
Field and Wave Electromagnetic

Chapter9

Theory and Applications of 
Transmission Lines
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Transmission Line

� TEM (Transverse electromagnetic) waves guided by 
transmission lines.
� ( along the guiding line )

� The three most common types of guiding structures that 
support TEM waves.
⒜ Parallel-plate transmission line ⇒ striplines
⒝ Two wire transmission line
⒞ Coaxial cable : No stray fields

� TEM wave solution of Maxwell’s equations for the parallel-plate 
guiding structure ⇒ A pair of transmission line equation.
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① y polarized
② Propagating in the +z direction

cf) Fringe fields at the edges of the plates are neglected.

TEM Wave along a Parallel-Plate Transmission Line (1)
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TEM Wave along a Parallel-Plate Transmission Line (2)

③ Assuming perfect conductor and a lossless dielectric

④ Boundary conditions
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TEM Wave along a Parallel-Plate Transmission Line (3)
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TEM Wave along a Parallel-Plate Transmission Line (4)

⑤ &      satisfy Maxwell’s equation

(cf)                   ∵ and       are functions of z only.
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TEM Wave along a Parallel-Plate Transmission Line (5)

Integrating ① over y from 0 to d,

cf) 
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Where     is the width of the plate

The total current flowing in the +z direction

w

Electromagnetic Theory 2 8

TEM Wave along a Parallel-Plate Transmission Line (6)

Then

i.e.

where

Flux linkage per unit current                                

Integrating ② over x from 0 to w,
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TEM Wave along a Parallel-Plate Transmission Line (7)

i.e.

where

①’ & ②’ : Time-harmonic transmission line equations.
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TEM Wave along a Parallel-Plate Transmission Line (8)

Combining ①’ & ②’

The solutions of the above wave equations are waves
propagating in the +z direction.
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TEM Wave along a Parallel-Plate Transmission Line (9)

The impedance at any location that looks toward an infinitely 
long transmission line
⇒ Characteristic impedance of the line

The propagating velocity
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Lossy Parallel-plate Transmission Lines (1)

� Two loss mechanism   dielectric loss

① Dielectric loss : dielectric medium have a non-vanishing loss 
tangent
i.e.    permitivity

(cf) Reminding

σ

ohmic loss

conductivity      of the dielectric medium
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Lossy Parallel-plate Transmission Lines (2)
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Lossy Parallel-plate Pransmission Lines (3)

② Ohmic loss

If the parallel-plate conductors have a very large but finite 
conductivity    , ohmic power will be dissipated in the plates.
⇒ Nonvanishing axial electric field       at the plate surfaces 
(conduction current)

cσ

zEẑ

*1
ˆ ˆˆRe( )

2av z xP yp zE xHσ= = ×

The average power per unit area dissipated 
in each of the conducting plates

: y component (loss)
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Lossy Parallel-plate Pransmission Lines (4)

Consider the upper plate

Surface impedance of an imperfect conductor :

For upper plate

cf)                           ⇒ only surface current flows

xsu HJ =
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Lossy Parallel-plate Pransmission Lines (5)

Intrinsic impedance of good conductor

∴ The ohmic power dissipated in a unit length of the plate 
having a width w is
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Lossy Parallel-plate Pransmission Lines (6)
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Effective series resistance per unit length 
for both plates of a parallel-plate 

transmission line of width w
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The power dissipated when a sinusioidal
current of amplitude I flows through a 
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suwJIwhere =

⇒ Power loss in upper 
plate only
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General Transmission Line Equations (1)

cf) Difference between transmission lines and ordinary electric 
networks

Electric Network T.L.

Physical dimensions ≪ λ

Discrete circuit elements 

(lumped parameters)

No standing wave

Physical dimension ~ λ

Distributed-parameter

Standing wave except under 

matched conditions
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General Transmission Line Equations (2)

� Distributed parameters
� For differential length Δz

R : resistance per unit length(for both conductors ) (Ω/m)
L : inductance per unit length ( for both conductors) (H/m)
G : conductance per unit length (S/m)
C : capacitance per unit length (F/m)

Series 
element

Shunt 
element

⎢
⎣

⎡

⎢
⎣

⎡
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General Transmission Line Equations (3)

Kirchhoff’s voltage law

let 

Kirchhoff’s current law at node N

let

①, ② : General transmission line equations.
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General Transmission Line Equations (4)

For time harmonic,

cf) cosine reference
V(z), I(z) : functions for the space coordinate z only, both 
may be complex

then, 
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Wave Characteristics on an Infinite T.L. (1)

From the coupled time-harmonic T.L. equations

where
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Wave Characteristics on an Infinite T.L. (2)

The solutions of ①’ and ②’

wave amplitudes

For an infinite line (semi-infinite line with the source 
at the left end )
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Wave Characteristics on an Infinite T.L. (3)

cf) uniform plane waves in a lossy medium
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Wave Characteristics on an Infinite T.L. (4)

1. Lossless line
a. Propagation constant

b. Phase velocity

LCjj ωβαγ =+=
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LC
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β ω

=

= (A linear function of ω)
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up
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==

β
ω

(Non-dispersive)
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Wave Characteristics on an Infinite T.L. (5)

c. Characteristic impedance

C

L
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00 =X

(constant)

(Non-reactive line)
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Wave Characteristics on an Infinite T.L. (6)

2. Low-loss line
a. Propagation constant
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Wave Characteristics on an Infinite T.L. (7)

b. Phase velocity

c. Characteristic impedance
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Wave Characteristics on an Infinite T.L. (8)

3. Distortionless line

a. Propagation constant

b. Phase velocity
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Wave Characteristics on an Infinite T.L. (9)

c. Characteristic impedance
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Wave Characteristics on Finite Transmission Line (1)

The general case of a finite transmission line (Z0) terminated 
in an arbitrary load impedance ZL.

