Field and Wave Electromagnetic

Chapter9

Theory and Applications of Transmission Lines

Seoul National Univ.

Radio Technology Lab.

Transmission Line

- TEM (Transverse electromagnetic) waves guided by transmission lines.
 - $\overline{E} \perp \overline{H} \perp \overline{k}$ (along the guiding line)
- The three most common types of guiding structures that support TEM waves.
 - (a) Parallel-plate transmission line \Rightarrow striplines
 - (b) Two wire transmission line
 - (c) Coaxial cable : No stray fields

 TEM wave solution of Maxwell's equations for the parallel-plate guiding structure
 A pair of transmission line equation.
 tion

TEM Wave along a Parallel-Plate Transmission Line (1)

cf) Fringe fields at the edges of the plates are neglected.

Seoul National Univ. Electromagnetic Theory 2 З

Radio Te

TEM Wave along a Parallel-Plate Transmission Line (2)

Assuming perfect conductor and a lossless dielectric (3)

$$\gamma = j\beta = j\omega\sqrt{\mu\varepsilon}$$
$$\eta = \sqrt{\frac{\mu}{\varepsilon}}$$

④ Boundary conditions

> At y = 0 and y = d

$$E_t = 0, H_n = 0 \implies E_x = E_z = 0, H_y = 0$$

$$\begin{pmatrix} E_{1t} = E_{2t} & (\widehat{D}_1 - \overline{D}_2) = \rho_s \\ \widehat{n}_2 \times (\overline{H}_1 - \overline{H}_2) = \overline{J}_s & B_{1n} = B_{2n} \end{pmatrix}$$

Seoul National Univ.

$$\overline{H} = \hat{x}H_x = -\hat{x}\frac{E_0}{\eta}e^{-\gamma z} \qquad \begin{array}{c} \gamma & : \text{ propagating constant} \\ \eta & : \text{ intrinsic impedance} \end{array}$$

2 Propagating in the +z directio

$$\overline{E} = \hat{y}E_y = \hat{y}E_0e^{-\gamma z}$$

TEM Wave along a Parallel-Plate Transmission Line (3)

Radio Technology Lab.

TEM Wave along a Parallel-Plate Transmission Line (4)

5 \overline{E} & \overline{H} satisfy Maxwell's equation

$$\begin{cases} \nabla \times \overline{E} = -j\omega\mu \overline{H} \\ \nabla \times \overline{H} = j\omega\varepsilon \overline{E} \end{cases} \\ \overline{E} = \hat{y}E_{y}, \quad \overline{H} = \hat{x}H_{x} \\ \nabla \times \overline{E} = -j\omega\mu \overline{H} \implies \frac{dE_{y}}{dz} = j\omega\mu H_{x} \qquad (1) \\ \nabla \times \overline{H} = j\omega\varepsilon \overline{E} \implies \frac{dH_{x}}{dz} = j\omega\varepsilon E_{y} \qquad (2) \\ (\text{cf)} \quad \frac{\partial}{\partial z} \Rightarrow \frac{d}{dz} \quad \because \quad E_{y} \text{ and } H_{x} \text{ are functions of z only.} \end{cases}$$

TEM Wave along a Parallel-Plate Transmission Line (5)

Integrating ① over y from 0 to d,

$$\frac{d}{dz} \int_0^d E_y dy = j \omega \mu \int_0^d H_x dy$$

cf) $V_{d0}(z) = -\int_0^d E_y dy = -E_y(z)d$; Potential difference from the lower plate to the upper plate

 $H_x = J_{su}(z)$ assuming $\overline{J}_{su} = \hat{z}J_{su}(z)$

$$I(z) = J_{su}w$$
 Where w is the width of the plate

→ The total current flowing in the +z direction

Electromagnetic Theory 2

Seoul National Univ.

Radio Technology Lab. Wireless / Channel / Microwave

TEM Wave along a Parallel-Plate Transmission Line (6)

Then
$$-\frac{dV(z)}{dz} = j\omega\mu J_{su}(z)d = j\omega\left(\mu\frac{d}{w}\right)\left[J_{su}(z)w\right]$$

i.e. $-\frac{dV(z)}{dz} = j\omega LI(z)$ (1')
where $L = \mu\frac{d}{w}$ (H/m) : inductance per unit length of the parallel-plate transmission line
Flux linkage per unit current d_x (modelshift) $\frac{y}{1m}$ (modelshift) $\frac{d}{z} = \frac{\Phi}{I} = \frac{BS}{I}$
Integrating (2) over x from 0 to w, $\frac{d}{dz} \int_0^w H_x dx = j\omega\varepsilon \int_0^w E_y dx$

TEM Wave along a Parallel-Plate Transmission Line (7)

$$cf) \int_{0}^{w} H_{x} dx = I(z), \quad \int_{0}^{w} E_{y} dx = E_{y}(z)w$$
$$E_{y}(z)d = -V(z)$$
$$\therefore \frac{d}{dz}I(z) = j\omega\varepsilon E_{y}(z)w$$
$$= j\omega\left(\varepsilon\frac{w}{d}\right)E_{y}(z)d = -j\omega\left(\varepsilon\frac{w}{d}\right)V(z)$$

i.e.
$$-\frac{d}{dz}I(z) = j\omega CV(z)$$
 — ②'

where $C = \varepsilon \frac{w}{d} (F/m)$: capacitance per unit length of the parallel-plate transmission lines

(1)' & (2)': Time-harmonic transmission line equations.

	Electromagnetic Theory 2	Seoul National Univ.	9
Radio Technology Lab.			

TEM Wave along a Parallel-Plate Transmission Line (8)

Combining ①' & ②'

$$\frac{d^2 V(z)}{dz^2} = -\omega^2 LCV(z)$$

$$\frac{d^2 I(z)}{dz^2} = -\omega^2 LCI(z)$$
Wave equations

The solutions of the above wave equations are waves propagating in the +z direction.

$$\begin{bmatrix} V(z) = V_0 e^{-j\beta z} \\ I(z) = I_0 e^{-j\beta z} \end{bmatrix}$$

where $\beta = \omega \sqrt{LC} = \omega \sqrt{\mu \frac{d}{w} \cdot \varepsilon \frac{w}{d}} = \omega \sqrt{\mu \varepsilon}$

TEM Wave along a Parallel-Plate Transmission Line (9)

$$Z_0 = \frac{V(z)}{I(z)} = \frac{V_0}{I_0} = \sqrt{\frac{L}{C}}$$
 (Ω)

The impedance at any location that looks toward an infinitely long transmission line

 \Rightarrow Characteristic impedance of the line

$$Z_0 = \frac{d}{w} \sqrt{\frac{\mu}{\varepsilon}} = \frac{d}{w} \eta$$

The propagating velocity

 $u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mu\varepsilon}} \quad (m/s)$

 $-\frac{dV}{dz} = j\omega LI$ $j\beta V_0 = j\omega LI_0$ $\frac{V_0}{I_0} = \frac{\omega L}{\beta} = \frac{\omega L}{\omega \sqrt{LC}} = \sqrt{\frac{L}{C}}$

Electromagnetic Theory 2

Seoul National Univ.

11

Radio Technology Lab.

Lossy Parallel-plate Transmission Lines (1)

Two loss mechanism dielectric loss ohmic loss
Dielectric loss : dielectric medium have a non-vanishing loss tangent
i.e. / permitivity &
(conductivity \sigma of the dielectric medium
(cf) Reminding
(cf) Reminding
$$C = \frac{Q}{V} = \frac{\oint \overline{D} \cdot d\overline{s}}{-\int_{L} \overline{E} \cdot d\overline{l}}$$
Integration over a surface enclosing the positive conductor
Line integration from the lower potential
 $= \frac{\oint e\overline{E} \cdot d\overline{s}}{-\int_{L} \overline{E} \cdot d\overline{l}}$

Lossy Parallel-plate Transmission Lines (2)

$$R = \frac{V}{I} = \frac{-\int_{L} \overline{E} \cdot d\overline{l}}{\oint \overline{J} \cdot d\overline{s}} = \frac{-\int_{L} \overline{E} \cdot d\overline{l}}{\oint \sigma \overline{E} \cdot d\overline{s}}$$
$$\therefore RC = \frac{C}{G} = \frac{\varepsilon}{\sigma}$$
$$\therefore G = \frac{\sigma}{\varepsilon}C = \frac{\sigma}{\varepsilon} \cdot \varepsilon \frac{w}{d} = \sigma \frac{w}{d}$$

: Conductance per unit length (dielectric medium)

Electromagnetic Theory 2

Seoul National Univ.

