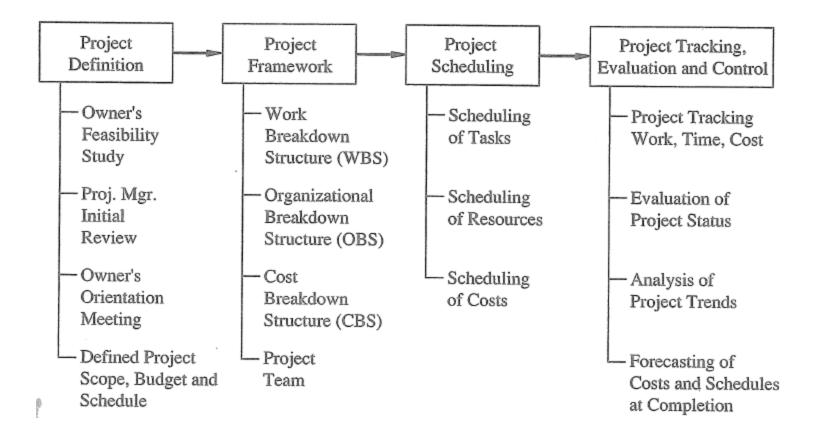
Week 5 Project Work Plan

457.657 Civil and Environmental Project Management Department of Civil and Environmental Engineering Seoul National University

> **Prof. Seokho Chi** <u>shchi@snu.ac.kr</u> 건설환경공학부 35동 304호


Project Work Plan

• Identifies the work to be done

- Who will do it, When
- Costs
- Basic components
 - Overview/Directory
 - Project title, objective scope, organization chart
 - Tasks
 - List of tasks, groupings
 - Schedule
 - Sequencing and interdependencies, durations, start/finish
 - Budget
 - Labor hours and staff costs, billing approach
 - Measurement
 - Accomplishment of tasks, completion of work package

2014 Semester 1

Phases of Development of Work Plan

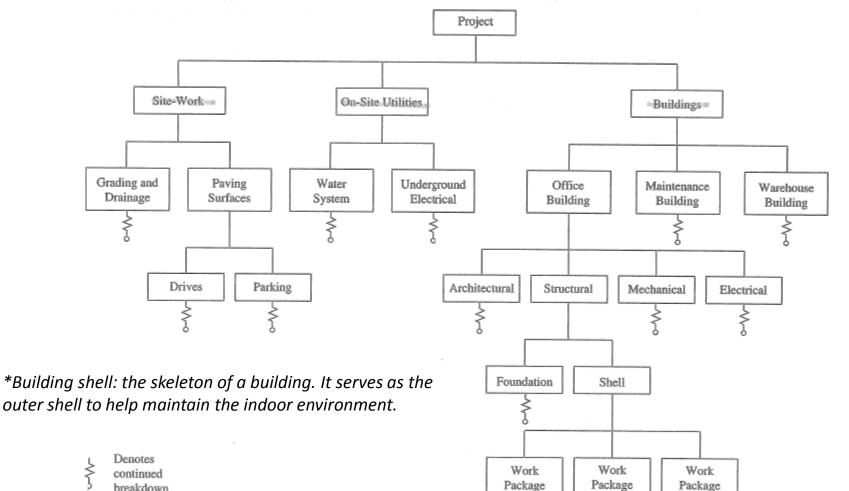
457.657 Civil and Environmental Project Management

2014 Semester 1

Work Plan Development

- 1. PM initial duty is to review sponsoring organization material regarding
 - Project scope
 - Budget
 - Schedule

2. Meet with sponsor to determine requirements and priorities for


- Quality
- Scope
- Time
- Cost
- Determine owner's level of involvement

3. Develop work breakdown structure (WBS)

- Define work to be performed
- Identify needed expertise
- Select project team
- Establish project schedule and controls

2014 Semester 1

• Divides the project into identifiable part that can be managed

2014 Semesici 1

437.037 CIVII and Environmental Froject management

- Divides the project into identifiable part that can be managed
- Concept of WBS is simple: to manage the whole project must control each of the parts
- All the work contained within the WBS is to be identified, estimated, scheduled, budgeted, and controlled
 - Identifying work, compiling the budget, and developing an integrated schedule
- Shown in graphical display to organize and subdivide the total scope of work

- Project work is structured into WBS elements (work packages) must be:
 - Definable: easily described and understood
 - <u>Manageable</u>: meaningful unit of work where specific responsibility can be assigned
 - Estimateable: duration and costs can be estimated
 - <u>Independent</u>: minimum interface with or dependence on other ongoing elements
 - Integratable: integrates with other project work elements
 - <u>Measureable</u>: has start and completion dates and interim milestones
 - <u>Adaptable</u>: flexible so the addition elimination of work scope can be accommodated