A sinusoidal voltage source             with internal impedance 
Zg is connected to the line at z=0.

⇒ Reflected waves exist on unmatched lines

°∠0gV
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=
: Cannot be satisfied without     term unless ZL=Z0

zeγ
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Wave Characteristics on Finite Transmission Line (2)

General solutions for the time-harmonic one-dimensional 
Helmholtz equations

(cf) - circuit theory 
matched condition (Zg=ZL

*) →maximum transfer of power

- T.L.
line is matched when ZL=Z0. → no        term
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Wave Characteristics on Finite Transmission Line (3)

Four unknowns

cf) not independent because of the constraint by the 
relations at z=0 and z=l

Let z=l

and

−−++
0000 ,,, IVIV : from the wave equation solutions
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Wave Characteristics on Finite Transmission Line (4)

New variable               : distance measured backward from 
the load
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Wave Characteristics on Finite Transmission Line (5)

In order to simplify the above equations, using hyperbolic 
functions

2coshz ze e zγ γ γ′ ′− ′+ = 2sinhz ze e zγ γ γ′ ′− ′− =

( )

( )

0

0
0

( ) cosh sinh

( ) sinh cosh

L L

L
L

V z I Z z Z z

I
I z Z z Z z

Z

γ γ

γ γ

′ ′ ′∴ = +

′ ′ ′= +

Two equations can provide the voltage and 
current at any point along a transmission line in 
terms of                and     .γ,, LL ZI 0Z
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Wave Characteristics on Finite Transmission Line (6)

zZzZ

zZzZ
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zV
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=
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′
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0
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zZZ
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=
γ
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tanh

tanh

0

0
0

Impedance when look toward the load end of 
the line at a distance z’ from the load
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Wave Characteristics on Finite Transmission Line (7)

( at the source end of the line)
the generator looking into the line sees an input impedance Zi

lZZ
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γ
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0

0
00 +

+
==

=′
=

(cf) Impedance transformation
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( )0==′ zlz
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Wave Characteristics on Finite Transmission Line (8)

The average power delivered to the input terminals of the 
line

The average power delivered to the load

For a lossless line

( ) [ ] lzziiiav IVP =′== ,0
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Wave Characteristics on Finite Transmission Line (9)

� If

⇒ No reflected waves 

,0ZZL = 0)( ZzZ =′

⎪⎭

⎪
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z
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)()(

)()( 0 Waves traveling in +z 
direction
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Transmission Line as Circuit Elements (1)

Transmission line having inductive or capacitive impedance 

⇒ impedance matching between a generator and a load.

Frequency band : 300 MHz ~ 3GHz
cf) f < 300MHz : line’s physical dimension is too long

f > 3GHz : waveguide is preferred

For lossless T.L.

Input impedance at distance    from the load(ZL) end

( ) ljljlRZj ββγβγ tantanhtanh,, 00 ====

ljZR

ljRZ
RZ

L

L
i β

β
tan

tan

0

0
0 +

+
= Impedance transformations by 

lossless transmission line

l
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Transmission Line as Circuit Elements (2)

� Special cases
1. Open-circuit termination ( )∞→LZ

ljR
l

R
jjXZ ii β

β
cot

tan 0
0

00 −=−== llcf
λ
πβ 2

) =
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Transmission Line as Circuit Elements (3)

Xi0 can be either capacitive or inductive depending on

If 

In practice, it is impossible to have an infinite load impedance
at the end of a transmission line.
⇒ At high freq. ⇒ coupling and radiation

.lβ

1, tanl l lβ β β<< ≅

0
0 0

1
i i

L
R CZ jX j j j

l ClLClβ ωω
∴ = ≅ − = − = −

; Impedance of a capacitance of Cl farads
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Transmission Line as Circuit Elements (4)

2. Short circuit termination ( )0=LZ

ljRjXZ isis βtan0==

1<<lβ

LljZis ω= : Impedance of inductance
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Transmission Line as Circuit Elements (5)

3. Quarter-wave section :  ⎟
⎠
⎞

⎜
⎝
⎛ ==

2
,

4

πβλ
ll

),3,2,1(
4

)12( "=−= nnl
λ

2
)12(

4
)12(

2 πλ
λ
πβ −=−= nnl

±∞=lβtan

2
0

i
L

R
Z

Z
= Quarter wave line ⇒ impedance inverter.

quarter wave transformer.
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Transmission Line as Circuit Elements (6)

4. Half-wave section

cf) The characteristic impedance and the propagation constant

Open-circuited line, 
Short-circuited line, 

⎟
⎠
⎞

⎜
⎝
⎛ == πβλ

ll ,
2

πβλ
nlnl =⋅= ,

2

Li ZZ =∴ (Half-wave line)

Only for lossless.