Radio Technology Lab.

Lossy Parallel-plate Pransmission Lines (3)

2 Ohmic loss

If the parallel-plate conductors have a very large but finite conductivity σ_{c_1} ohmic power will be dissipated in the plates. \Rightarrow Nonvanishing axial electric field $\hat{z}E_z$ at the plate surfaces (conduction current)

$$\overline{P}_{av} = \hat{y}p_{\sigma} = \frac{1}{2} \operatorname{Re}(\hat{z}E_{z} \times \hat{x}H_{x}^{*}) \quad : \text{ y component (loss)}$$

→ The average power per unit area dissipated in each of the conducting plates

Lossy Parallel-plate Pransmission Lines (4)

Consider the upper plate

$$J_{su} = H_x$$

Surface impedance of an imperfect conductor : Z_s

$$Z_s = \frac{L_t}{J_s}(\Omega)$$
 : The ratio of the tangential component of the electric field to the surface current density at the conductor surface

For upper plate

 $Z_{s} = \frac{E_{z}}{J_{su}} = \frac{E_{z}}{H_{x}} = \eta_{c} \quad : \text{ Intrinsic impedance of the plate conductor}$ cf) $\sigma_{c} >> 1, f >> 1 \Rightarrow \text{ only surface current flows}$

Electromagnetic Theory 2

Radio Technology Lab. Wireless / Channel / Microwave

Lossy Parallel-plate Pransmission Lines (5)

Intrinsic impedance of good conductor

$$Z_{s} = R_{s} + jX_{s} = (1+j)\sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}}$$

$$P_{\sigma} = \frac{1}{2} \operatorname{Re}(|J_{su}|^{2} Z_{s})$$

$$= \frac{1}{2} |J_{su}|^{2} R_{s} \quad (W/m^{2})$$

 \therefore The ohmic power dissipated in a unit length of the plate having a width w is wP_σ

Seoul National Univ.

 $E_z = J_{su}Z_s$

 $H_x = J_{su}$

16

Lossy Parallel-plate Pransmission Lines (6)

$$P_{\sigma} = wp_{\sigma} = \frac{1}{2}I^{2}\left(\frac{R_{s}}{w}\right) \quad (W/m) \Rightarrow \text{Power loss in upper plate only}$$

$$where \quad I = wJ_{su}$$

$$The power dissipated when a sinusioidal current of amplitude I flows through a resistance R_{s}/w$$

$$R = 2\left(\frac{R_{s}}{w}\right) = \frac{2}{w}\sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}} \quad (\Omega/m)$$

$$\downarrow \quad \text{Effective series resistance per unit length for both plates of a parallel-plate transmission line of width w}$$

h

Electromagneti	Thoony 2
Electromagneti	C Theory Z

```
Seoul National Univ.
```

17

Radio Technology Lab.

General Transmission Line Equations (1)

cf) Difference between transmission lines and ordinary electric networks

Electric Network	T.L.
Physical dimensions $\ll \lambda$	Physical dimension ~ λ
Discrete circuit elements	Distributed-parameter
(lumped parameters)	
No standing wave	Standing wave except under matched conditions

General Transmission Line Equations (2)

- Distributed parameters
 - For differential length ∆z
- Series $[R : resistance per unit length(for both conductors) (<math>\Omega/m$)
- element L : inductance per unit length (for both conductors) (H/m)
 - Shunt [G : conductance per unit length (S/m)
- element C : capacitance per unit length (F/m)

Electromagnetic Theory 2

Radio Technology Lab.

General Transmission Line Equations (3)

Kirchhoff's voltage law

$$v(z,t) - R\Delta zi(z,t) - L\Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z,t) = 0$$

$$-\frac{v(z + \Delta z,t) - v(z,t)}{\Delta z} = Ri(z,t) + L \frac{\partial i(z,t)}{\partial t}$$
let $\Delta z \rightarrow 0$ $-\frac{\partial v(z,t)}{\partial z} = Ri(z,t) + L \frac{\partial i(z,t)}{\partial t}$ (1)
Kirchhoff's current law at node N
 $i(z,t) - G\Delta zv(z + \Delta z,t) - C\Delta z \frac{\partial v(z + \Delta z,t)}{\partial t} - i(z + \Delta z,t) = 0$

let
$$\Delta z \to 0 - \frac{\partial i(z,t)}{\partial z} = Gv(z,t) + C \frac{\partial v(z,t)}{\partial t}$$
 (2)

(1), (2) : General transmission line equations.

Seoul National Univ.

General Transmission Line Equations (4)

For time harmonic,

$$v(z,t) = \operatorname{Re}\left[V(z)e^{j\omega t}\right]$$
$$i(z,t) = \operatorname{Re}\left[I(z)e^{j\omega t}\right]$$

cf) cosine reference

 $V(z),\ I(z)$: functions for the space coordinate z only, both may be complex

then,
$$-\frac{dV(z)}{dz} = (R + j\omega L)I(z)$$

 $-\frac{dI(z)}{dz} = (G + j\omega C)V(z)$ \Rightarrow Time-harmonic transmission line equations

Seoul National Univ.

21

Radio Technology Lab. Wireless / Channel / Microwave

Wave Characteristics on an Infinite T.L. (1)

From the coupled time-harmonic T.L. equations

$$\frac{d^{2}V(z)}{dz^{2}} = \gamma^{2}V(z) \quad ---- 1,$$

$$\frac{d^{2}I(z)}{dz^{2}} = \gamma^{2}I(z) \quad ----2,$$

where $\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$ (m^{-1})

- γ : propagation constant
- α : attenuation constant (Np/m)
- β : phase constant (rad/m)

Wave Characteristics on an Infinite T.L. (2)

The solutions of 1' and 2'

$$V(z) = V^{+}(z) + V^{-}(z) = V_{0}^{+}e^{-\varkappa} + V_{0}^{-}e^{\varkappa}$$
$$I(z) = I^{+}(z) + I^{-}(z) = I_{0}^{+}e^{-\varkappa} + I_{0}^{-}e^{\varkappa}$$

wave amplitudes $(V_0^+, I_0^+)(V_0^-, I_0^-)$

$$\frac{V_0^+}{I_0^+} = -\frac{V_0^-}{I_0^-} = \frac{R + j\omega L}{\gamma}$$

For an infinite line (semi-infinite line with the source at the left end)

 $e^{\pi} \rightarrow$ vanishes. (no reflected waves) only waves traveling in the +z direction

Electromagnetic Theory 2	Seoul National Univ.

Radio Technology Lab. Wireless / Channel / Microwave

Wave Characteristics on an Infinite T.L. (3)

$$V(z) = V^{+}(z) = V_{0}^{+}e^{-\gamma z}$$

$$I(z) = I^{+}(z) = I_{0}^{+}e^{-\gamma z}$$

$$\frac{Z_{0} = \frac{V(z)}{I(z)} = \frac{V_{0}^{+}}{I_{0}^{+}} = \frac{R + j\omega L}{\gamma} = \frac{\gamma}{G + j\omega C} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

$$\downarrow \quad \text{Characteristic impedance}$$

$$; \text{ independent of } z$$

$$\text{cf) uniform plane waves in a lossy medium}$$

$$\gamma = \alpha + j\beta = \sqrt{(\omega\mu'' + j\omega\mu')(\omega\varepsilon'' + j\omega\varepsilon')}$$

$$\eta_{c} = \sqrt{\frac{\mu'' + j\mu'}{\varepsilon'' + j\varepsilon'}}$$

24

Wave Characteristics on an Infinite T.L. (4)

- 1. Lossless line
 - a. Propagation constant

$$\begin{aligned} \gamma &= \alpha + j\beta = j\omega\sqrt{LC} \\ \alpha &= 0 \\ \beta &= \omega\sqrt{LC} \end{aligned} (A linear function of ω)$$

b. Phase velocity

$$u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$
 (Non-dispersive)

Electromagnetic Theory 2

Seoul National Univ.