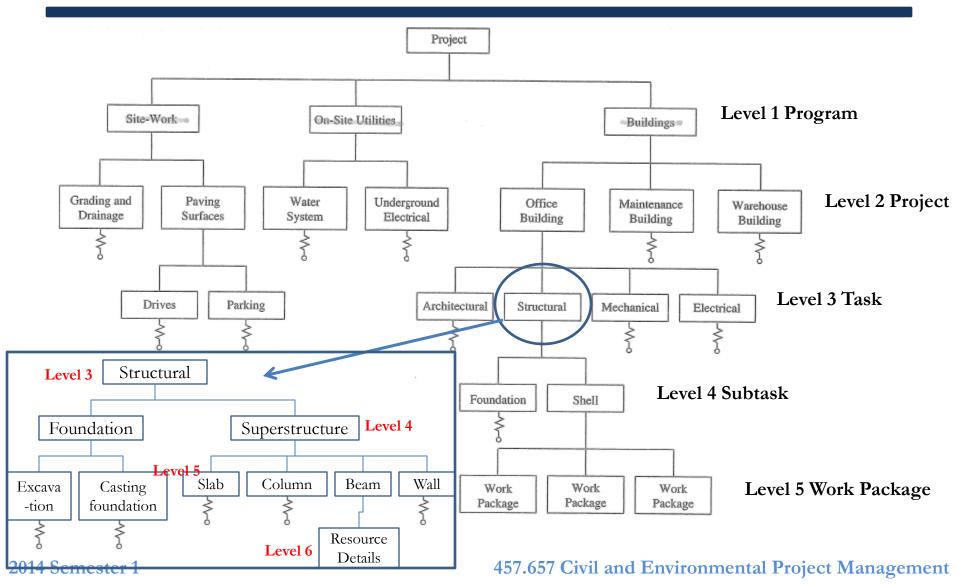
2014 Semester 1

• Characteristics of WBS

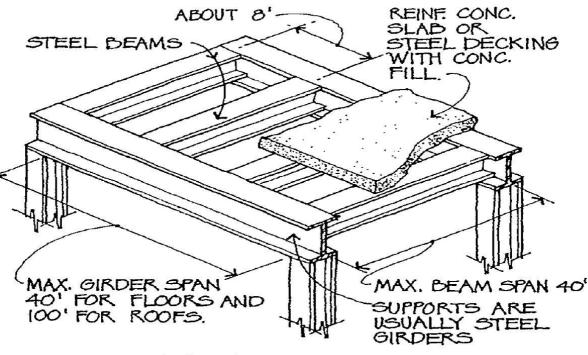
- Most commonly produced in the form of a table or chart
- Procedure in the associated work flow is used to produce this work product
- Progresses downward from the general to the specific
- Provides a framework for turning project objectives into specific deliverables

- Typical levels of WBS
 - Level 1: Total program
 - Level 2: Project
 - Level 3: Task
 - Level 4: Subtask
 - Level 5:
- Work package

Managerial Levels


Technical Levels

– Level 6: Level of effort


• Upper 3 levels normally specified by the owner

- Level 1: authorization and release of work
- Level 2: budgets prepared
- Level 3: schedules prepared
- Lower 3 levels are generated by the contractor

2014 Semester 1

Superstructure

STEEL BEAM AND GIRDER SYSTEM

- · BEAMS AND GIRDERS MAY BE PART OF MAIN SKELETON FRAME
- · COMPOSITE ACTION BETWEEN BEAM AND SLAD POSSIBLE
- · ECONOMICAL FOR MOST BUILDING LOADS.

A girder is the primary horizontal member carrying loads from other beams and slabs connected to it. That is a girder has other beams connecting to it on its sides .Typically beams do not have other beams connecting to it but generally have only slabs transferring the loads to it.

2014 Semester 1

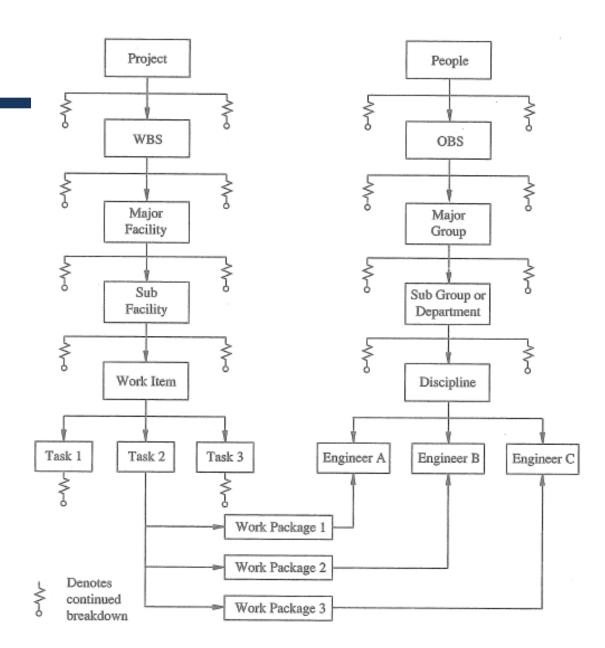
WBS

- Work Package
 - Lowest level in the WBS
 - Baseline for scheduling, tracking, cost control

			Wo	rk Packag	e				
		Title:							
100 Miles		WBS C	Code:						
1. Scope									
Re	equired	d Scope of Work:							
Se	ervices	to Be Provided:			1				
Se	ervices	not included in this V	Vork Package	e, but inclu	ded in anoti	ner work	package:		
Se	ervices	not included in this V	Vork Package	e, but will I	e performe	d by:			
2. Budge	1000			Work		CBS Code			Services
Pe	ersonn	el Assigned to Job		Hours	\$-Cost	Acct.	Туре	Hou	rs \$-Cost
			al Work-Hour omputer Hour				rsonnel Costs = \$ omputer Costs = \$		
			Trave Exper	_	Reproduc Expenses		-	enses	= \$
and the second second	-		To		= \$-Labor				= \$
3. Sched	all								
	BS ode	Work Task		Respons	ible Person		Start I	Date	End Date
_		· · · · · · · · · · · · · · · · · · ·		Work Pac	kage: Start	Date:	En	nd Date	
Ac	ddition	al Comments:							
Prepared	l by:			Date:					
Approve	d by:_			Date:					

Work Packaging

"A work package is a **well defined scope of work** that terminates in a deliverable product(s) or completion of a service. Each package may vary in size, but it must be a measurable and controllable unit of work to be performed. To complete a work package, one or more tasks will be performed. Thus, a work package may encompass the work of more than one crew or staff." (CII, 1988)


Good work packages

- Connects the abstract (schedules, production analysis) with the physical
- To link schedules into production, consider
 - A complete design
 - A list of materials to be installed
 - A specific area to be worked on
 - A start and end date (handover dates)
 - A materials handling plan

WBS vs OBS

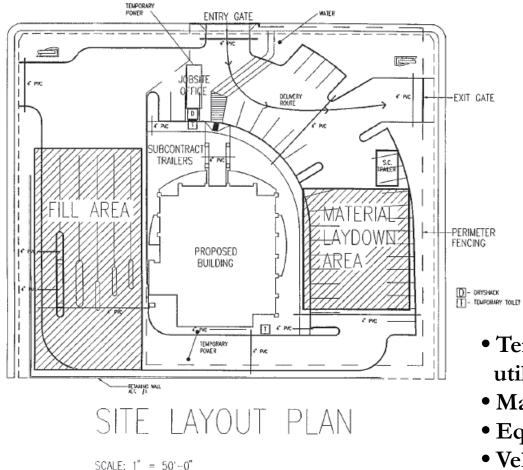
- WBS: define the work to be accomplished
- OBS