For lossy case, this properties are valid only for ZL=Z0

0tan =lβ

lZZZ ioL γcoth: 0=∞→

lZZZ isL γtanh:0 0=→
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Transmission Line as Circuit Elements (7)

5. Lossy line with a short-circuit termination

isioZZZ =∴ 0

1 11
tanh ( )is

io

Z
m

l Z
γ − −=

0 0

sinh( )
tanh

cosh( )is

j l
Z Z l Z

j l

α βγ
α β
+

= =
+

lljll

lljll
Z

βαβα
βαβα

sinsinhcoscosh

sincoshcossinh
0 +

+
=
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Transmission Line as Circuit Elements (8)

For 

For 

nllnlnl )1(cos,0sin,
2

−===⇒⋅= ββπβλ

( )0 0tanhisZ Z l Z lα α∴ = ≅ assuming 1

tanh

l

l l

α
α α

<<
≅

: Series resonant circuit condition

( )numberoddn
n

lnl ==⇒⋅= ,
24

πβλ

0cos =lβ

0 0

tanhis

Z Z
Z

l lα α
∴ = ≅ : Very large

: Parallel-resonant circuit condition
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Reference & Homework

�Ref. Microwave engineering by David M. 
Pozar page 330-336
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Lines with Resistive Termination (1)

both incident and reflected wave exist0ZZL ≠

( ) ( )

( ) ( )

( ) ( )
0 0

( ) ( )
0 0

0

( )
2

( )
2

l z l zL
L L

l z l zL
L L

I
V z Z Z e Z Z e

I
I z Z Z e Z Z e

Z

γ γ

γ γ

− − −

− − −

⎡ ⎤= + + −⎣ ⎦

⎡ ⎤= + − −⎣ ⎦

( ) ( )[ ]

( ) ( )[ ]z
L

z
L

L

z
L

z
L

L

eZZeZZ
Z

I
zI

eZZeZZ
I

zV

′−′

′−′

−−+=′

−++=′⇒

γγ

γγ

00
0

00

2
)(

2
)(

⇒−=′ zlz
z

z

e

e
′−

′

γ

γ : right traveling wave (incident wave)

: left traveling wave (reflected wave)

where
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Lines with Resistive Termination(2)

cf) current reflection coefficient of the load impedance ZL

⎥
⎦

⎤
⎢
⎣

⎡
+
−

++=′ ′−′ z

L

Lz
L

L e
ZZ

ZZ
eZZ

I
zV γγ 2

0

0
0 1)(

2
)(

[ ]zz
L

L eeZZ
I ′−′ Γ++= γγ 2

0 1)(
2

ΓΓ=
+
−

=Γ θj

L

L e
ZZ

ZZ

0

0 : Voltage reflection coefficient of 
the load impedance ZL

where

[ ]zz
L

L eeZZ
Z

I
zI ′−′ Γ−+=′ γγ 2

0
0

1)(
2

)(

0 0

0 0

I V

I V

− −

+ += − = −Γ
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Lines with Resistive Termination(3)

2
0

( 2 )
0

( 2 )
0

0

( ) ( ) 1
2

( ) 1
2

( ) ( ) 1
2

j z j zL
L

j zj zL
L

j zj zL
L

j

I
V z Z R e e

I
Z R e e

I
I z Z R e e

R

β β

θ ββ

θ ββ

γ β

Γ

Γ

′ ′−

′′ −

′′ −

=

′ ⎡ ⎤= + +Γ⎣ ⎦

⎡ ⎤= + + Γ⎣ ⎦

⎡ ⎤′ = + − Γ⎣ ⎦

•

•

 For a lossless transmission line, 

            

                  

         

  

 

  

  

 

 

0

0
0

( ) ( cosh sinh )

( ) ( sinh cosh )

L L

L
L

V z I Z z Z z

I
I z Z z Z z

Z

γ γ

γ γ

′ ′ ′= +

′ ′ ′= +

From the expression using hyperbolic functions 
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Lines with Resistive Termination(4)

0

0

, , cosh cos , sinh sin

( ) cos sin

( ) cos sin

,

L L L

L L

L
L

L L L L L

j V I Z j j j

V z V z jI R z

V
I z I z j z

R

Z R V I R

V

γ β θ θ θ θ

β β

β β

= = = =

′ ′ ′= +

′ ′ ′= +

=

•

=•

   For lossless l

   

ine
                  

               

                

 If    

               
2

2 20

2

2 2
0

0

( ) cos sin

( ) cos sin ,

L
L

L
L

R
z V z z

R

R L
I z I z z where R

R C

β β

β β

⎛ ⎞
′ ′ ′= + ⎜ ⎟

⎝ ⎠

⎛ ⎞
′ ′ ′= + =⎜ ⎟

⎝ ⎠
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Lines with Resistive Termination(5)

max

min

0

1 1

1 1

0, 1 ( )

1,
L

V s
s

V s

s Z Z

s

+ Γ −
= = Γ =

− Γ +

Γ = = =
Γ = −

•

→∞

•

 Standing-wave ratio (SWR)

                        

 For a lossless transmission line
                     when   Matched load

           

  

 

     

  

  whe

max min

min max

0 ( )

1, ( )

2 2 , 0, 1, 2, ...