25

Radio Technology Lab. Wireless / Channel / Microwave

Wave Characteristics on an Infinite T.L. (5)

c. Characteristic impedance

$$Z_0 = R_0 + jX_0 = \sqrt{\frac{L}{C}}$$
$$R_0 = \sqrt{\frac{L}{C}} \quad \text{(constant)}$$

$$X_0 = 0$$
 (Non-reactive line)

Wave Characteristics on an Infinite T.L. (6)

- 2. Low-loss line
 - a. Propagation constant

Propagation constant

$$\gamma = \alpha + j\beta = j\omega\sqrt{LC} \left(1 + \frac{R}{j\omega L}\right)^{1/2} \left(1 + \frac{G}{j\omega C}\right)^{1/2}$$

$$\approx j\omega\sqrt{LC} \left(1 + \frac{R}{2j\omega L}\right) \left(1 + \frac{G}{2j\omega C}\right)$$

$$\approx j\omega\sqrt{LC} \left[1 + \frac{1}{2j\omega} \left(\frac{R}{L} + \frac{G}{C}\right)\right]$$

$$\therefore \alpha \approx \frac{1}{2} \left(R\sqrt{\frac{C}{L}} + G\sqrt{\frac{L}{C}}\right), \quad \beta \approx \omega\sqrt{LC}$$

(Approximately a linear function of ω)

Electromagnetic Theory 2

Seoul National Univ.

27

Radio Technology Lab. Wireless / Channel / Microwave

Wave Characteristics on an Infinite T.L. (7)

b. Phase velocity

$$u_p = \frac{\omega}{\beta} \cong \frac{1}{\sqrt{LC}}$$
 (Non-dispersive)

c. Characteristic impedance

Radio Technology Lab.

Wave Characteristics on an Infinite T.L. (8)

- 3. Distortionless line $\left(\frac{R}{L} = \frac{G}{C}\right)$
 - a. Propagation constant

$$\gamma = \alpha + j\beta = \sqrt{\left(R + j\omega L\right)\left(\frac{RC}{L} + j\omega C\right)}$$
$$= \sqrt{\frac{C}{L}}\left(R + j\omega L\right)$$
$$\therefore \alpha \equiv R\sqrt{\frac{C}{L}}, \quad \beta = \omega\sqrt{LC} \quad \text{(A linear function of }\omega\text{)}$$

b. Phase velocity

$$u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$
 (constant)

Electromagnetic Theory 2

Seoul National Univ.

29

Radio Technology Lab.

Wave Characteristics on an Infinite T.L. (9)

c. Characteristic impedance

$$Z_{0} = R_{0} + jX_{0} = \sqrt{\frac{R + j\omega L}{RC}} = \sqrt{\frac{L}{C}}$$
$$R_{0} = \sqrt{\frac{L}{C}} \qquad \text{(constant)}$$
$$X_{0} = 0$$

Wave Characteristics on Finite Transmission Line (1)

Wave Characteristics on Finite Transmission Line (2)

General solutions for the time-harmonic one-dimensional Helmholtz equations

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z} \qquad \text{where} \quad \frac{V_0^+}{I_0^+} = -\frac{V_0^-}{I_0^-} = Z_0$$

(cf) - circuit theory matched condition $(Z_g = Z_L^*) \rightarrow$ maximum transfer of power

- T.L. line is matched when $Z_L = Z_0$. \rightarrow no e^{π} term

Wave Characteristics on Finite Transmission Line (3)

Four unknowns

 $V_0^+, I_0^+, V_0^-, I_0^-$: from the wave equation solutions

cf) not independent because of the constraint by the relations at z=0 and z=I

Let
$$z=I$$

 $\begin{pmatrix} V_L = V_0^+ e^{-\gamma l} + V_0^- e^{\gamma l} \\ I_L = \frac{V_0^+}{Z_0} e^{-\gamma l} - \frac{V_0^-}{Z_0} e^{\gamma l} \Rightarrow \begin{pmatrix} V_0^+ = \frac{1}{2} (V_L + I_L Z_0) e^{\gamma l} \\ V_0^- = \frac{1}{2} (V_L - I_L Z_0) e^{-\gamma l} \end{pmatrix}$

and $\frac{V_L}{I_L} = Z_L$

Electromagnetic Theory 2

Seoul National Univ.

33

Radio Technology Lab.

Wave Characteristics on Finite Transmission Line (4)

$$: V(z) = \frac{I_L}{2} \Big[(Z_L + Z_0) e^{\gamma(l-z)} + (Z_L - Z_0) e^{-\gamma(l-z)} \Big]$$
$$I(z) = \frac{I_L}{2Z_0} \Big[(Z_L + Z_0) e^{\gamma(l-z)} - (Z_L - Z_0) e^{-\gamma(l-z)} \Big]$$

New variable z' = l - z: distance measured backward from the load

$$V(z') = \frac{I_L}{2} \left[(Z_L + Z_0) e^{\gamma z'} + (Z_L - Z_0) e^{-\gamma z'} \right]$$
$$I(z') = \frac{I_L}{2Z_0} \left[(Z_L + Z_0) e^{\gamma z'} - (Z_L - Z_0) e^{-\gamma z'} \right]$$

Wave Characteristics on Finite Transmission Line (5)

In order to simplify the above equations, using hyperbolic functions

$$e^{\gamma z'} + e^{-\gamma z'} = 2\cosh\gamma z' \qquad e^{\gamma z'} - e^{-\gamma z'} = 2\sinh\gamma z'$$

$$\therefore V(z') = I_{z} \left(Z_{z} \cosh\gamma z' + Z_{z} \sinh\gamma z' \right)$$

$$I(z') = \frac{I_L}{Z_0} \left(Z_L \sinh \gamma z' + Z_0 \sinh \gamma z' \right)$$

 Two equations can provide the voltage and current at any point along a transmission line in terms of I_L, Z_L, γ and Z₀.

Electromagnetic Theory 2

Seoul National Univ.

Radio Technology Lab. Wireless / Channel / Microwave

Wave Characteristics on Finite Transmission Line (6)

$$\frac{Z(z')}{I(z')} = \frac{V(z')}{I(z')} = Z_0 \frac{Z_L \cosh \gamma z' + Z_0 \sinh \gamma z'}{Z_L \sinh \gamma z' + Z_0 \cosh \gamma z'}$$
$$= Z_0 \frac{Z_L + Z_0 \tanh \gamma z'}{Z_0 + Z_L \tanh \gamma z'}$$

 Impedance when look toward the load end of the line at a distance z' from the load

Wave Characteristics on Finite Transmission Line (7)

Radio Technology Lab.

Wave Characteristics on Finite Transmission Line (8)

The average power delivered to the input terminals of the line

$$\left(P_{av}\right)_{i} = \frac{1}{2} \operatorname{Re}\left[V_{i}I_{i}^{*}\right]_{z=0,z'=l}$$

The average power delivered to the load

$$(P_{av})_{L} = \frac{1}{2} \operatorname{Re} \left[V_{L} I_{L}^{*} \right]_{z=l,z'=0} = \frac{1}{2} \left| \frac{V_{L}}{Z_{L}} \right|^{2} R_{L} = \frac{1}{2} \left| I_{L} \right|^{2} R_{L}$$

For a lossless line

$$\left(P_{av}\right)_{i}=\left(P_{av}\right)_{L}$$

Wave Characteristics on Finite Transmission Line (9)

If
$$Z_L = Z_0$$
, $Z(z') = Z_0$
 $\therefore V(z) = (I_L Z_0 e^{\gamma}) e^{-\gamma z} = V_i e^{-\gamma z}$
 $I(z) = (I_L e^{\gamma}) e^{-\gamma z} = I_i e^{-\gamma z}$ Waves traveling direction

 \Rightarrow No reflected waves

Electromagnetic Theory 2

Seoul National Univ.