 (Organizational Breakdown
 Structure)
 - Define who is responsible for performing the work

457.657 Civil and Environmental Project Management

2014 Semester 1

Site Layout


• Definition:

- Assigning areas to staging, materials storage, and shared resources (e.g., cranes)

• Site layout is:

- Dynamic; can cause access conflicts
- Should be considered with work packaging when developing construction plan
- Site layout (big picture) constraints, then
 - Work packaging <--> Site layout (micro analysis)

Jobsite Layout

- Temporary facilities, power and utilities
- Material storage and handling
- Equipment location
- Vehicle and personnel routes, access and exit

457.657 Civil and Environmental Project Management

2014 Semester 1

Jobsite Layout Overview

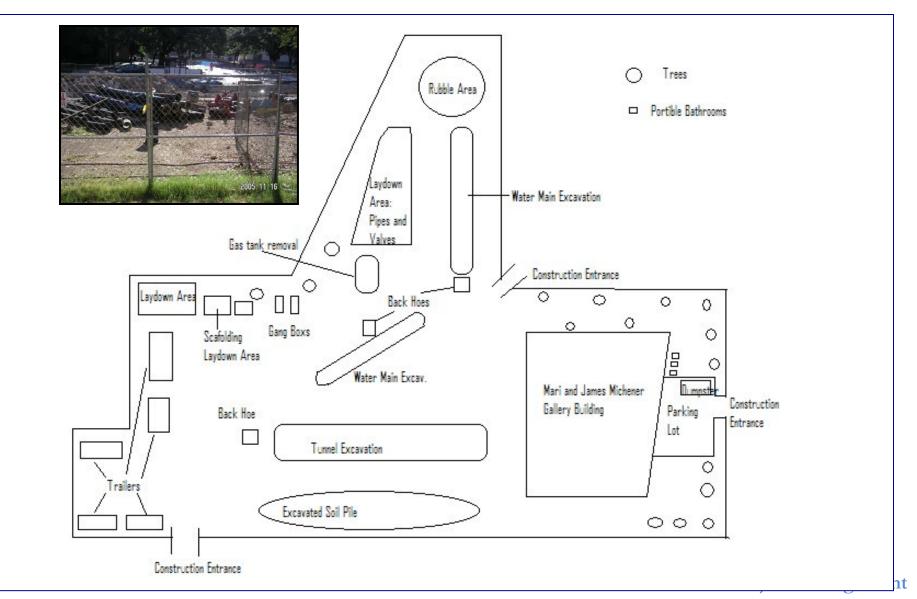
- Jobsite layout plan
 - Plan for temporary facilities, material movement, storage, and handling

• Areas of consideration

- Labor productivity
- Material handling
- Equipment constraints
- Site constraints

• Jobsite layout plan aspects

- Jobsite space allocation
- Jobsite access
- Material handling
- Worker transportation
- Temporary facilities
- Jobsite security


2014 Semester Signage and barricades

Labor Productivity

• Travel time: non-productive time elements

- From gate to worksite
- To sanitary facilities (for toilet, gas, water, etc.)
- Coffee breaks and lunch
- Moving material and asking questions
- Need to be minimum!

Piping Activity: Layout

Week 5 Project Scheduling (1)

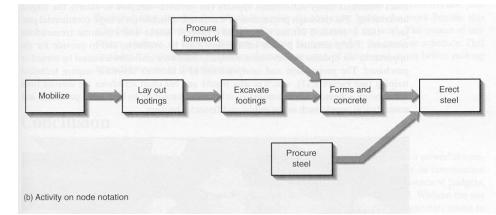
457.657 Civil and Environmental Project Management Department of Civil and Environmental Engineering Seoul National University

> **Prof. Seokho Chi** <u>shchi@snu.ac.kr</u> 건설환경공학부 35동 304호

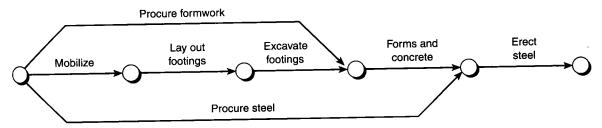
Project Scheduling (PMBOK Chapter 6)

Project Time Management

- Includes the process required to ensure timely completion of the project
- Major Processes
 - 1. Activity definition
 - 2. Activity sequencing
 - 3. Activity duration estimation
 - 4. Schedule development
 - 5. Schedule control


Project Scheduling – Activity Definition

- WBS being the basis for development of the final activity list
- Tools and Techniques
 - Decomposition
 - Involves subdividing project elements into smaller, more manageable components in order to provide better management control
 - Templates
 - An activity list, or a portion of an activity list from a previous project, is often usable as a template for a new project
 - Resource skills, required hours of effort, risk identification, expected deliverables, etc.


2014 Semester 1

Project Scheduling – Activity Sequencing

- Identifying interactivity dependencies
 - Precedence Diagramming Method (PDM) called Activity-On-Node

 Arrow Diagramming Method (ADM) called Activity-On-Arrow (AOA), "old school" not much used as more

2014 Semester 1

(AON)

:t Management

Project Scheduling – Activity Sequencing

• Precedence Notation

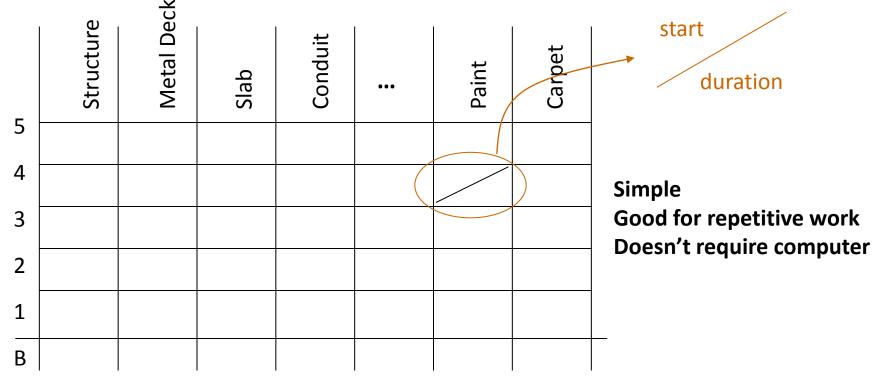
- Activities or operations are placed on nodes
- Arrows defines relationships between activities
 - Finish to Start
 - Start to Start
 - Finish to Finish
 - Start to Finish
- Apply "leads" and "lags" provide ability to overlap activities, allowing the scheduler to model more accurately the project's operation