L

L

M

Z

s Z

V I

z n n

V I

θ β πΓ

=
Γ = + →∞ →∞

′− = − =

n     Short circuit

                 when   Open circuit

 and  occur when

                       

     

      cf) 

       and  occur together wh

2 (2 1) , 0, 1, 2, ...mz n nθ β πΓ ′− = − + =

en
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Lines with Resistive Termination(6)

0
0 0

0

0

0

, ,

, 0 ( 0)

, 0 ( )

L
L L

L

L

L

R R
Z R Z R

R R

R R

R R

θ
θ π
Γ

Γ

−
= = Γ =

+

> Γ > =

< Γ < = −

①

② 

   

   

For resistive terminations on a lossless line,

                  

   and real 

  and real

      cf  

 

)



Electromagnetic Theory 2 55

Lines with Resistive Termination(7)

0
0 max min

0

0 0
0 max min

: ,

: ,

L
L L L

L

L L L
L L

R R
R R V V V V s

R R

R R
R R V V V V s

R R

> = = ∴ =

< = = ∴ =

          

                   

      cf

 

) 
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Lines With Arbitrary Termination(1)

Lines With Arbitrary Termination

    Let  

    Neither a voltage maximum nor a voltage minimum appears 

        at the load   (  ' 0) 

    If we let the standing wave continue by an xtra 

 

e d

L L LZ R jX

at z

= +
−

=
−

�

istance, 

        it will reach a minimum
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Lines With Arbitrary Termination(2)

0
 0 0

  
0

'

tan

tan

1
     1. Find  from s. use 

1

     2. Find  from z . use 2  for 0.

( )
     3. Find ,  which is the ratio of  at 

( )

m m
at zL i i i
onto the right

m m

m m

L

R jR l
Z Z R jX R

R jR l

s

s

z n

V z
Z z

I z

β
β

θ θ β π

′=

Γ Γ

+
= = + =

+

−
Γ Γ =

+
′= − =
′

′
′

0

0

0.

1
          

1

          

j

L L L j

m

e
Z R jX R

e

R
R

s

θ

θ

Γ

Γ

=

+ Γ
= + =

− Γ

=

z
i

2m mZ l
λ

+ =
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Transmission Line Circuits (1)

     Constraint at the load side (Boundary condition)

                            0

     Constraint at the generator end  where 0  

               

Transmission Line Circu its

L L LV I Z at z l or z

z and z l

−
′= = =

′− = =

�

      Voltage  generator :

                     Internal impedance:

                    0  

                    and from the condition of load impedance

                     

g

g

i g i g

i

V

Z

V V I Z at z and z l

V

′∴ = − − = =①

2
0

2
0

0

( ) 1
2

                     ( ) 1-
2

l lL
L

l lL
i L

I
Z Z e e

I
I Z Z e e

Z

γ γ

γ γ

−

−

⎡ ⎤= + + Γ −⎣ ⎦

⎡ ⎤= + Γ −⎣ ⎦

②

③
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Transmission Line Circuits (2)

-2 -2
0 0

0

0
0 2

0

                       put and into 

                              ( ) 1 ( ) 1-
2 2

1
                              ( )

2 1-

   

L gl l l lL
L g L

glL
L l

g g

I ZI
Z Z e e V Z Z e e

Z

Z VI
Z Z e

Z Z e

γ γ γ γ

γ
γ−

⎡ ⎤ ⎡ ⎤+ + Γ = − + Γ⎣ ⎦ ⎣ ⎦

+ =
+ ⎡ ⎤Γ Γ⎣ ⎦

② ③ ①

0

0

2 '
0

0

                

                                   :  Voltage reflection coefficient

Derive the above expression.

1
                       

   [ . ]  

  ( ) (
1

g
g

g

z
g z

g g

Z Z
where

Z Z

Z V e
V z

W

e
Z Z e

H

γ
γ

−
−

−
Γ =

+

+ Γ′∴ =
+ −Γ Γ 2

2 '

2
0

)

1
                               ( ) ( )

1

l

z
g z

l
g g

V e
I z e

Z Z e

γ

γ
γ

γ

−

−
−

−

− Γ′ =
+ −Γ Γ
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Transmission Line Circuits (3)

0 2 ' 2 1

0

0 2 ' 2 2 2 -4

0

0 2

0

           Furthermore

           ( ) (1 )(1- )

                   (1 )(1 )

                   ( ) (

g z z l
g

g

g z z l l
g g

g

g z l z
g

g

Z V
V z e e e

Z Z

Z V
e e e e

Z Z

Z V
e e e e

Z Z

γ γ γ

γ γ γ γ

γ γ γ

− − − −

− − −

′− − − −

′ = + Γ Γ Γ
+

= +Γ +Γ Γ +Γ Γ +
+

= + Γ +Γ Γ
+

"

1 1 2 2

)

                   

                  

l ze

V V V V

γ γ−

+ − + −

⎡ ⎤+⎣ ⎦

= + + + +

"

"
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Transmission Line Circuits (4)

0
1

0

1

2
2

                       where 

                                  ( )

                                  ( )

                                        

g z z
M

g

l z
M

l z
g M

Z V
V e V e

Z Z

V V e e

V V e e

γ γ

γ γ

γ γ

+ − −

′− − −

+ − −

= =
+

= Γ

= Γ Γ

#

0

0

                       and M g
g

Z
V V

Z Z
=

+
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Transmission Line Circuits (5)

1

0

             : the initial wave traveling in the -direction. 

                cf) Before this wave reaches the load impedance      

                     it sees  of the line as if the line were i

V z

Z

+ +①

1

'
1

nfinitely long. 