39

in +z

Radio Technology Lab.

Transmission Line as Circuit Elements (1)

Transmission line having inductive or capacitive impedance

 \Rightarrow impedance matching between a generator and a load.

Frequency band : 300 MHz ~ 3GHz

cf) f < 300MHz : line's physical dimension is too long

f > 3GHz : waveguide is preferred

For lossless T.L.

 $\gamma = j\beta$, $Z_0 = R_0$, $\tanh \gamma l = \tanh(j\beta l) = j \tan \beta l$

Input impedance at distance l from the load(Z_L) end

$$Z_i = R_0 \frac{Z_L + jR_0 \tan \beta l}{R_0 + jZ_L \tan \beta l}$$

Impedance transformations by lossless transmission line

Transmission Line as Circuit Elements (2)

- Special cases
 - 1. Open-circuit termination $(Z_L \rightarrow \infty)$

$$Z_{i0} = jX_{i0} = -j\frac{R_0}{\tan\beta l} = -jR_0\cot\beta l \quad cf) \quad \beta l = \frac{2\pi}{\lambda}l$$

Electromagnetic Theory 2

Seoul National Univ.

41

Radio Technology Lab.

Transmission Line as Circuit Elements (3)

 X_{i0} can be either capacitive or inductive depending on βl .

If
$$\beta l \ll 1$$
, $\tan \beta l \cong \beta l$

$$\therefore Z_{i0} = jX_{i0} \cong -j\frac{R_0}{\beta l} = -j\frac{\sqrt{L/C}}{\omega\sqrt{LCl}} = -j\frac{1}{\omega Cl}$$

; Impedance of a capacitance of CI farads

In practice, it is impossible to have an infinite load impedance at the end of a transmission line.

 \Rightarrow At high freq. \Rightarrow coupling and radiation

Transmission Line as Circuit Elements (4)

2. Short circuit termination $(Z_L = 0)$

 $Z_{is} = jX_{is} = jR_0 \tan \beta l$

 $\beta l << 1$ $Z_{is} = j\omega L l \qquad : \text{ Impedance of inductance}$ Electromagnetic Theory 2 Seoul National Univ. 43

Radio Technology Lab. Wireless / Channel / Microwave

Transmission Line as Circuit Elements (5)

3. Quarter-wave section :
$$\left(l = \frac{\lambda}{4}, \beta l = \frac{\pi}{2}\right)$$

 $l = (2n-1)\frac{\lambda}{4}$ $(n = 1, 2, 3, \cdots)$
 $\beta l = \frac{2\pi}{\lambda}(2n-1)\frac{\lambda}{4} = (2n-1)\frac{\pi}{2}$
 $\tan \beta l = \pm \infty$
 $Z_i = \frac{R_0^2}{Z_L}$ Quarter wave line \Rightarrow impedance inverter.
quarter wave transformer.

Transmission Line as Circuit Elements (6)

4. Half-wave section
$$\left(l = \frac{\lambda}{2}, \beta l = \pi\right)$$

 $l = n \cdot \frac{\lambda}{2}, \beta l = n\pi$
 $\tan \beta l = 0$
 $\therefore Z_i = Z_L$ (Half-wave line)
 \longrightarrow Only for lossless.
For lossy case, this properties are valid only for $Z_L = Z_0$

cf) The characteristic impedance and the propagation constant Open-circuited line, $Z_L \rightarrow \infty$: $Z_{io} = Z_0 \operatorname{coth} \mathcal{A}$ Short-circuited line, $Z_L \rightarrow 0$: $Z_{is} = Z_0 \tanh \mathcal{A}$

Electromagnetic Theory 2

Seoul National Univ.

45

Radio Technology Lab.

Transmission Line as Circuit Elements (7)

$$\therefore Z_0 = \sqrt{Z_{io} Z_{is}}$$
$$\gamma = \frac{1}{l} \tanh^{-1} \sqrt{\frac{Z_{is}}{Z_{io}}} \quad (m^{-1})$$

5. Lossy line with a short-circuit termination

 $Z_{is} = Z_0 \tanh \gamma l = Z_0 \frac{\sinh(\alpha + j\beta)l}{\cosh(\alpha + j\beta)l}$

$$= Z_0 \frac{\sinh \alpha l \cos \beta l + j \cosh \alpha l \sin \beta l}{\cosh \alpha l \cos \beta l + j \sinh \alpha l \sin \beta l}$$

Transmission Line as Circuit Elements (8)

For
$$l = n \cdot \frac{\lambda}{2} \Rightarrow \beta l = n\pi$$
, $\sin \beta l = 0$, $\cos \beta l = (-1)^n$
 $\therefore Z_{is} = Z_0 \tanh \alpha l \cong Z_0 (\alpha l)$ assuming $\alpha l << 1$
 $\tanh \alpha l \cong \alpha l$
: Series resonant circuit condition

For $l = n \cdot \frac{\lambda}{4} \Longrightarrow \beta l = \frac{n\pi}{2}$, (n = odd number) $\cos \beta l = 0$ $\therefore Z_{is} = \frac{Z_0}{\tanh \alpha l} \cong \frac{Z_0}{\alpha l}$: Very large

: Parallel-resonant circuit condition

Electromagnetic Theory 2

Seoul National Univ.

47

Radio Technology Lab. Wireless / Channel / Microwave

Reference & Homework

Ref. Microwave engineering by David M. Pozar page 330-336

Lines with Resistive Termination (1)

 $Z_L \neq Z_0$ both incident and reflected wave exist

$$V(z) = \frac{I_L}{2} \Big[(Z_L + Z_0) e^{\gamma(l-z)} + (Z_L - Z_0) e^{-\gamma(l-z)} \Big]$$
$$I(z) = \frac{I_L}{2Z_0} \Big[(Z_L + Z_0) e^{\gamma(l-z)} - (Z_L - Z_0) e^{-\gamma(l-z)} \Big]$$
$$\Rightarrow V(z') = \frac{I_L}{2} \Big[(Z_L + Z_0) e^{\gamma z'} + (Z_L - Z_0) e^{-\gamma z'} \Big]$$

$$I(z') = \frac{I_L}{2Z_0} \left[(Z_L + Z_0) e^{\gamma z'} - (Z_L - Z_0) e^{-\gamma z'} \right]$$

where $z' = l - z \implies e^{z'}$: right traveling wave (incident wave) $e^{-\gamma z'}$: left traveling wave (reflected wave)

> **Seoul National Univ.** Electromagnetic Theory 2

Radio Technology Lab.

Lines with Resistive Termination(2)

$$V(z') = \frac{I_L}{2} (Z_L + Z_0) e^{\gamma z'} \left[1 + \frac{Z_L - Z_0}{Z_L + Z_0} e^{-2\gamma z'} \right]$$
$$= \frac{I_L}{2} (Z_L + Z_0) e^{\gamma z'} \left[1 + \Gamma e^{-2\gamma z'} \right]$$

where $\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = |\Gamma| e^{j\theta_{\Gamma}}$: Voltage reflection coefficient of the load impedance Z_L

$$I(z') = \frac{I_L}{2Z_0} (Z_L + Z_0) e^{\gamma z'} \left[1 - \Gamma e^{-2\gamma z'} \right]$$

cf) current reflection coefficient of the load impedance Z₁

$$\frac{I_0^-}{I_0^+} = -\frac{V_0^-}{V_0^+} = -\Gamma$$

Radio Technology Lab.