Project Scheduling – Duration Estimate

- Estimating the number of work periods which will be needed to complete individual activities
- Tools and Techniques
 - Expert judgment: historical information may be used
 - Analogous estimating: called top-down estimation, means using the actual duration of a previous, similar activity
 - Simulation: involves calculating multiple durations with different sets of assumptions

Project Scheduling – Duration Estimate

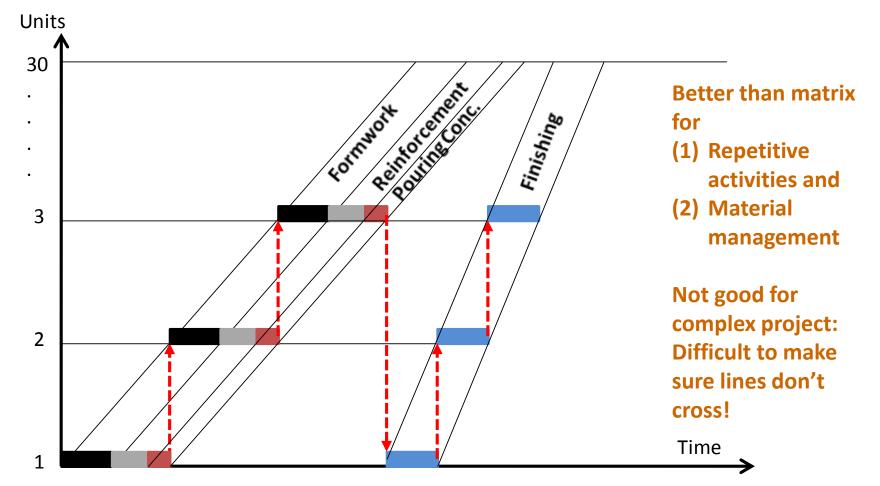
- Duration of an activity varies according to the activity type
 - Production
 - Consult subcontractors
 - Calculate based on quantity and productivity
 - Job conditions, new construction vs. renovation, crew size, work schedule, weather, project calendar, resource calendar
 - Procurement
 - Consult suppliers
 - Review contract documents
 - Administrative
 - Consult agencies
 - Past projects


2014 Semester 1

• Bar (Gantt) chart

G	Task Name	Duration	Start	Finish	August 2003
3	Blow-in attic insulation	1 day	Tue 7/8/03	Wed 7/9/03	MTWTFSSMTWTFSSMTWTFSSMTTWTFSSMTTWTFSSMTTT
1			Thu 7/10/03	Thu 7/10/03	Drywall hailing inspection
	Order finish package	2 hrs	Thu 7/10/03	Thu 7/10/03	
	Tape and texture dryw		Thu 7/10/03	Thu 7/17/03	
1		2 hrs	Thu 7/17/03	Thu 7/17/03	
8		2.5 days	Fri 7/18/03	Wed 7/23/03	Finish carpentry
8	Painting	2.5 days 3 days	Wed 7/23/03	Mon 7/28/03	Painting
	Panning	,	Tue 6/24/03	Tue 7/22/03	
2000		20 days			
	Install housewrap	1 day	Tue 6/24/03	Wed 6/25/03	here here here here here here here here
. v	-	3 days	Wed 6/25/03	Mon 6/30/03	
Ø		5 days	Wed 6/25/03	Wed 7/2/03	
	Siding/Stucco	4 days	Wed 7/2/03	Tue 7/8/03	Siding/Stucco
1	Concrete prep/final gra	le 1 day	Tue 7/8/03	Wed 7/9/03	Concrete prep/final grade *Everyone can access
	Soffit & fascia	2 days	Tue 7/8/03	Thu 7/10/03	Join & Idacia
Ø		lk 2 days	Wed 7/9/03	Fri 7/11/03	Pour driveway and walk Easily computerized
ø	Foundation parging	1 day	Fri 7/11/03	Mon 7/14/03	Foundation parging
Ø	Exterior painting	1 day	Mon 7/14/03	Tue 7/15/03	Exterior painting
	Landscaping	5 days	Tue 7/15/03	Tue 7/22/03	Landscaping
	🗆 Phase 5 Interior Finish	16.38 days	Mon 7/28/03	Tue 8/19/03	
	Order appliances	2 hrs	Mon 7/28/03	Mon 7/28/03	Order appliances:
	Tub & shower wall fini	h 3 days	Mon 7/28/03	Thu 7/31/03	Tub & shower wall finish:
ø	Install resilient/hard floo	rs 3 days	Thu 7/31/03	Tue 8/5/03	However, Install resilient hard floors
-	Install cabinets & cnt-to	ps 1 day	Tue 8/5/03	Wed 8/6/03	Install cabinets & cnt-tops
1	Deliver appliances	2 hrs	Tue 8/5/03	Tue 8/5/03	sometimes difficult Deliver appliances
1	Carpentry pick-up	1 day	Wed 8/6/03	Thu 8/7/03	Carbentry pick-up
Ŵ		1 day	Wed 8/6/03	Thu 8/7/03	to show logical connections install appliances
	Finish electrical	1 dav	INIed 8/6/03	Thu 8/7/03	

2014 Semest


• Matrix Schedules

Hard to use for complex work Typically useful only for part of project Difficult to define relationships

2014 Semester 1

• Line of Balance

2014 Semester 1

• Terminology

- <u>Early Start (ES)</u>: earliest possible time an activity can start based on the logic and durations identified in the network
- <u>Early Finish (EF)</u>: earliest possible time an activity can finish based on the logic and durations identified in the network