             When  reaches  at z ,  it is reflected  because of impedance mismatch

                reflected wave : ( )  traveling in the - -direction.

L

l z
M

V Z l

V V e e zγ γ

+

− − −

=

→ Γ

②
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Transmission Line Circuits (6)

1

2
0 2

             As the wave  returns to the generator at 0,

                 it is reflected for ( )

                 traveling in the -direction.

             This process conti

l
g g M

V Z

Z Z V V e

z

γ

−

+ −

=

≠ ⇒ = Γ Γ

+

③

④ nues indefinitely with reflections at both ends, 

                 and the resulting standing wave ( ) is the sum of all the waves 

                  traveling in both directions. Steady state, single

V z′

→  frequency, 

                 time harmonic sources and signals.

Electromagnetic Theory 2 64

0

1

0 0

                          : matched load.

                    0 only   exists.

                          If  ,  but 

                              

                  cf) special cases

L

L g

Z Z

V

Z Z Z Z

+

=

Γ = ⇒

≠ =

①

②

1 1

2 2

  0 and 0

                             and  exit.

                                 ,  and all higher-order reflections vanish.      

                                  

g

V V

V V

+ −

+ −

Γ ≠ Γ =

∴

Transmission Line Circuits (7)
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Transients on Transmission Lines (1)

Transient Conditions => reactance ,  wave length ,  wave number k,

                                       and phase constant  would lose their meaning. 

 Examples of  non time harmonic and

             

X λ
β

          non steady-state signals are digital pulse signals in

 computer networks and sudden surges in power and telephone lines.

 Transient behavior of lossless transmission lines. 

                R

−
=

0 0 0

0,  0

                Characteristic impedance,          

1
                Propagation velocity,                    

G

L
Z Z R

C

u u
LC

=

= =

=
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Transients on Transmission Lines (2)

0      Example) LR Z=
lossless line

0inZ R=

0
1 0

0

             Magnitude of voltage wave     

             Voltage wave travels down the line in the +z-direction with a velocity 1/

             Magnitude of the current wave        

g

R
V V

R R

u LC

I

+− =
+

− =

− 01
1

0 0 g

VV

R R R

+
+ = =

+
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Transients on Transmission Lines (3)

1

1

             Plot of the voltage across at ,  as a function of time 

                    Delayed unit step functions at / .

z z

t z u

− =
⇒ =

1

             When the voltage and current wave reach the termination at 

                  no reflected waves.( 0)

             Steady state  the entire line is charged to a voltage equal to 

z l

V

− =
⇒ Γ =

− ⇒

∵
.+
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Transients on Transmission Lines (4)

0
1 0

0

             ,  ( )

             Switch is closed at   0  the -  source sends a voltge wave of magnitude

                                  in the  direction 

      Example)

o g o L L

g

R Z R Z R

t d c

R
V V z

R R
+

− ≠ ≠

− = ⇒

= +
+

0

1
with a velocity 

             At , this wave reaches the load end .

                       reflected wave travels in the   direction 

                                       with a 

L

u
LC

l
t T z l

u
R R z

=

− = = =

≠ ⇒ −

1 1

0

0

magnitude 

                                 

L

L
L

L

V V

R R

R R

− += Γ
−

Γ =
+
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Transients on Transmission Lines (5)

0

2

             At 2 , this reflected wave reaches the input end 

                 where it is reflected by 

             New voltage wave having a magnitude .

                                 

g

t T

R R

V

V

+

− =
≠

−

0
2 1 1

0

  where 

              This process will go on indefinitely

g
g g L g

g

R R
V V

R R
+ − + −
= Γ = Γ Γ Γ =

+

−
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Transients on Transmission Lines (6)
            cf) First: Some of the reflected waves traveling in either direction may have 

                          a negative amplitude

                  Second: except for an open circuit or a short 

0 0

circuit

                               , 1

1 1
            cf) For 3 ( ),  2 ( )

2 3

L g

L L g gR R R R

Γ Γ <

= Γ = = Γ =

01
1

0 0

            note 
6

VV
I

R R

−
− = − = −
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Transients on Transmission Lines (7)

1 1 2 2 1 1 2 2

The voltage and current at any particular location on the line 

in any particular time interval are just the algebraic sums

( ) and ( ),  respectively

Ultimate value of the

V V V V I I I I+ − + − + − + −+ + + + + + + +" "

1 1 2 2 3

2 2 2 2 3
1

2 2 2 2
1

1

 voltage across the load,

           ( )

              (1 )

              [(1 ) (1 )]

1
              [(

1

L

L g L g L g L g L

g L g L L g L g L

g L

V V l V V V V V

V

V

V

+ − + − +

+

+

+

= = + + + + +

= +Γ +Γ Γ +Γ Γ +Γ Γ +Γ Γ +

= +Γ Γ +Γ Γ + +Γ +Γ Γ +Γ Γ +

=
−Γ Γ

"
"

" "

1

) ( )]
1

1
              ( )

1

L

g L

L

g L

V +

Γ
+

−Γ Γ

+Γ
=

−Γ Γ
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Homework

[H.W.]  9-4, 9-9, 9-13, 9-15, 9-20, 

             9-25, 9-31, 9-36
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The Smith Chart (1)

0
0

0

0

0

  cf)  input impedance

tan
                     

tan

        reflection coef.