Lines with Resistive Termination(3)

• For a lossless transmission line, $\gamma = j\beta$

$$V(z') = \frac{I_L}{2} (Z_L + R_0) e^{j\beta z'} \left[1 + \Gamma e^{-j2\beta z'} \right]$$
$$= \frac{I_L}{2} (Z_L + R_0) e^{j\beta z'} \left[1 + |\Gamma| e^{j(\theta_{\Gamma} - 2\beta z')} \right]$$
$$I(z') = \frac{I_L}{2R_0} (Z_L + R_0) e^{j\beta z'} \left[1 - |\Gamma| e^{j(\theta_{\Gamma} - 2\beta z')} \right]$$

• From the expression using hyperbolic functions

 $V(z') = I_L(Z_L \cosh \gamma z' + Z_0 \sinh \gamma z')$ $I(z') = \frac{I_L}{Z_0}(Z_L \sinh \gamma z' + Z_0 \cosh \gamma z')$

Electromagnetic Theory 2

Seoul National Univ.

51

Radio Technology Lab.

Lines with Resistive Termination(4)

• For lossless line

 $\gamma = j\beta$, $V_L = I_L Z_L$, $\cosh j\theta = \cos \theta$, $\sinh j\theta = j\sin \theta$

$$V(z') = V_L \cos \beta z' + jI_L R_0 \sin \beta z'$$
$$I(z') = I_L \cos \beta z' + j \frac{V_L}{R_0} \sin \beta z'$$

• If
$$Z_L = R_L$$
, $V_L = I_L R_L$
 $|V(z')| = V_L \sqrt{\cos^2 \beta z' + \left(\frac{R_0}{R_L}\right)^2 \sin^2 \beta z'}$
 $|I(z')| = I_L \sqrt{\cos^2 \beta z' + \left(\frac{R_L}{R_0}\right)^2 \sin^2 \beta z'}$, where $R_0 = \sqrt{\frac{L}{C}}$

Radio Technology Lab.

Lines with Resistive Termination(5)

Standing-wave ratio (SWR)

$$s = \frac{|V_{\max}|}{|V_{\min}|} = \frac{1+|\Gamma|}{1-|\Gamma|}$$
 $|\Gamma| = \frac{s-1}{s+1}$

• For a lossless transmission line

$$\begin{split} \Gamma &= 0, \ s = 1 \quad \text{when } Z_L = Z_0 \quad \text{(Matched load)} \\ \Gamma &= -1, \ s \to \infty \quad \text{when } Z_L = 0 \quad \text{(Short circuit)} \\ \Gamma &= +1, \ s \to \infty \quad \text{when } Z_L \to \infty \quad \text{(Open circuit)} \end{split}$$

cf)
$$|V_{\text{max}}|$$
 and $|I_{\text{min}}|$ occur when
 $\theta_{\Gamma} - 2\beta z'_{M} = -2n\pi, \quad n = 0, 1, 2, ...$
 $|V_{\text{min}}|$ and $|I_{\text{max}}|$ occur together when
 $\theta_{\Gamma} - 2\beta z'_{m} = -(2n+1)\pi, \quad n = 0, 1, 2, ...$

Electromagnetic Theory 2

Seoul National Univ.

53

Radio Technology Lab.

Lines with Resistive Termination(6)

cf) For resistive terminations on a lossless line, $Z_{L} = R_{L}, \ Z_{0} = R_{0}, \ \Gamma = \frac{R_{L} - R_{0}}{R_{L} + R_{0}}$ (1) $R_{L} > R_{0}, \ \Gamma > 0$ and real $(\theta_{\Gamma} = 0)$ (2) $R_{L} < R_{0}, \ \Gamma < 0$ and real $(\theta_{\Gamma} = -\pi)$ $\int_{|I(z')| \text{ for } R_{L} > R_{0}} \int_{|I(z')| \text{ for } R_{L} < R_{0}} \int_{|V(z')| \text{ for } R_{0} < R_{0}} \int_{|V(z')| \text{ for } R_{0} < R$

Lines with Resistive Termination(7)

Cf)
$$R_L > R_0$$
: $|V_{\max}| = V_L$, $|V_{\min}| = V_L \frac{R_0}{R_L}$ $\therefore s = \frac{R_L}{R_0}$
 $R_L < R_0$: $|V_{\max}| = V_L \frac{R_0}{R_L}$, $|V_{\min}| = V_L$ $\therefore s = \frac{R_0}{R_L}$

Seoul National Univ.

55

Radio Technology Lab. Wireless / Channel / Microwave

Lines With Arbitrary Termination(1)

Lines With Arbitrary Termination

Let $Z_L = R_L + jX_L$

- Neither a voltage maximum nor a voltage minimum appears at the load (at z'=0)
- If we let the standing wave continue by an extra distance, it will reach a minimum

Lines With Arbitrary Termination(2)

 $Z_m + l_m = \frac{\lambda}{2}$

$$Z_{L} = Z_{i} \Big|_{at \ z'=0 \atop onto \ the \ right}} = R_{i} + jX_{i} = R_{0} \frac{R_{m} + jR_{0} \tan \beta l_{m}}{R_{0} + jR_{m} \tan \beta l_{m}}$$
1. Find $|\Gamma|$ from s. use $|\Gamma| = \frac{s-1}{s+1}$
2. Find θ_{Γ} from z'_{m} . use $\theta_{\Gamma} = 2\beta z_{m}' - \pi$ for $n = 0$.
3. Find Z_{L} , which is the ratio of $\frac{V(z')}{I(z')}$ at $z' = 0$.
$$Z_{L} = R_{L} + jX_{L} = R_{0} \frac{1 + |\Gamma| e^{j\theta_{\Gamma}}}{1 - |\Gamma| e^{j\theta_{\Gamma}}}$$

$$R_{m} = \frac{R_{0}}{s}$$

Electromagnetic Theory 2

Seoul National Univ.

Radio Technology Lab.

Transmission Line Circuits (1)

Transmission Line Circuits (2)

put (2) and (3) into (1)

$$\frac{I_L}{2}(Z_L + Z_0)e^{\gamma l} \left[1 + \Gamma e^{-2\gamma l}\right] = V_g - \frac{I_L Z_g}{2Z_0}(Z_L + Z_0)e^{\gamma l} \left[1 - \Gamma e^{-2\gamma l}\right]$$

$$\frac{I_L}{2}(Z_L + Z_0)e^{\gamma l} = \frac{Z_0 V_g}{Z_0 + Z_g} \frac{1}{\left[1 - \Gamma_g \Gamma e^{-2\gamma l}\right]}$$
where $\Gamma_g = \frac{Z_g - Z_0}{Z_g + Z_0}$: Voltage reflection coefficient
[*H.W*] Derive the above expression.

$$V(z') = \frac{Z_0 V_g}{Z_0 + Z_g} e^{-\gamma z} (\frac{1 + \Gamma e^{-2\gamma z'}}{1 - \Gamma_g \Gamma e^{-2\gamma l}})$$
$$I(z') = \frac{V_g}{Z_0 + Z_g} e^{-\gamma z} (\frac{1 - \Gamma e^{-2\gamma z'}}{1 - \Gamma_g \Gamma e^{-2\gamma l}})$$

Electromagnetic Theory 2

Seoul National Univ.

Radio Technology Lab.

Transmission Line Circuits (3)

Furthermore

$$V(z') = \frac{Z_0 V_g}{Z_0 + Z_g} e^{-\gamma z} (1 + \Gamma e^{-2\gamma z'}) (1 - \Gamma_g \Gamma e^{-2\gamma l})^{-1}$$

= $\frac{Z_0 V_g}{Z_0 + Z_g} e^{-\gamma z} (1 + \Gamma e^{-2\gamma z'}) (1 + \Gamma_g \Gamma e^{-2\gamma l} + \Gamma_g^2 \Gamma^2 e^{-4\gamma l} + \cdots)$
= $\frac{Z_0 V_g}{Z_0 + Z_g} \Big[e^{-\gamma z} + (\Gamma e^{-\gamma l}) e^{-\gamma z'} + \Gamma_g (\Gamma e^{-2\gamma l}) e^{-\gamma z} + \cdots \Big]$
= $V_1^+ + V_1^- + V_2^+ + V_2^- + \cdots$

Transmission Line Circuits (4)

where
$$V_1^+ = \frac{Z_0 V_g}{Z_0 + Z_g} e^{-\gamma z} = V_M e^{-\gamma z}$$

 $V_1^- = \Gamma(V_M e^{-\gamma l}) e^{-\gamma z'}$
 $V_2^+ = \Gamma_g (\Gamma V_M e^{-2\gamma l}) e^{-\gamma z}$
 \vdots
and $V_M = \frac{Z_0}{Z_0 + Z_g} V_g$

Electromagnetic Theory 2

Seoul National Univ.