• EF = ES + Activity Duration

- <u>Late Finish (LF)</u>: latest possible time an activity can finish based on the logic and durations identified in the network without extending the completion date of the project
- <u>Late Start (LS)</u>: latest possible time an activity can start based on the logic and durations identified in the network without extending the completion date of the project
 - LS = LF Activity Duration

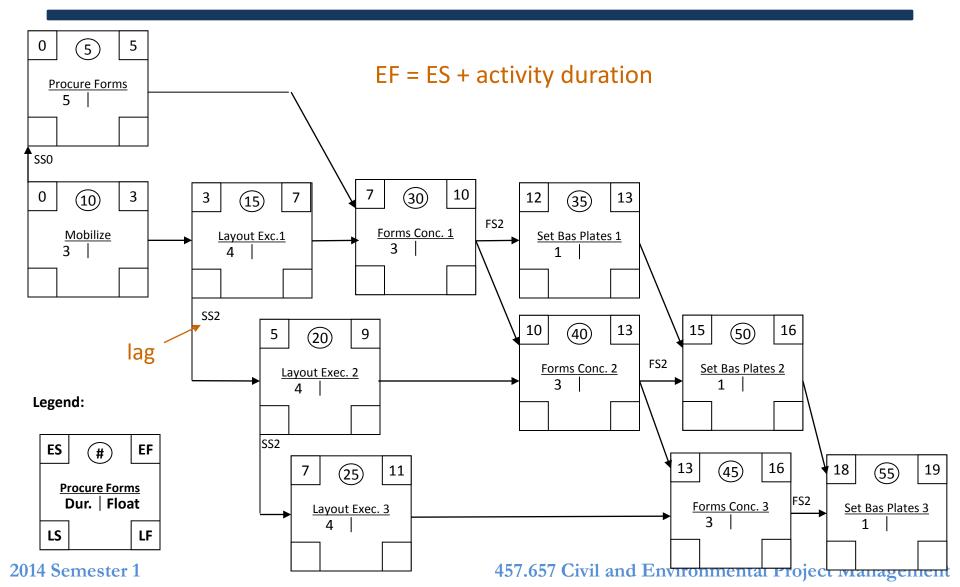
2014 Semester 1

• Terminology

- <u>Float</u>: additional time an activity can use beyond its normal duration and not extend the completion date of the project
 - <u>Total Float (TF)</u>: maximum time an activity can be delayed without delaying the project completion
 - <u>Free Float (FF)</u>: maximum time an activity can be delayed without delaying the start of any succeeding activity
- <u>Critical Path</u>: path from start to finish with no float.
 Therefore, it is the minimum time to complete the project and highly impacts on the entire project schedule.
 <u>Delay in Critical Path = Project Delay!</u>

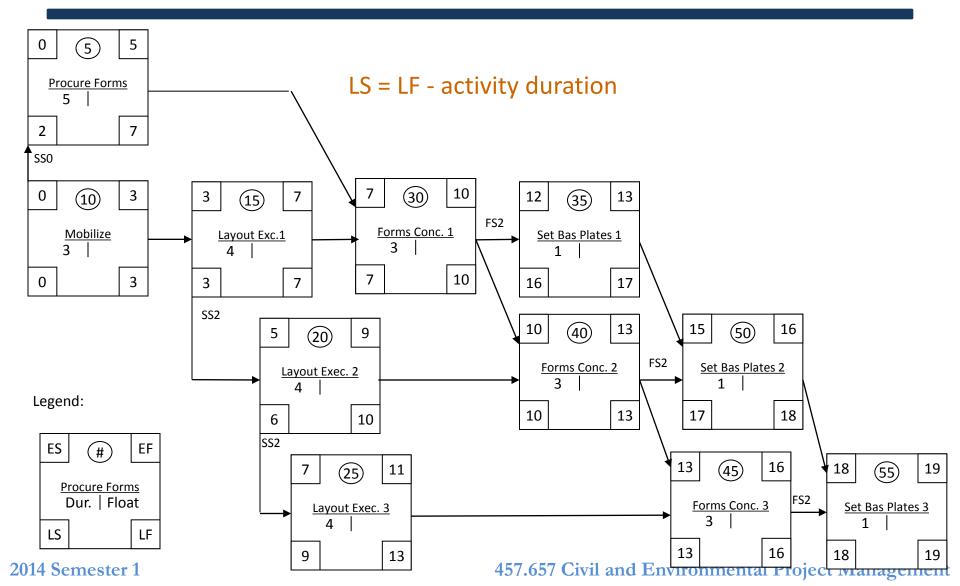
2014 Semester 1

Development Methods

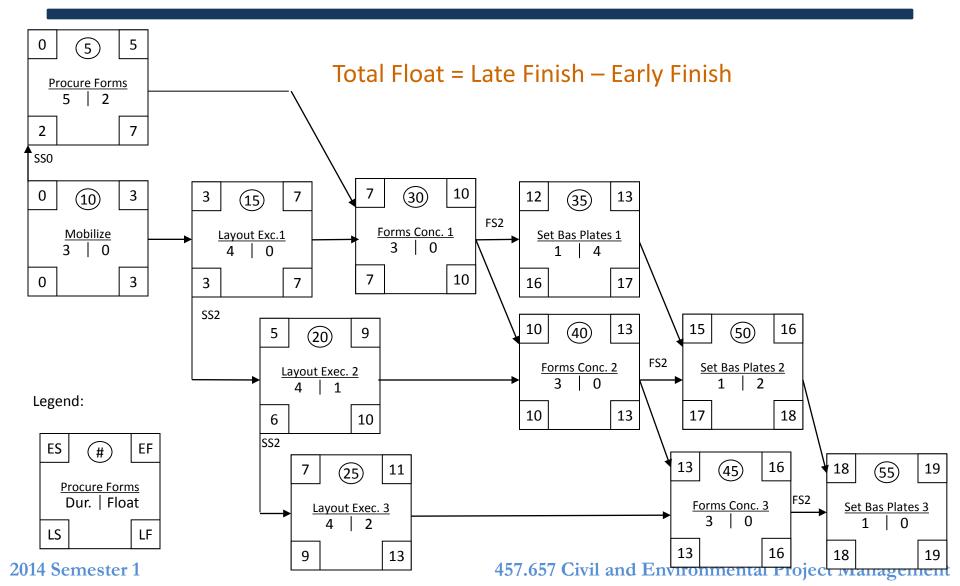

- <u>Critical Path Method (CPM)</u>: calculates a single, deterministic early and late start and finish date for each activity based on specified, sequential network logic and using duration estimate
- <u>Program Evaluation and Review Technique (PERT)</u>: uses sequential network logic and a weighted average duration estimate to calculate project duration

