Mechanics of Composite Materials

CHAPTER 2. Micromechanics of Composites

SangJoon Shin School of Mechanical and Aerospace Engineering Seoul National University

Active Aeroelasticity and Rotorcraft Lab.

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- Lock at fibers, matrix and interactions in a polymer matrix composite
- Fibers: very small diameter fibers of glass are much stronger than bulk properties of glass
- Griffith Experiment, 1921

- For brittle materials, strength $\propto \frac{1}{\sqrt{a}}$ (flaw size)

- Small fibers \rightarrow smaller flaws, fewer flaws
 - \rightarrow much higher strengths than large fibers, bulk properties
- Similarly for graphite fivers, etc.
- Fibers for composite graphite

- Strong along fiber direction, weak bond perpendicular to fiber direction

fiber test

- 1. Brittle
- 2. Much scatter on σ_{ult}/ρ (less scatter on E)

Statistics of Failure

Normal distribution: Convenient for statistics but physical problem

- i) Negative tail
- ii) Goes to infinite in both direction
- Weibull Distribution

- Weibull
$$p(x) = \frac{\alpha}{\beta} \left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$$
 Better for fits here for $x \ge 0$
 β : scale factor (analogous to mean)
mean, $\overline{x} = \beta \Gamma \left(\frac{1}{\alpha} + 1\right)$
 $\overline{x} \cong \beta$

$$\frac{\alpha}{5} = 0.92$$

 0.98

 α : shape factor

$$S \text{ (standard dev.)} = \beta \left[\Gamma \left(\frac{2}{\alpha} + 1 \right) - \Gamma^3 \left(\frac{1}{\alpha} + 1 \right) \right]^{\frac{1}{2}} \cong \beta / \alpha \quad \frac{\alpha}{5} \quad \frac{**}{1.05}$$

$$25 \quad 1.23$$

$$\text{coefficient of variation} = \frac{S}{\overline{x}} \cong \frac{1}{\alpha}$$

P(x) is probability that failure will occur before load x is reached. where, Mean $\cong \beta$, S.D. $\cong \beta(**) \cong \beta/\alpha$, C.O.V. $\cong 1/\alpha$

- Typical Values (100 Ksi = 690Mpa)

Fiber	eta	α	C.O.V.		
Kevlar	~600 Ksi	6	17%	a lot of scatter	
Graphite	~450 Ksi	4	25%		
Steel	~200 Ksi	25~50	2~4%		
(100Ksi = 690 MPa)					

- Consider longer fiber, 21

21 weaker, more scatter

Consider a bundle of fibers,
 When one fiber breaks, others carry load.
 Stress goes up since net area is down.
 Generally, generate less scatter, not more strength

- Fiber Bundles called tows
 - 12K tow \rightarrow 12,000 fibers
 - 20K tow \rightarrow 20,000 fibers
 - $G_r/E_p \rightarrow fiber 7\mu m$, tow 700 μm
- Use of fiber bundles good: high strength, less scatter, but need greater rigidity
 → compression as well as tension
- Use matrix to enclose fiber

• Key role of matrix

- 1. Protect fibers
- 2. Provide rigidity for fibers
- 3. Stress transfer about fiber fracture
- 4. Reduce stress concentration at break

Role of matrix in stress transfer

If matrix and fiber are well bonded, what happens? First consider simple pullout problem

not to scale Typically, $V_F \approx 70\%$ (matrix really more of a thin sheath around fiber)

- $\begin{cases} @ z = 0, \sigma_F = 0 \\ @ z = L, \sigma_f = \sigma_0 \\ @ r = r_a \text{, Displacement} = 0 \text{ (rigid)} \end{cases}$
- Assume uniform σ_f zero $\sigma_m (E_m \approx 3.5 \text{GPa}, E_f \approx 210 \text{GPa})$ matrix acts only in shear (adhesives)
- Unknowns u_f -displacement \mathcal{E}_f, γ_m strain σ_f, τ_m stress
- adhesives) σ_{f} u_{f} $\alpha \approx -\gamma_{m}$
- Strain-Displacement Equation

$$\varepsilon_f = \frac{\partial u_f}{\partial \varepsilon} = u'_f \quad \cdots \quad 1 \qquad \gamma_m = \frac{u_f}{r_a - r_f} \quad \cdots \quad 2$$

- Equilibrium Equation

$$\left(\sigma_f + \frac{\partial \sigma_f}{\partial z} dz\right) \pi r_f^2 - \sigma_f \pi r_f^2 + \tau_m 2\pi r_f dz = 0$$

$$\frac{\partial \sigma_f}{\partial z} + \frac{2\tau_m}{r_f} = 0 , \quad \sigma_f' + \frac{2\tau_m}{r_f} = 0 \quad \cdots \quad \Im$$