61

Radio Technology Lab.

Transmission Line Circuits (5)

① V_1^+ : the initial wave traveling in the +*z*-direction.

cf) Before this wave reaches the load impedance

it sees Z_0 of the line as if the line were infinitely long.

② When V_1^+ reaches Z_L at z = l, it is reflected because of impedance mismatch \rightarrow reflected wave $V_1^- : \Gamma(V_M e^{-\gamma l}) e^{-\gamma z'}$ traveling in the -z-direction.

Radio Technology Lab.

Transmission Line Circuits (6)

- (3) As the wave V_1^- returns to the generator at Z = 0, it is reflected for $Z_g \neq Z_0 \Longrightarrow V_2^+ = \Gamma_g (\Gamma V_M e^{-2\gamma l})$ traveling in the +z-direction.
- ④ This process continues indefinitely with reflections at both ends, and the resulting standing wave V(z') is the sum of all the waves traveling in both directions. → Steady state, single frequency, time harmonic sources and signals.

Transients on Transmission Lines (1)

Transient Conditions => reactance X, wave length λ , wave number k, and phase constant β would lose their meaning.

Examples of non time harmonic and

non steady-state signals are digital pulse signals in computer networks and sudden surges in power and telephone lines.

- Transient behavior of lossless transmission lines.

R=0, G=0

Characteristic impedance, Z_0

Propagation velocity, u

$$Z_0 = R_0 = \sqrt{\frac{L}{C}}$$
$$u = \frac{1}{\sqrt{LC}}$$

Electromagnetic Theory 2

Seoul National Univ.

65

Radio Technology Lab.

Transients on Transmission Lines (2)

- Magnitude of voltage wave $V_1^+ = \frac{R_0}{R_0 + R_g} V_0$

- Voltage wave travels down the line in the +z-direction with a velocity $u = 1/\sqrt{LC}$

- Magnitude of the current wave
$$I_1^+ = \frac{V_1^+}{R_0} = \frac{V_0}{R_0 + R_g}$$

Transients on Transmission Lines (3)

- Plot of the voltage across at $z = z_1$, as a function of time

 \Rightarrow Delayed unit step functions at $t = z_1 / u$.

- When the voltage and current wave reach the termination at z = l \Rightarrow no reflected waves.($:: \Gamma = 0$)
- Steady state \Rightarrow the entire line is charged to a voltage equal to V_1^+ .

Electromagnetic	Theory	2
LIECTIONAGINETIC		۷

Seoul National Univ.

67

Radio Technology Lab.

Transients on Transmission Lines (4)

Example)

- $-R_o \neq Z_g, R_o \neq Z_L(R_L)$
- Switch is closed at $t = 0 \implies$ the d c source sends a voltge wave of magnitude

$$V_1^+ = \frac{R_0}{R_0 + R_g} V_0 \text{ in the } + z \text{ direction with a velocity } u = \frac{1}{\sqrt{LC}}$$

- At $t = T = \frac{l}{u}$, this wave reaches the load end $z = l$.
$$R_L \neq R_0 \Rightarrow \text{ reflected wave travels in the } -z \text{ direction}$$
with a magnitude $V_1^- = \Gamma_L V_1^+$
$$\Gamma_L = \frac{R_L - R_0}{R_L + R_0}$$

Radio Technology Lab. Wireless / Channel / Microwave

Transients on Transmission Lines (5)

- At t = 2T, this reflected wave reaches the input end where it is reflected by $R_g \neq R_0$

- New voltage wave having a magnitude V_2^+ .

$$V_2^+ = \Gamma_g V_1^- = \Gamma_g \Gamma_L V_1^+ \text{ where } \Gamma_g = \frac{R_g - R_0}{R_g + R_0}$$

- This process will go on indefinitely

Electromagnetic Theory 2

Seoul National Univ.

69

Radio Technology Lab.

Transients on Transmission Lines (6)

cf) First: Some of the reflected waves traveling in either direction may have a negative amplitude

Second: except for an open circuit or a short circuit

cf) For
$$R_L = 3R_0(\Gamma_L = \frac{1}{2}), R_g = 2R_0(\Gamma_g = \frac{1}{3})$$

 $\Gamma_{L}, \Gamma_{L} < 1$

Transients on Transmission Lines (7)

The voltage and current at any particular location on the line in any particular time interval are just the algebraic sums $(V_1^+ + V_1^- + V_2^+ + V_2^- + \cdots)$ and $(I_1^+ + I_1^- + I_2^+ + I_2^- + \cdots)$, respectively

Ultimate value of the voltage across the load,

$$\begin{split} V_{L} &= V(l) = V_{1}^{+} + V_{1}^{-} + V_{2}^{+} + V_{2}^{-} + V_{3}^{+} + \cdots \\ &= V_{1}^{+} (1 + \Gamma_{L} + \Gamma_{g} \Gamma_{L} + \Gamma_{g} \Gamma_{L}^{-2} + \Gamma_{g}^{-2} \Gamma_{L}^{-2} + \Gamma_{g}^{-2} \Gamma_{L}^{-3} + \cdots) \\ &= V_{1}^{+} [(1 + \Gamma_{g} \Gamma_{L} + \Gamma_{g}^{-2} \Gamma_{L}^{-2} + \cdots) + \Gamma_{L} (1 + \Gamma_{g} \Gamma_{L} + \Gamma_{g}^{-2} \Gamma_{L}^{-2} + \cdots)] \\ &= V_{1}^{+} [(\frac{1}{1 - \Gamma_{g}} \Gamma_{L}) + (\frac{\Gamma_{L}}{1 - \Gamma_{g}} \Gamma_{L})] \\ &= V_{1}^{+} (\frac{1 + \Gamma_{L}}{1 - \Gamma_{g}} \Gamma_{L}) \end{split}$$

Electromagnetic Theory 2

Radio Technology Lab.

Homework

Seoul National Univ.

The Smith Chart (1)

Smith chart

cf) – input impedance

$$Z_{in} = R_0 \frac{Z_L + jR_0 \tan\beta l}{R_0 + jZ_L \tan\beta l}$$

- reflection coef.

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \left| \Gamma \right| e^{j\theta_{\Gamma}}$$

- load impedance

$$Z_{L} = R_{L} + jX_{L} = R_{0} \frac{1 + \left|\Gamma\right| e^{j\theta_{\Gamma}}}{1 - \left|\Gamma\right| e^{j\theta_{\Gamma}}}$$

Electromagnetic Theory 2

Seoul National Univ.

73

Radio Technology Lab.

The Smith Chart (2)

Manipulations of complex numbers

⇒ The best known and most widely used graphical chart is the <u>smith chart</u> devised By P.H. Smith

Simth chart: A graphical plot of normalized resistance and reactance functions in the reflection coefficient plane

$$\Gamma = \frac{Z_L - R_0}{Z_L + R_0} = \left| \Gamma \right| e^{j\theta_{\Gamma}}$$

The Smith Chart (3)

Let the load impedance Z_L be normalized with respect to $R_0 = \sqrt{\frac{L}{C}}$

 $z_{L} = \frac{Z_{L}}{R_{0}} = \frac{R_{L}}{R_{0}} + j\frac{X_{L}}{R_{0}} = r + jx \text{ (Dimensionless)}, \text{ where } \begin{pmatrix} r : \text{normalized resistance} \\ x : \text{normalized reactance} \\ r = \Gamma_{r} + j\Gamma_{i} = \frac{z_{L} - 1}{z_{L} + 1}, \text{ where } \begin{pmatrix} \Gamma_{r} : \text{real part of } \Gamma \\ \Gamma_{i} : \text{imaginary part of } \Gamma \\ \vdots \\ z_{L} = \frac{1 + \Gamma}{1 - \Gamma} = \frac{1 + |\Gamma| e^{j\theta_{\Gamma}}}{1 - |\Gamma| e^{j\theta_{\Gamma}}} \\ \text{or } r + jx = \frac{(1 + \Gamma_{r}) + j\Gamma_{i}}{(1 - \Gamma_{r}) - j\Gamma_{i}} \end{pmatrix}$

i.e.
$$r = \frac{1 - \Gamma_r^2 - \Gamma_i^2}{(1 - \Gamma_r)^2 + \Gamma_i^2}, \ x = \frac{2\Gamma_i}{(1 - \Gamma_r)^2 + \Gamma_i^2}$$

Electromagnetic Theory 2

Seoul National Univ.