- Network Forward Path Calculations AON
 - AON (precedence notation) Finish to Start Links
 - Activities without predecessors
 - Early Start = 0
 - Early Finish = Early Start + Activity Duration
 - Activities with predecessors
 - Early Start = maximum Early Finish among predecessors
 - Early Finish = Early Start + Activity Duration

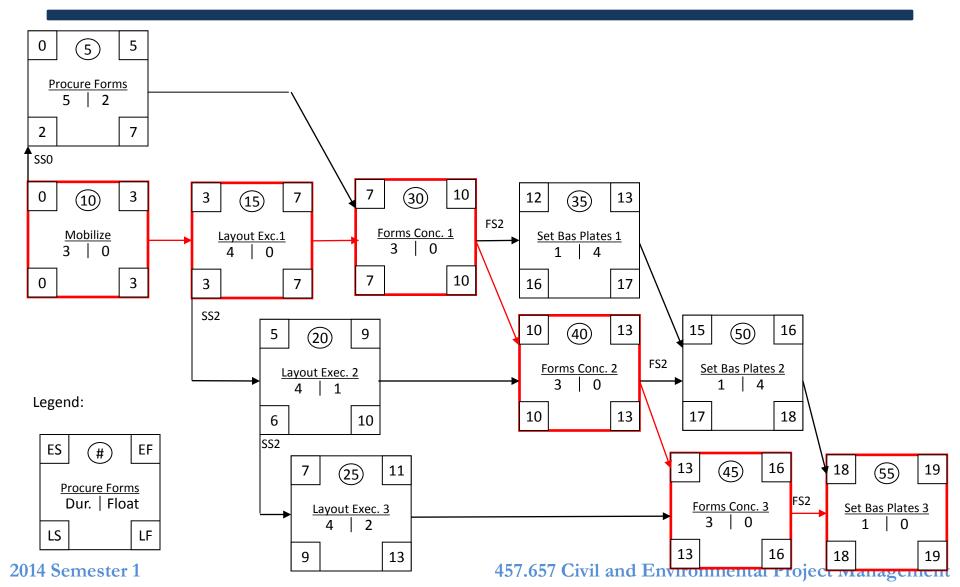
IMPORTANT: Pay attention when working with different link types or when there are leads/lags


2014 Semester 1

Forward Path Calculation



- Network Backward Path Calculations AON
 - AON (precedence notation) Finish to Start Links
 - Activities without successors
 - Late Finish = Early Finish (or project duration)
 - Late Start = Late Finish Activity Duration
 - Activities with successors
 - Late Finish = minimum Late Start among successors
 - Late Start = Late Finish Activity Duration


Backward Path Calculation

Total Float Calculation

Critical Path

Project Scheduling – Schedule Development

• Duration Compression

- Looks for ways to shorten the project schedule without changing the project scope
- <u>Fast Tracking</u>: means you look at activities normally done in sequence and assign them instead partially in parallel. For instance, you would start construction in areas where you felt the design was pretty solid without waiting for the entire design to be completed. **Rework and Risk** ↑
- <u>Crashing</u>: means to throw additional resources with additional costs to the critical path without necessarily getting the highest level of efficiency. For instance, you might add a second worker to the activity usually performed by one worker. Cost ↑

Project Scheduling – Schedule Control

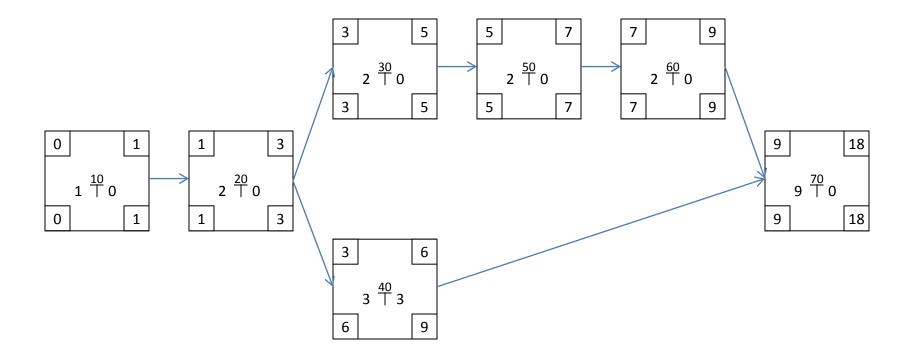
- Controlling changes to the project schedule
- Tools and Techniques
 - Schedule change control system: includes the paperwork, tracking systems, and approval levels
 - Performance measurement: assesses the magnitude of any variations
 - Additional planning: due to prospective changes