                     

        load impedance

                     

 

L
in

L

jL

L

L L L

Z jR l
Z R

R jZ l

Z Z
e

Z Z

Z R jX

Smith chart

θ

β
β

Γ

−
+

=
+

−
−

Γ = = Γ
+

−

= + 0

1

1

j

j

e
R

e

θ

θ

Γ

Γ

+ Γ
=

− Γ
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The Smith Chart (2)

       Manipulations of complex numbers

    The best known and most widely used graphical chart

          is the smith chart devised By P.H. Smith

         Simth chart: A graphical plot of normalized re

⇒

0

0

sistance and reactance 

                             functions in the reflection coefficient plane

              jL

L

Z R
e

Z R
θΓ−

Γ = = Γ
+
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The Smith Chart (3)

0

0 0 0

Let the load impedance Z  be normalized with respect to  

: normalized resistance
            ( ),    where

: normalized reactance

1
           ,   

1

L

L L L
L

L
r i

L

L
R

C

rZ R X
z j r jx Dimensionless

xR R R

z
j

z

=

⎛
= = + = + ⎜

⎝

−
Γ = Γ + Γ =

+

2 2

2 2 2 2

: real part of 
    where  

: imaginary part of 

11
              

1 1

(1 )
               or   

(1 )

 

1 2
         i.e.   ,  

(1 ) (1 )

r

i

j

L j

r i

r i

r i i

r i r i

e
z

e

j
r jx

j

r x

θ

θ

Γ

Γ

Γ Γ⎛
⎜Γ Γ⎝

+ Γ+Γ
∴ = =

−Γ − Γ

+Γ + Γ
+ =

−Γ − Γ

−Γ −Γ Γ
= =

−Γ +Γ −Γ +Γ
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The Smith Chart (4)

2 2
2

For a given value of  and , their locus can be plotted  in the  and   plane.

:  axis
    

:  axis

1
    i.e.  

1 1

1
    Equation for a circle with a radius  and

1

 

r i

r

i

r i

r x

x

y

r

r r

r

Γ Γ

Γ⎛ ⎞
⎜ ⎟Γ⎝ ⎠

⎛ ⎞ ⎛ ⎞Γ − +Γ =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⇒
+

         a center at   and 0.
1

    1 for a lossless line  that part of the graph lying 

                                                 within unit circle is meaningful.

r i

r

r
Γ = Γ =

+

Γ ≤ ⇒
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The Smith Chart (5)
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The Smith Chart (6)

      1. The centers of all r-circles lie on the -axis.

      2. The 0 circle, having a unity radius and centered at the origin, is the largest.

      3. The r-circ

* Properties of the r-circles are,
r

r

Γ
=

2

les become progressively smaller as r increase from 0 toward , 

          ending at the ( 1, 0) point for open circuit.

      4. All r-circles pass through the ( 1, 0) point.

2
      

(1 )

r i

r i

i

r

x

∞
Γ = Γ =

Γ = Γ =

Γ
=

−Γ +

2 2
2

2

1 1
   ( 1)

1
This is the equation for a circle having a radius  and centered at different positions 

1
on the 1 and .

r i
i

r i

x x

x

x

⎛ ⎞ ⎛ ⎞⇒ Γ − + Γ − =⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

Γ = Γ =
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The Smith Chart (7)

        1. The centers of all x-circles line on the 1 line; 

            those for x>0 (inductive reactance) lie  above the -axis and 

            those for x<0 (capacitiv

* Properties of x-circles.

r

r

Γ =
Γ

e reactance) lie below the -axis.

        2. The x=0 circle becom0es the -axis. (i.e. 0)

        3. The x-circle becomes progressively smaller as   increase 

            from 0 toward ,   ending

r

r i

x

Γ

Γ Γ =

∞   at the ( 1, 0) point for open circuit.

        4. All x-circles pass through the ( 1, 0) point.

1
r i

r i

Γ = Γ =

Γ = Γ =

Γ=
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The Smith Chart (8)

      A smith chart is a chart of r- and x- circles in the 

                  plane for 1. 

             The r-circle and x-circle are everywhere orthogonal 

                 to one another.

 cf)

r i

−

Γ −Γ Γ ≤

−

                                            [H.W.] prove this.

             The intersection point of an r-cirlce and x-circle defines a point 

                 that represents a normalized load impeda

−

L 0

nce  .

                     Then Z ( ).
Lz r jx

R r jx

= +
⇒ = +
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The Smith Chart (9)

         The smith chart can be marked with polar coordinates.

         => i.e. every point in the -plane is specified by 

               a magnitude  and a phase angle .

           cf) -

*  Circle

θΓ

Γ

Γ

−Γ

Γ

cirlces are centered at the origin.