75

Radio Technology Lab. Wireless / Channel / Microwave

The Smith Chart (4)

For a given value of r and x, their locus can be plotted in the Γ_r and Γ_i plane.

 $\begin{pmatrix} \Gamma_r : x \text{ axis} \\ \Gamma_i : y \text{ axis} \end{pmatrix}$ i.e. $\left(\Gamma_r - \frac{r}{1+r} \right)^2 + \Gamma_i^2 = \left(\frac{1}{1+r} \right)^2$ \Rightarrow Equation for a circle with a radius $\frac{1}{1+r}$ and a center at $\Gamma_r = \frac{r}{1+r}$ and $\Gamma_i = 0$.

 $|\Gamma| \le 1$ for a lossless line \Rightarrow that part of the graph lying within unit circle is meaningful.

The Smith Chart (5)

Radio Technology Lab.

The Smith Chart (6)

* Properties of the r-circles are,

- 1. The centers of all r-circles lie on the Γ_r -axis.
- 2. The r = 0 circle, having a unity radius and centered at the origin, is the largest.
- 3. The r-circles become progressively smaller as r increase from 0 toward ∞ , ending at the ($\Gamma_r = 1, \Gamma_i = 0$) point for open circuit.
- 4. All r-circles pass through the $(\Gamma_r = 1, \Gamma_i = 0)$ point.

$$x = \frac{2\Gamma_i}{(1 - \Gamma_r)^2 + \Gamma_i^2} \quad \Rightarrow (\Gamma_r - 1)^2 + \left(\Gamma_i - \frac{1}{x}\right)^2 = \left(\frac{1}{x}\right)^2$$

This is the equation for a circle having a radius $\frac{1}{|x|}$ and centered at different positions

on the $\Gamma_r = 1$ and $\Gamma_i = \frac{1}{x}$.

The Smith Chart (7)

- * Properties of x-circles.
 - 1. The centers of all x-circles line on the $\Gamma_r = 1$ line; those for x>0 (inductive reactance) lie above the Γ_r -axis and those for x<0 (capacitive reactance) lie below the Γ_r -axis.
 - 2. The x=0 circle becom0es the Γ_r -axis. (i.e. $\Gamma_i = 0$)
 - 3. The x-circle becomes progressively smaller as |x| increase from 0 toward ∞ , ending at the ($\Gamma_r = 1, \Gamma_i = 0$) point for open circuit. $\Gamma = 1$
 - 4. All x-circles pass through the ($\Gamma_r = 1, \Gamma_i = 0$) point.

Electromagnetic Theory 2	Seoul National Univ.	79

Radio Technology Lab.

The Smith Chart (8)

- cf) A smith chart is a chart of r- and x- circles in the $\Gamma_r \Gamma_i$ plane for $|\Gamma| \le 1$.
 - The r-circle and x-circle are everywhere orthogonal to one another.

[H.W.] prove this.

- The intersection point of an r-circle and x-circle defines a point that represents a normalized load impedance $z_L = r + jx$.

 \Rightarrow Then $Z_{\rm L} = R_0(r+jx)$.

The Smith Chart (9)

* $|\Gamma|$ Circle

The smith chart can be marked with polar coordinates.

= i.e. every point in the Γ -plane is specified by

a magnitude $|\Gamma|$ and a phase angle θ_{Γ} .

- cf) $-\Gamma$ -cirlces are centered at the origin.
 - The fractional distance from the center to the point: $|\Gamma|$
 - The angle that the line to the point makes with the real axis: θ_{Γ}

Electromagnetic Theory 2	Seoul National Univ.	81
		01

Radio Technology Lab.

The Smith Chart (10)

Note

- $-\Gamma$ -cirlces intersects the real axis at two points.
- $-P_{M}$ on the positive axis and P_{m} on the negative axis where x=0, along the real axis.
- $-P_M \Longrightarrow R_L > R_0 \text{ and } r > 1.$
- $-P_m \implies R_L < R_0 \text{ and } r < 1.$

Remind

- $-R_L = SR_0$ for lines with resistive termination and $R_L > R_0$.
- The value of the r-circle passing through the point $P_M = s = \frac{R_L}{R_o} = r$ (lossless line).

$$-R_L = \frac{R_0}{s} \text{ for } R_L < R_0$$

- The value of the r-circle passing through the point $P_m = \frac{1}{s}$.

The Smith Chart (11)

Summary

- 1. All $|\Gamma|$ circles are centered at the origin.
- 2. Their radii vary uniformly from 0 to 1.
- 3. The angle measured from the positive real axis of the line drawn from the origin through the point representing z_L equals θ_{Γ}
- 4. The value of the r-circle passing through the intersection of the $|\Gamma|$ -circle and the positive-real axis = s. (cf. 1/s)

Electromagnetic Theory 2 Seoul National Univ. 8	3
Radio Technology Lab. Wreless / Channel / Microwave	
The Smith Chart (12)	
* Input impedance and smith chart	
$Z_{i}(z') = \frac{V(z')}{I(z')} = Z_{0} \left[\frac{1 + \Gamma e^{-j2\beta z'}}{1 - \Gamma e^{-j2\beta z'}} \right]$	
Normalized input impedance	
$z_{i} = \frac{Z_{i}}{Z_{0}} = \frac{1 + \Gamma e^{-j2\beta z'}}{1 - \Gamma e^{-j2\beta z'}}$	
$= \frac{1 + \Gamma e^{j\phi}}{1 - \Gamma e^{j\phi}} \text{ where } \phi = \theta_{\Gamma} - 2\beta z'$	
$\underline{\text{Reminding}} z_L = \frac{1 + \Gamma e^{j\theta_{\Gamma}}}{1 - \Gamma e^{j\theta_{\Gamma}}} \implies \text{analogy to } z_i \text{ except } \phi = \theta_{\Gamma} - 2\beta z'$	

The Smith Chart (13)

<u>note</u>: – The magnitude, $|\Gamma|$, of the reflection coefficient and therefore the standing-wave ratio S, are not changed by the additional line length z'.

-rotation
$$2\beta z' = 4\pi \frac{z'}{\lambda}$$

then $\phi = \theta_{\Gamma} - 2\beta z' \Rightarrow$ another scale on the $|\Gamma| = 1$ circle.

Reminding

$$\mathbf{z}_{L} = \frac{1 + \left| \Gamma \right| e^{j\theta_{\Gamma}}}{1 - \left| \Gamma \right| e^{j\theta_{\Gamma}}}, \qquad \qquad z_{i} = \frac{1 + \left| \Gamma \right| e^{j\phi}}{1 - \left| \Gamma \right| e^{j\phi}}$$

– We can use the Smith chart to find $|\Gamma|$ and θ_{Γ} .

- We can use the Smith chart to find $|\Gamma|$ and ϕ then we can determine z_i .

Radio Technology Lab.

The Smith Chart (15)

cf) – ϕ is the rotated angle from θ_{Γ} in the clockwise direction

by an angle of $2\beta z' = 4\pi \frac{z'}{\lambda}$.

