would have little effect on the bending-
stress distribution (7.16). 

 
 The exact solution from the theory of elasticity shows that (7.14) 
and (7.16) are still correct when there is a constant shear force. 
This means that the expression (7.23) for the shear flow is also 
exact for the case of constant shear force.  
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 Both (7.14) and (7.16) are in error when the shear force varies 
along the beam, but the magnitude of error is small for long, 
slender beams and, consequently, (7.23) represents a good 
estimate even in the presence of a varying shear force. 

▶ Comment on Rectangular Beam 

i) from  =  [ − ],  (7.27)  =  =  = 1.5   
 →	∴  	is	50%	greater	than	 (= /) 

ii) Eq. (7.27) is useful only for linear elastic beams. 
iii) This equation is more accurate when b is smaller than h. If b is 

same with h, true τ  is 13% greater than τ  that is derived 
from eq. (7.27) 

 

▶ Shear-stress distribution in I-beam 
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▷ Assumptions 
i) The shear stress is uniform across the thickness , . 
ii) We neglect the effect of small fillet at the connection of flange and 

web. 

 
▷ From Fig. (b)  = −    (7.28)  =  =  = −    (7.29) 

 
▷ Shear-stress distribution 

à In Fig. 7.17 (d) we show the shear-stress distribution over the cross 
section of the beam; in each flange the stress   varies linearly 
from a maximum at the junction with the web to zero at the edge, 
while in the web the stress   has a parabolic distribution. 

 The stress distribution at the junction of the web and flange is quite 
complicated; standard rolled I beams are provided with generous 
fillets at these points to reduce the stress concentration. 

 On a typical wide-flange beam, mean shear-stress is within the ±10% of the true maximum shear-stress. 
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▶ Note 

▷ Proof of the eq. (7.28) ∑ = ∫  	 ∆ + ∆ − ∫  	  = 0  ∴ ∆ = ∫ (∆) 	 − ∫  	 = ∫ ∆ 	 = ∆   ∴  = ∆→ ∆∆ =   = −    (7.28) 

 

▶ Example 7.3 
In making the brass beam of Fig. 7.18 (a), the box sections are soldered to 
the 1/4-in. plate, as indicated in Fig. 7.18 (b). If the shear stress in the solder 
is not to exceed 1,500 psi, what is the maximum shear force which the beam 
can carry? 
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 2 =    (a) 

Where  = 15000(1/8) = 188	 /   (b) = 5[2 − 1.75] = 4.7	  (c)

 ∴ 		 =     = ( )(). = 6,000	   

 

▶ Example 7.4 
A rectangular beam is carried on simple supports and subjected to a 
central load, as illustrated in Fig 7.19. We wish to find the ratio of the 
maximum shear stress ()   to the maximum bending stress () . 
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 () = /4  (a)  = ℎ/12  (b) 

Substituting (a) and (b) in (7.16) () = − () (/) = − (/)(/)/ =    (c) 

 
Substituting  = 0 in (7.27), τ = /(\)  − 0 =  / =   (d) 

 ∴ 		  ()  =    (e) 

à The bending and shear stresses are of comparable magnitude only 
when  and ℎ are of the same magnitude. (the factor of 1/2 in 
(e) can be as large as 3 or 4 for I beams with thin webs.) 

 If a different loading is put on the beam m Fig 7.19, the ratio of 
the maximum stresses will again be found to depend upon the 
ratio of the depth to the length of the beam, although, of course, 
the factor of proportionality will differ from that just found. If 
beams of other cross-sectional shape are investigated, similar 
results are obtained. 
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▶ Localized buckling in I beams 

 
à From the point of view of reducing bending stress, it is apparent 

from (7.16) that for a given cross-sectional area of beam it is best 
to distribute that area so that   is as large as practical, i.e., to 
concentrate the area as far as possible from the centroid. But there 
are restrictions due to the side effects of buckling. 

1▷ If the cross-sectional area of the I beam was kept constant while the 
depth was increased at the expense of a decrease in the flange 
thickness;  
The beam might fail by a buckling of the compression flange at a 
stress level well below that at which the material would yield. 