                The fractional distance from the center to the point: 

                The angle that the line to the point makes with 

                    the real

− Γ

−
 axis: θΓ
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The Smith Chart (10)

0

0

 Note

        -cirlces intersects the real axis at two points.

         on the positive axis and  on the negative axis where x=0, along the real axis.

         and 1.

          

M m

M L

m L

P P

P R R r

P R R

− Γ
−
− ⇒ > >

− ⇒ <

0 0

0

0
0

and 1.

Remind

         for lines with resistive termination and .

        The value of the r-circle passing through the point (lossless line).

         for .

        

L L

L
M

L L

r

R SR R R

R
P s r

R

R
R R R

s

<

− = >

− = = =

− = <

−
1

The value of the r-circle passing through the point .mP
s

=
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The Smith Chart (11)

Summary

     1. All  circles are centered at the origin.

     2. Their radii vary uniformly from 0 to 1.

     3. The angle measured from the positive real axis of the line drawn 

          from the origi

Γ

n through the point representing  equals 

     4. The value of the r-circle passing through the intersection of 

         the -circle and the positive-real axis = s. (cf. 1/s) 

Lz θΓ

Γ
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The Smith Chart (12)

2

0 2

2

2
0

* Input impedance and smith chart

( ) 1
            ( )

( ) 1

            Normalized input impedance

1
                    

1

                      

j z

i j z

j z
i

i j z

V z e
Z z Z

I z e

Z e
z

Z e

β

β

β

β

′−

′−

′−

′−

′ ⎡ ⎤+ Γ′ = = ⎢ ⎥′ −Γ⎣ ⎦

∴

+Γ
= =

−Γ

1
           where 2

1

1
        Reminding    analogy to  except 2

1

j

j

j

L ij

e
z

e

e
z z z

e

φ

φ

θ

θ

φ θ β

φ θ β
Γ

Γ

Γ

Γ

+ Γ
′= = −

− Γ

+ Γ
′= ⇒ = −

− Γ
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The Smith Chart (13)
note: The magnitude, , of the reflection coefficient and 

             therefore the standing-wave ratio S,  are not changed 

             by the additional line length  .

        rotation 2 4

z

z
zβ π

λ

− Γ

′
′

′− =  

              then  2     another scale on the 1 circle.

Reminding

1 1
             z ,             

1 1

     We can use the Smith chart to find  and .

     We can use 

j j

L ij j

z

e e
z

e e

θ φ

θ φ

φ θ β

θ

Γ

Γ

Γ

Γ

′= − Γ =

+ Γ + Γ
= =

− Γ − Γ

− Γ

− the Smith chart to find  and   then we can determine .izφΓ
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The Smith Chart (14)

 Fig 9-32.
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The Smith Chart (15)

      cf)   is the rotated angle from  in the clockwise direction 

                 by an angle of 2 4 .

            outer circle : wavelengths to the generator.

            inner circle: wav

z
z

φ θ

β π
λ

Γ−
′

′ =

−
− elength to the load.

            Half wavelength:  2  change in .

            Complete revolution around a -circle returns to the same point 

                and results in no change in impedance.

π φ−

− Γ
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The Smith Chart (16)

0

L

      A lossless transmission line of 

      length 0.434  and characteristic 

      impedance 100 ( ), 

      load impedance 260 180 ( ).

        0.434 ,  Z 100( ),  

             Z 260 180

 Ex. 9-14

j

z

j

λ

λ

Ω
+ Ω

′⇒ = = Ω
= + ( )

       Find (a)  (b)  (C)  

       (d) (location of  voltage maxima)
in

M

s Z

z

Ω
Γ
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The Smith Chart (17)

2
0

2

2 2

(sol) a. 2.6 1.8 (point  in Fig. 9-33)

            With the center at the origin, draw a circle passing through 

                  point O 0.6

            Extend  line +  on the

L
L

Z
z j P

R

P

OP P

= = +

= Γ =

′

① 

② 

③  periphery. Read the phase angle 

                  form the line 

                  i.e.  (0.25 - 0.22) 4 =0.12   or  21  from the chart.

                  = 0.60 21

oc

j

OP

e θ

π π
Γ

× °

∴ Γ Γ = ∠ °
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The Smith Chart (18)

in

       b. s 0.6 circles intersects with the positive lead axis  at 4.

           s = 4.

1
           cf) 0.6 circles intersects with the negative real axis  at 0.25.

       c. Z Rota

oc

oc

OP r s

OP r
s

⇒ Γ = = =

Γ = = =

⇒ L

sc

3

3

te the point of Z  Keeping Γ =0.6 as constant by an angle 

           correspoinding to 0.434 wavelength toward generator(passing through P ) 

           to the point P .

           read the point P

   

−

i 0

                          r =  0.69 and x = 1.2

           Z 100(0.69 1.2) 69 120iR z j j∴ = = + = +
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The Smith Chart (19)

2 M

       d. location of voltage Maxima.

           wavelength difference between P  and P

           = 0.030  voltage maxima appears at 0.030  

              from the load foward generator.

 cf) Smith cha

λ λ⇒

2 2

2 2
0

( 2 )2

( 2 )2

rt calculations for lossy lines.