- outer circle : wavelengths to the generator.
- inner circle: wavelength to the load.
- Half wavelength: 2π change in ϕ .
- Complete revolution around a $|\Gamma|$ -circle returns to the same point and results in no change in impedance.

mith-chart calculations for Examples 9-13 and 9-14

The Smith Chart (17)

(sol) a. (1)
$$z_L = \frac{Z_L}{R_0} = 2.6 + j1.8$$
 (point P_2 in Fig. 9-33)

- ② With the center at the origin, draw a circle passing through point $\overline{OP}_2 = |\Gamma| = 0.6$
- ③ Extend $\overline{OP_2}$ line $+P_2'$ on the periphery. Read the phase angle form the line $\overline{OP_{oc}}$

i.e. $(0.25 - 0.22) \times 4\pi = 0.12\pi$ or 21° from the chart.

 $\therefore \Gamma = |\Gamma| e^{j\theta_{\Gamma}} = 0.60 \angle 21^{\circ}$

Electromagnetic Theory 2

Seoul National Univ.

89

Radio Technology Lab.

The Smith Chart (18)

b. $s \Rightarrow |\Gamma| = 0.6$ circles intersects with the positive lead axis OP_{oc} at r = s = 4. s = 4.

cf) $|\Gamma| = 0.6$ circles intersects with the negative real axis OP_{oc} at $r = \frac{1}{s} = 0.25$.

- c. $Z_{in} \Rightarrow$ Rotate the point of Z_L Keeping $|\Gamma|=0.6$ as constant by an angle corresponding to 0.434 wavelength toward generator(passing through P_{sc}) to the point P_3 .
 - read the point P_3

$$r = 0.69$$
 and $x = 1.2$

 $\therefore Z_i = R_0 z_i = 100(0.69 + j1.2) = 69 + j120$

The Smith Chart (19)

- d. location of voltage Maxima.
 - wavelength difference between P_2 and P_M
 - $= 0.030\lambda \implies$ voltage maxima appears at 0.030λ
 - from the load foward generator.

cf) Smith chart calculations for lossy lines.

$$z_{i} = \frac{Z_{i}}{Z_{0}} = \frac{1 + \Gamma e^{-2\alpha z'} e^{-j2\beta z'}}{1 - \Gamma e^{-2\alpha z'} e^{-j2\beta z'}}$$
$$= \frac{1 + |\Gamma| e^{-2\alpha z'} e^{j(\theta_{\Gamma} - 2\beta z')}}{1 - |\Gamma| e^{-2\alpha z'} e^{j(\theta_{\Gamma} - 2\beta z')}}$$

 \therefore $|\Gamma|$ circle shrinks as much as $e^{-2\alpha z'}$.

Electromagnetic Theory 2	Seoul Natio

```
oul National Univ.
```

91

Radio Technology Lab.

Transmission-Line Impedance Matching (1)

* Transmission line impedance matching.

- Impedance matching by quarter-wave transfomer.

$$Z_{in} = Z_0' \frac{Z_L + jZ_0' \tan \beta l}{Z_0' + jZ_L \tan \beta l}, \quad (Z_0' \text{ is the characteristic impedance of matching line})$$

For many cases, $\underline{Z_0' = R_0'}$ (loss load) and $\underline{Z_0 = R_0}$.

matching line

main line

$$\therefore Z_0' = \sqrt{Z_0 Z_L} \Longrightarrow R_0' = \sqrt{R_0 Z_L}$$

If Z_L is a complex number, it is impossible to construct a impedance matching.

Transmission-Line Impedance Matching (2)

* Impedance and Admittance.

The shorted line setion (single stub) is connected in parallel with the main line. It is more convenient to use admittance instead of impedance.

Electromagnetic Theory 2	Seoul National Univ.	93

Radio Technology Lab.

Transmission-Line Impedance Matching (3)

Let
$$Y_L = \frac{1}{Z_L}$$

 $z_L = \frac{Z_L}{R_0} = \frac{1}{R_0 Y_L} = \frac{1}{y_L}$
 $y_L = \frac{Y_L}{Y_0} = \frac{Y_L}{G_0} = R_0 Y_L = g + jb$,

where g: normalized conductance.

b:normalized susceptance.

(cf) Quarter-wave line

$$Z_{in} = \frac{Z_0^2}{Z_L} \Longrightarrow \frac{Z_{in}}{Z_0} = \frac{Z_0}{Z_L} = \frac{1}{z_L} = y_L$$

 \therefore A quarter wave line transform z_L to y_L .

quarter wave line correspoding to π radians on the Smith chart.

The points representing z_L and y_L are the diametrically opposite to each other on the $|\Gamma|$ -circle.

Transmission-Line Impedance Matching (4)

* Single stub matching

- In terms of normalized admittance,

$$y_B + y_S = 1$$
 where $y_B = R_0 Y_B$, $y_S = R_0 Y_S$.

- The input admittance of a short-circuit stub is purely subceptive,
 - y_s is purely imaginary

```
Electromagnetic Theory 2
```

Seoul National Univ.

95

Radio Technology Lab.

Transmission-Line Impedance Matching (5)

cf)
$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} = jZ_0 \tan \beta l$$

 $Y_{in} = \frac{-j}{Z_0 \tan \beta l}$
 $\therefore y_B = 1 + jb_B$ to satisfy $y_B + y_S = 1$ then $y_S = -jb_B$

- \Rightarrow y_B has a unity real part and a imaginary part that cancel the imaginary part of the stub.
- (cf) Smith chart can be used as an admittance chart, in which case the r- and x-circles could be g- and b-circles. The points representing an open- and a short- circuit termination could be the points on the extreme left and the extreme right, respectively, on an admittance chart.

Transmission-Line Impedance Matching (6)

* Using the Smith chart as an admittance chart, we proceed as follows for single stub matching.

- 1. Enter the point representing the normalized load admittance, y_L
- 2. Draw the $|\Gamma|$ *circle* for y_L , which will intersect the g = 1 circle at two points. At three points, $y_{B1} = 1 + jb_{B1}$ and $y_{B2} = 1 + jb_{B2}$. Both are possible solutions.
- 3. Determine load-section lengths d_1 and d_2 from the angles between the point representing y_L and the points representing y_{B1} and y_{B2} .
- 4. Determine stub length l_{B1} and l_{B2} from the angles between the short-circuit point or the extreme right of the chart to the points representing - jb_{B1} and - jb_{B2} , respectively.

Electromagnetic Theory 2

Seoul National Univ.

97

Radio Technology Lab.

Transmission-Line Impedance Matching (7)

Ex.9-20. $R_0 = 50$, $Z_L = 35 - j47.5(\Omega) \implies$ single-stub matching find d and l.

(sol)
$$z_L = \frac{Z_L}{R_0} = 0.70 - j0.95$$

- 1. Enter z_L point $\Rightarrow P_1$
- 2. Draw a $|\Gamma|$ circle.
- 3. Find a $y_L \Rightarrow P_2$ (rotation of π radian)
- 4. Two points of intersection of the $|\Gamma|$ circle with the g=1 circle.

At P_3 : $y_{B1} = 1 + j1.2 = 1 + jb_{B1}$ At P_4 : $y_{B2} = 1 - j1.2 = 1 + jb_{B2}$

Transmission-Line Impedance Matching (8)

5. Solutions for the position of the stub.

For P_3 (from P_2' to P_3'): $d_1 = (0.168 - 0.109)\lambda = 0.059\lambda$ For P_4 (from P_2' to P_4'): $d_2 = (0.332 - 0.109)\lambda = 0.223\lambda$ 6. Solutions for the length of short-circuited stub to provide $y_8 = -jb_8$

> For P_3 - $jb_{B1} = -j1.2$, $l_{B1} = (0.361 - 0.250)\lambda = 0.111\lambda$ For P_4 - $jb_{B2} = j1.2$, $l_{B2} = (0.139 + 0.250)\lambda = 0.389\lambda$

cf) from P_{sc} to P_4'' in the clock-wise direction.

	Electromagnetic Theory 2	Seoul National Univ.	99
Radio Technology Lab. Wireless / Channel / Microwave			
	Homework		
H.W.			

9-15, 9-19, 9-23, 9-30, 9-33, 9-42, 9-48