2▷ If an increase in beam depth was accomplished at the expense of a 
decrease in web thickness;  
The compressive stresses resulting from the transmission of shear 
along the beam might cause buckling of the web. 
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▶ Note 

▷ Fully stressed beam 
à Beam designed to maintain the maximum allowable bending 

stress in any cross-section 
Ex) On the cantilever whose width is constant 

 
B.C.) ℎ = ℎ at the fixed end 
 
cf. ℎ = 0 at  = 0, but the height must be designed to endure the shear-
stress in practice 
▷ Reference 
→ When you nail the boards as shown in the left figure, it is better to do 
like fig. (a). (∵ Shear flow is smaller than fig. (b) because  is smaller 
than fig. (b).) 
 

7.8 Strain Energy Due to Bending 
▶ We consider first the case of pure bending where the only nonvanishing 

stress component is the longitudinal stress. The total strain energy (5.17) 
thus reduces to  = ∭	 =∭  	   (7.30) =∭     = ∫  	 ∬ 	   = ∫  	   (7.31) 

▶ This formula may also be derived by considering each differential 
element of length   to act as a bending spring.  =  =   	 =   	  ∴ 		 = ∫  	   (7.31) 
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▶ When a beam is subjected to transverse shear in addition to bending, there 

are, in general, transverse shear-stress components   and   in 
addition to the bending stress . The total strain energy (5.17) then 
becomes  = ∭ +  +    =∭  	 +∭   	   (7.32) 

 

 For slender members the latter contribution is almost always 
negligible in comparison with the former. This may be inferred from 
the discussion in Sec. 7.6 concerning the comparative magnitudes of 
the bending and shear stresses If  is an order of magnitude larger 
than   and  , then, since the integrals in (7.32) depend on the 
squares of the stresses, we see that the first integral is two orders of 
magnitude larger than the second. As a consequence, it is common to 
neglect the contribution to the strain energy due to the transverse shear 
stresses. The pure-bending formula (7.31) is then used to represent the 
total strain energy in a beam whether there is transverse shear or not. 
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▶ The contribution of  ,   in the rectangular beam 

 
  =  〈〉 −  〈 − 〉  () = −  〈〉 +  〈 − 〉 =  − + 〈 − 〉  () =   −  〈 − 〉 =   − 〈 − 〉  

 ∴ For 0 <  < ,			 −  <  <  ,				−  <  <    = ()  −   (7.27)  = 0  

 ∴ from Eq. (7.32) ( =  + ),  = ∫  	 = 2∫ (/) 	 =   (7.33) 
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 = ∫  	 ∙ ∫  −  // ∙ ∫ 		//   =  ∙ =    (7.34) 

∴ 	 =  +  =  +   =  1 +     (7.35) 

 ∴ The ratio of two contributions is  =    =  (1 + )   

  

i) For a beam with  > 10ℎ and with Poisson’s ratio 	 = 0.28, 
the shear contribution is less than 3percent of the bending 
contribution. (/ does not depend on width .) 

ii) For beams with other loadings and other cross-sectional shapes, 
the ratio of  to  is always proportional to the square of the 
ratio of beam depth to beam length. 

iii)  The numerical factor of 6/5 in (7.35) can be as large as 12 for I 
beams. 

 

7.9 Onset of Yielding in Bending 

▶ For pure bending  =  								 =  = 0  (7.36) 

→ ∴ In this case, the yielding condition is as follows;  =   (7.37) 

▶ For combined load Von	Mises	CriterionTresca	Criterion   
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 Even in relatively simple structures the most critically stressed point 
may not be obvious, and calculations may have to be made for more 
than one point. 

 

▶ Example 7.7 
A circular rod of radius  is bent into the U-shape to form the structure of 
Fig. 7.25 (a). The material in the rod has a yield stress  in simple tension. 
We wish to determine the load  that will cause yielding to begin at some 
point in the structure. 

