Mechanics of Composite Materials

CHAPTER 1. Introduction

SangJoon Shin School of Mechanical and Aerospace Engineering Seoul National University

Active Aeroelasticity and Rotorcraft Lab.

Outline

- 1. Introduction
- 2. Micromechanics
- 3. Ply Elasticity
- 4. Laminate Theory
- 5. Failure
- 6. Bending and Coupling
- 7. Thermal Stresses
- 8. Advanced Topics
- Builds on basis solid mechanics and structures. Goes intro anisotropic properties, matrix manipulation of stress & strain, laminated materials

What is a composite material?

- Generally, materials with 2 or more constituents combined by a physical process on a macroscopic scale
- Fibers on particles in a matrix
- Layers of dissimilar materials

Why composite?

- Can achieve properties not possible with a monolithic (homogeneous) material
- Constituents have two different functions

Reinforcement: Provides most of properties

Matrix: Binds together reinforcement

Some Examples

Reinforcement	Matrix	
Straw	Clay	
Sand, Rock	Cement, Water	
Cellulose	Legnin (wood)	

✤ We care about advanced (aerospace) use

Will limit our attention to

- $\textcircled{1} \quad \text{Continuous fibers}$
- 2 Collimated fibers:

Often comes in "prepreg" (preimpregnated) sheets

Why use composites?

1-5

- Better specific properties
- Better specific stiffness, E/p
- Better specific strength, σ_{ult}/ρ for minimum weight structures

Composites are light, low ρ

Material	ρ	E	$\boldsymbol{\sigma}_{ult}$	Ε/ρ*	σ _{ult} /ρ*
	(S.G)	(GPa)	(MPa)	(normalized on AI)	
AI 2024-T3	2.77	74	462	1.0	1.0
Steel 300M	7.84	200	1931	1.0	1.5
Gr/Ep	1.61	130	1661	3.0	6.2

Composites - Less weight for same stiffness and strength

- Importance in Aerospace:

1-6

Range of A/C,
$$R = \frac{L}{D} \frac{V}{(SFC)} \ln \frac{W_0}{W_F}$$
 (Brequet Eq.)

Speed of Rocket,
$$V = V_E \ln \frac{W_0}{W_F}$$
 (Rocket Eq.)
exhaust velocity

where, W_0 : gross weight / W_F : final weight

Less structural weight → { more range / speed more payload
A/C: \$300/lb payload
Satellite: \$10,000/lb
Round world flight (Voyager)
High speed civil transport
Single – stage – orbit

1-7

Other advantage

- Tailoring : Pick fiber, matrix, arrangement to get properties you want (include zero coefficient of tension/extension, bending/torsion coupling, strength)
- Good fatigue life
- Good corrosion resistance
- Manufacture can be cheaper (molding, automatic process)
- Stealth (low radar response)

Disadvantages

1-8

- Cost (materials, more steps now)
- Environmental effects (H₂O, impact, heating, space)
- Technological Risk
- Harden to Design