1
                 

1

1
                             

1

                  circle shrinks as muc

z j z
i

i z j z

j zz

j zz

Z e e
z

Z e e

e e

e e

α β

α β

θ βα

θ βα

Γ

Γ

′ ′− −

′ ′− −

′′ −−

′′ −−

+ Γ
= =

−Γ

+ Γ
=

− Γ

∴ Γ 2h as .ze α ′−
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Transmission-Line Impedance Matching (1)

0
0 0

0

      Impedance matching by quarter-wave transfomer.

tan
           ,  (  is the characteristic impedance of matching line)

tan

      For 

* Transmission line impedance matching.

L
in

L

Z jZ l
Z Z Z

Z jZ l

β

β

−

′+′ ′=
′ +

0 0 0 0

0 0 0 0

many cases, (loss load) and .

                                matching line                  main line

      

      If  is a complex number, it is impossible to construct 
L L

L

Z R Z R

Z Z Z R R Z

Z

′ ′= =

′ ′∴ = ⇒ =

a impedance matching.
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Transmission-Line Impedance Matching (2)

* Impedance and Admittance.

The shorted line setion (single stub) is connected in parallel with the main line.

It is more convenient to use admittance instead of impedance.
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Transmission-Line Impedance Matching (3)

0 0

0
0 0

1
Let 

1 1
           

           ,        where  g: normalized conductance.

                                                                            b:normalized

L
L

L
L

L L

L L
L L

Y
Z

Z
z

R R Y y

Y Y
y R Y g jb

Y G

=

= = =

= = = = +

2
0 0

0

L L.

 susceptance.

(cf) Quarter-wave line

1
        

          A quarter wave line transform z  to y

           quarter wave line correspoding to π radians on the Smith chart.

      

in
in L

L L L

Z Z Z
Z y

Z Z Z z
= ⇒ = = =

∴

     The points representing  and  are the diametrically opposite to  

           each other on the -circle.
L Lz y

Γ
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Transmission-Line Impedance Matching (4)

* Single stub matching

0
0

0 0

1
                        

-  In terms of normalized admittance,

            1     where ,  .

- The input admittance of a short-circuit stub is purely subceptive,  

    i

i B S

B S B B S S

S

Y Y Y Y
R

y y y R Y y R Y

y

= + = =

+ = = =

s purely imaginary
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Transmission-Line Impedance Matching (5)

0
0 0

0

0

tan
           cf) tan

tan

-
                

tan

           1 to satisfy 1  then -

 has a unity real part and a imaginary part that cancel the imag

L
in

L

in

B B B S S B

B

Z jZ l
Z Z jZ l

Z jZ l

j
Y

Z l

y jb y y y jb

y

β β
β

β

+
= =

+

=

∴ = + + = =

⇒ inary part 

     of the stub.

(cf) Smith chart can be used as an admittance chart, in which case the r- and x-circles 

      could be g- and b-circles. The points representing an open- and a short- circuit

      termination could be the points on the extreme left and the extreme right, respectively, 

      on an admittance chart.

0

0
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Transmission-Line Impedance Matching (6)

      1. Enter the point representing the normalized load admit

* Using the Smith chart as an admittance chart, 
                                          we proceed as follows for single stub matching.

1 1 2 2

tance, 

      2. Draw the  for ,which will intersect the 1 circle at two points.

          At three points, 1  and 1 . Both are possible solutions.

      3. Determine load-s

L

L

B B B B

y

circle y g

y jb y jb

Γ − =

= + = +

1 2

1 2

B1 B2

ection lengths  and  from the angles between the point representing  

          and the points representing  and .

      4. Determine stub length  and  from the angles between the shor

L

B B

d d y

y y

l l

1 2

t-circuit point

          or the extreme right of the chart to the points representing - and - ,  respectively.B Bjb jb
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Transmission-Line Impedance Matching (7)

0

0

1

2

Ex.9-20. 50,  35 47.5( )  single-stub matching

              find  and .

(sol)  0.70 0.95

        1. Enter  point 

        2. Draw a  circle.

        3. Find a (rotation of ra

L

L
L

L

L

R Z j

d l

Z
z j

R

z P

y P π

= = − Ω ⇒

= = −

⇒

Γ

⇒

3 1 1

4 2 2

dian)

        4. Two points of intersection of the  circle with the g=1 circle.

                    At : 1 1.2 1

                    At : 1 1.2 1
B B

B B

P y j jb

P y j jb

Γ

= + = +

= − = +
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Transmission-Line Impedance Matching (8)

3 2 3 1

4 2 4 2

        5. Solutions for the position of the stub.

                    For  (    ) :  (0.168 0.109) 0.059

                    For  (    ) :  (0.332 0.109) 0.223

        6.

P from P to P d

P from P to P d

λ λ

λ λ

′ ′ = − =

′ ′ = − =

S

3 1

1

 Solutions for the length of short-circuited stub to provide y

                    For         - 1.2,   

                                           (0.361 0.250) 0.111

                

B

B

B

jb

P jb j

l λ λ

= −
= −

= − =

4 2

2

4

    For          - 1.2,   

                                             (0.139 0.250) 0.389

                  cf) from  to  in the clock-wise direction.

B

B

sc

P jb j

l

P P

λ λ
=
= + =

′′
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Homework

   H.W.   

             9-15, 9-19, 9-23, 9-30, 9-33, 9-42, 9-48