 

 



446.201A (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 7 Stresses due to bending 17 / 23 

 

 

 
Sol) Referring the Fig. 7.25, we can guess that 	or	 are critical cross-
sections. 
1 ▷ For  (see Fig. 7.26 (a)) 

  =    +   =   = ()   (a) 

Principal stresses are 

⎩⎨
⎧  = +  = −4  = 0  (b) 
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i) By Von Mises Criterion   + 4   + −4  − 0 + 0 −   =   (c) →	∴ the	yiedling	condition	is  ∴  = 0.218    (d) 
 

ii) By Tresca Criterion  = |  | =   + 4   =   (e) ∴  = 0.200    (f) 
 

à ∴ the difference between (d) and (f) is 9% 
 
2 ▷ For  (see Fig. 7.26 (b)) 

 
Principal stresses are 

⎩⎨
⎧ = +   = −   = 0  (g) 
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i) By Von Mises Criterion  [  +    + −   − 0 + 0 −   ] =   (h) →	∴ the	yiedling	condition	is  ∴  = 0.210    (i) 
 

ii) By Tresca Criterion  = |  | =    +    =   (j) ∴  = 0.200    (k) 
 

à ∴ the difference between (d) and (f) is 5% 
 

à The maximum shear-stress criterion predicts yielding at locations  
and  at the same load, indicating that the Mohr’s circles in Fig. 7.26 
(a) and  are of equal size. The Mises criterion identifies  as the 
critical location and predicts yielding there at a load 5 percent greater 
than the load for yielding according to the maximum shear-stress 
criterion. 

 
 

7.10  Plastic deformation 
▶ Assumptions 

i) We shall restrict our attention to symmetrical beams. 

ii) We shall further restrict our inquiry to beams in which the material has 
the elastic-perfectly plastic stress-strain behavior. 

iii)  The Mises and the maximum shear-stress criteria predict yielding at 
the same bending-stress level since pure bending corresponds to a 
uniaxial state of stress. 
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▶ From Fig. 7.28 

à The nature of the geometric deformation is independent of the stress-
strain behavior of the material. 

1▷ Elastic region (0 < σ < )  = −  = −    (7.4) 

2▷ Onset of yielding (σ = )  =  =    (7.14)  corresponds to the situation where  = − at  = +ℎ/2.  = // =    (7.38)  = /  (7.39) 

3▷ Between yielding and fully plastic (σ = ,			 <  < ) i)	 	0 <  < 								; 					 = −  ii)	 	 <  < ℎ/2					; 						 = −  (7.40) 

→ Taking an element of area of size ∆ = ∆,  = ∫ 	   = 2−∫  	 − ∫  	/   (7.41) =   1 −   /	  (7.42) 

Since,  =   (7.43) 

From eq. (7.39); / = (/)/   (7.44) 
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∴ Eq. (7.42) is;  =    1 −  (/)/   

=  1 −  (/)/   (7.45) 

When  >  

 

▷ Fully plastic region ( = , = ) 

 
i) As the curvature increases, the moment approaches the asymptotic 

value 3/2  which we call the fully plastic moment, or limit 
moment, and for which we use the symbol . 

ii) The ratio  ≡  is a function of the geometry of the cross section. 

Ex) Solid rectangular:  = 1.5 

   Solid circle:  = 1.7 

   Thin-walled circular tube:  = 1.3 

   Typical I beam:  = 1.1~1.2 
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iii)  In the engineering theory the effect of shear force on the value of the 
bending moment corresponding to fully plastic behavior is negligible 
in beams of reasonable length. 

 

▶ Example 7.8 
An originally straight rectangular bar is bent around a circular mandrel of 
radius  − ℎ/2, as shown in Fig. 7.3l (a). As the bar is released from the 
mandrel, its radius of curvature increases to R, as indicated in Fig. 7.3l 
(b). This change of curvature is called elastic spring-back; it becomes a 
factor of great importance when metals must be formed to close 
dimensional tolerances. Our interest here is in the amount of this spring-
back and in the residual stresses which remain after the bar is released. 

 
 
Sol) As you can see in Fig. 7.32, the decrease in curvature due to the 
elastic unloading is 
  −  =    (a) 

where,  = / =    (b) 

 ∴  −  =   (c) 
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▷ From Fig. 7.33 
If we now added a further negative bending moment, we could decrease 
the curvature still further beyond the value 1/. At first, such action 
would be elastic, but when this additional bending moment exceeded the 
value  = −   there would be reversed yielding at the inner and 
outer radii of the bar. 

 
 