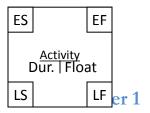
Project Scheduling – Schedule Control

	mavera Project Planner	_						ES	. EF	$\leftrightarrow A$	S. A	F			-
	Edit View Insert Format	<u> </u>			· · ·				·		1 - C				-
					<mark>) [</mark>	8 ⊞ €							8	1	
							_								170CT99 Sun
Activity ID	Activity Description	Orig Dur	Rem	%	Early Start	Early	PLST	PLFN	Actual Start	Actual	SEP		199 NOV	DEC J.	2000 AN FEB N
BA640	Site Preparation	20	Dur 0	100	03SEP99A	Finish 030CT99A	03SEP99	01OCT99	03SEP99	Finish 030CT99		Site Pre	paration		
BA650	Excavation	10		100	030CT99A	45007094	040CT99		030CT99	150CT99			avation		
											-				
BA660	Install Underground Water	5	0	100	180CT99A	310CT99A	180CT99	220CT99	180CT99	31OCT99			V Install Und	erground Wa	iter Lines
BA670	Install Underground Electric	5	0	100	180CT99A	290CT99A	180CT99	22OCT99	180CT99	29OCT99			Install Unde	rground Ele	ctric Conduit
BA680	Form/Pour Concrete Footings	10	10	0	01NOV99	12NOV99	25OCT99	05NOV99				·····	Form/F	our Concret	e Footings
BA681	Concrete Foundation Walls	10	10	0	15NOV99	30NOV99	08NOV99	19NOV99			-	_		Concrete Fou	Indation Walls
BA690	Form and Pour Slab	5	5	0	01DEC99	07DEC99	22NOV99	30NOV99			-			Form and F	our Slab
84700	Backfill and Compact Walls	2	2	0	08DEC99	09DEC99		02DEC99			-		-	Raakfill an	d Compact Walls
							0.02000								
BA701	Foundation Phase Complete	0	0	0		09DEC99		02DEC99						Foundation	n Phase Complet
BA702	Begin Structural Phase	0	0	0	10DEC99		03DEC99							Begin Stru	ictural Phase
BA710	Erect Structural Frame	20	20	0	10DEC99	10JAN00	03DEC99	03JAN00			-		L _		Erect Structural F
BA712	Floor Decking	14	14	0	11JAN00	28JAN00	04JAN00	21JAN00			-				Floor Decki
BA730	Concrete First and Second	15	15	0	31JAN00	18FEB00	24JAN00	11FEB00			-				Con
BA809	Rough-In Phase Begins	0	0	0	09FEB00		02FEB00				-				P Rough-l
BA810	Set Mechanical and Electrical	15	15	0	09FEB00	01MAR00	02FEB00	23FEB00			-				⊽
🗖 Pi	edecessors					×	14FEB00	28FEB00			-				
Activity	BA680 - Form/Pour Concre	te Foot	ings			Jump	14FEB00	28FEB00							
-+							24FEB00	08MAR00			-				
Activ BA660	ity ID Rel Lag TF * FS 0	Install		Descri round \	ption Water Lines		2-11 22000				-				
BA670					Electric Conc			28FEB00							•
							29FEB00								F
•						•	29FEB00	06APR00							
							1		ł	•	•				_
						Group by De	ept, Resp v	/ith Subtota	ls		A	II Activities			
t 🛃 si	art 💽 Inbox - Micr	050		Den	artment of		ecture 14_F	Proj	C Microsof	t Powe	R Drimay	era Proje	En Prima	vera Look	🔿 🍇 🕒 11:4

anagement

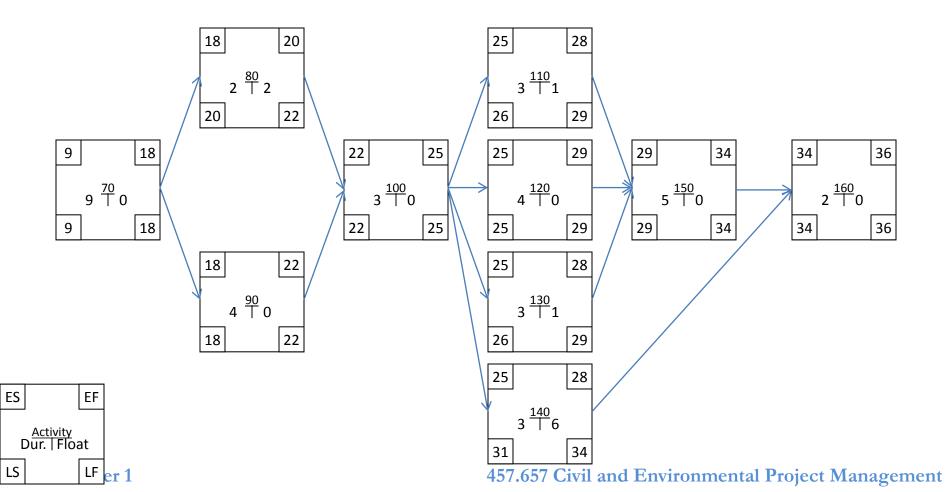
 Project Start
 Date: 4/1/2014

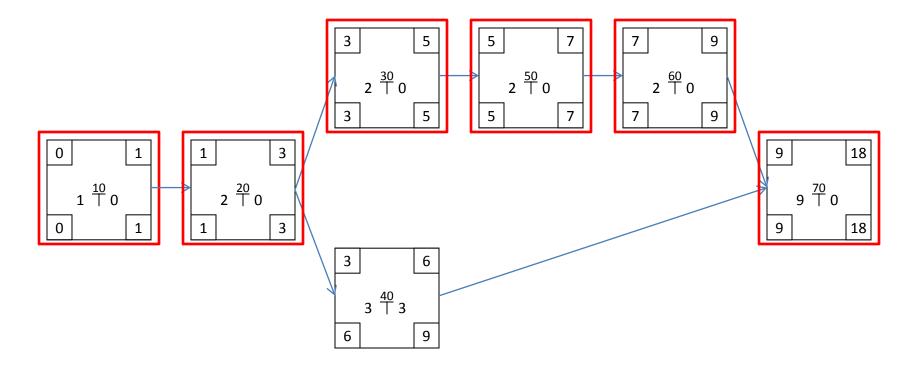

Code Value	Code Title
GC	General Contractor
РС	Plumbing Contractor
EC	Electrical Contractor
RC	Roofing Contractor

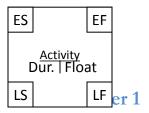

2014 Semester 1

Activity	Description	Duration	Predecessor	Code
10	Mobilization	1		GC
20	Excavation	2	10	GC
30	Place gravel	2	20	GC
40	Place slab forms	3	20	GC
50	Place rebar	2	30	GC
60	Rough in plumbing	2	50	РС
70	Pour & cure concrete	9	40, 60	GC
80	Remove forms	2	70	GC
90	Erect frame & sheath walls	4	70	GC
100	Sheath roof	3	80, 90	RC
110	Electrical	3	100	EC
120	Install siding	4	100	GC
130	Finish carpentry	3	100	GC
140	Finish roof & flashing	3	100	RC
150	Paint	5	110, 120, 130	GC
160	Clean-up	2	140, 150	GC

- 1. Draw the precedence diagram network
- 2. Use CPM calculations to determine the project duration
- 3. Develop a Gantt chart

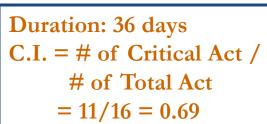

1. Draw the precedence diagram network

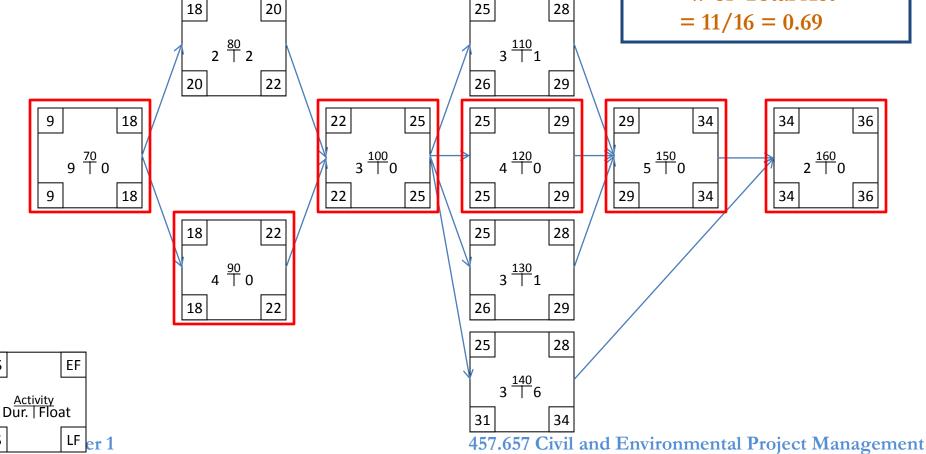



457.657 Civil and Environmental Project Management

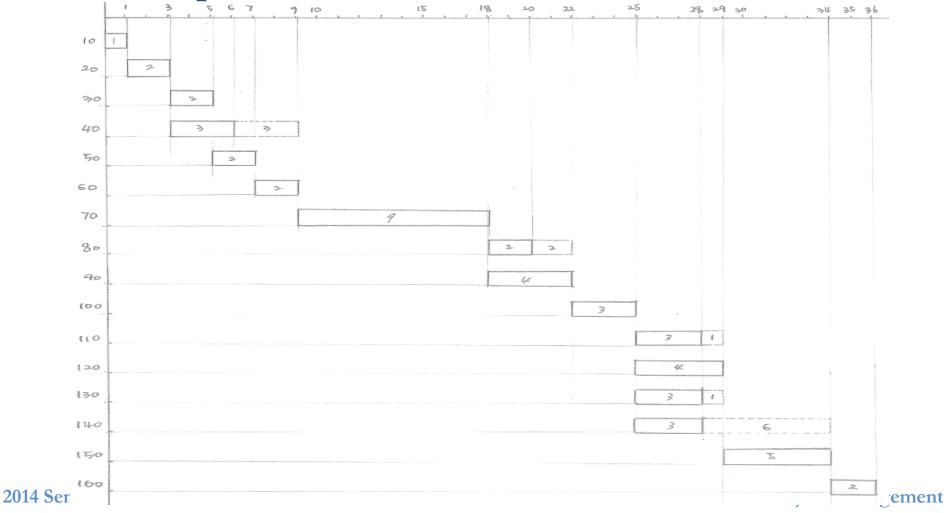
1. Draw the precedence diagram network

2. Determine the project duration




457.657 Civil and Environmental Project Management

2. Determine the project duration


ES

LS

3. Develop a Gantt chart

Group Assignment Exercise

The U.S. Navy plans to design and construct two new recruit barracks to replace the old ones built between the years of 1958 and 1966, located at Naval Station Great Lakes, Illinois. This movement is a part of the RTC RECAP project, transforming Boot Camp from a deficient, facility-centric base into a state-of-theart, training-centric environment. The entire project includes the development of the complete infrastructure (roads, sidewalks, utilities, storm drainage, elevated water tank, railroad underpass, landscaping, etc.) for a 48-acre parcel of land, adjacent to the existing RTC campus. Additional incidental related work must also be considered to provide a complete and useable facility. Each barrack will measure 16,700 square meters and will provide open bay housing for 1,100 recruits, classrooms, and advanced food service and dining facility. The total estimate cost is approximately \$80 million including two barrack (each \$30 million) facilities and green land development.

Group Assignment Exercise

• Assuming a planning time of 6 months for the project, develop a high-level schedule for the project, showing planning, acquisition, design and construction

	Budget	Schedule	
Planning	3 - 5%	6 months	
Project Acquisition		4 months	
Design	10%	6-7 months	
Construction	85%	20 months	

Task Name	Duration			Thu 1/1/0)4			Sun 1/1/0)6	Tue 1/1/08					
		1st Half		1st Half		1st Half		1st Half		1st Half		1st Half		1	
		Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	1	
		-													
Planning	182 days				-	-	•	2 8 8 9 9 9						****	
Project Acqusition	123 days						-	•							
Execution Phase	718 days													-	
Design	197 days													10000	
Construction	592 days														

Group Assignment Exercise

Task Name	Duration	04			Sun 1/1	/06	Tue 1/1/08			
			1st Half	-	1st Half	ſ	1st Ha	lf	1st Half	
		Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3
Planning	182 days	-		,						
Business Planning	33 days									
Conceptual Planning	50 days									
Detailed Planning	85 days									
Project execution Plan	14 days		8							
Project Acquiition	123 days			-						
Bid preparation	45 days									
Pre-Bid meetings	10 days									
Pre-qualification	50 days									
Evaluation	18 days									
Execution Phase	718 days									
Design	197 days									
Detailed Design	126 days									
Estimation	197 days			[202				
Design Modification	130 days									
Construction	592 days					SCHOOL ST.				
Procurement	248 days					dia si di				
Construction works	521 days					S784				
Installation	326 days				E		1 57/10/10/10	100		

2014 Semester 1

457.657 Civil and Environmental Project Management