- Stress-strain Equation

2-12

$$\sigma_f = E_f \varepsilon_f \quad \cdots \quad \textcircled{4} \qquad \tau_m = G_m \gamma_m \quad \cdots \quad \textcircled{5}$$

- 5 Equations \rightarrow 5 unknowns

$$(5) \rightarrow (3) \qquad \sigma'_f + \frac{2G_m\gamma_m}{r_f} = 0 \quad \cdots \quad (6)$$
$$(2) \rightarrow (6) \qquad \sigma'_f + \frac{2G_m}{r_f} \left(-\frac{u_f}{\left(r_a - r_f\right)} \right) = 0 \quad \cdots \quad (7)$$

taking derivative
$$\sigma_f'' + \frac{2G_m}{r_f(r_a - r_f)}u_f' = 0 \quad \cdots \otimes$$

$$1 \to \circledast \quad \sigma_f'' - \frac{2G_m}{r_f(r_a - r_f)} \varepsilon_f = 0 \quad \cdots \quad 9$$

$$(4) \rightarrow (9) \quad \sigma_f'' - \frac{2G_m}{r_f \left(r_a - r_f\right)E_t} \sigma_f = 0$$

Geom. Mat'l

$$\sigma_f'' - \lambda^2 \sigma_f = 0 \cdots 0$$

where $\lambda^2 = \frac{2}{r_f \left(r_a - r_f\right)} \frac{G_m}{E_f}$

Solving, $\sigma_f = A \sinh \lambda z + B \cosh \lambda z$ B.C. @ z = 0, $\sigma_f = B = 0$ @ z = L, $\sigma_f = A \sinh \lambda L = \sigma_0$

Final solution,
$$\sigma_f = \sigma_0 \frac{\sinh \lambda z}{\sinh \lambda L}$$

- Useful to non-dimensionalize the problem,

Define,
$$\begin{cases} \eta = \frac{z}{r_f}, \ \eta_{\max} = \frac{L}{r_f} \\ \lambda_z = \lambda r_f \eta = \zeta \eta \end{cases}$$

then, $\zeta^2 = \lambda^2 r_f^2 = \frac{2r_f^2}{r_f \left(r_a - r_f\right)} \frac{G_m}{E_f} \text{ or } \zeta^2 = \frac{2\left(r_f / r_a\right)}{1 - \left(r_f / r_a\right)} \frac{G_m}{E_f} \end{cases}$

- Define fiber volume fraction

$$V_{f} = \frac{\text{Volume of fibers}}{\text{Total volume}} \qquad V_{f} = \frac{\pi r_{f}^{2} L}{\pi r_{a}^{2} L} = \frac{r_{f}^{2}}{r_{a}^{2}}, \quad \zeta^{2} = \frac{2\sqrt{V_{f}}}{1 - \sqrt{V_{f}}} \frac{G_{m}}{E_{f}}$$

so, $\zeta = \sqrt{\frac{2\sqrt{V_f}}{1-\sqrt{V_f}}} \frac{G_m}{E_f}$ Non-dim. parameter in terms of measurable composite properties

$$\sigma_f = \sigma_0 \frac{\sinh \zeta \eta}{\sinh \zeta \eta_{\max}}$$

- For shear stress in matrix, recall

$$\sigma'_{f} + \frac{2\tau_{m}}{r_{f}} = 0 \implies \tau_{m} = -\frac{r_{f}}{2}\sigma'_{f} = \sigma_{0}\frac{\zeta}{2}\frac{\cosh\zeta\eta}{\sinh\zeta L}$$

Also, from
$$u_f = -(r_a - r_f)r_m$$
, can show $\frac{u_f}{r_f} = -(1 - \frac{r_f}{r_a})\frac{\tau_m}{G_m}$

consider magnitude of ζ (will scale problem)

$$\zeta = \sqrt{\frac{2\sqrt{V_f}}{1 - \sqrt{V_f}}} \sqrt{\frac{G_m}{E_f}}$$

 $\sqrt{G_m/E_f} = 0.83$ Typical G_r/E_p · · · · $G_m = 133Gpa$, $E_f = 193Gpa$ $\sqrt{2\sqrt{V_f}}/1-\sqrt{V_f}$ ζ (typically ζ <1) V_{f} r_a / r_f 0.16 0.4 1.86 0.154 0.25 0.5 2.20 0.182 0.6 0.36 2.26 0.218 0.49 3.20 0.7 0.226 practical value

- Look at stress distribution in fiber

$$L \gg r_{f} \rightarrow \eta_{\max} \gg 1$$

$$e^{\zeta \eta_{\max}} \gg e^{-\zeta \eta_{\max}}, \quad \frac{\sigma_{f}}{\sigma_{0}} \approx e^{-\zeta \eta'} \quad \text{(also similarly, } \frac{\tau_{m}}{\sigma_{0}} \approx -\frac{\zeta}{2} e^{-\zeta \eta'} \text{)}$$

$$\int_{0}^{\infty} \sigma_{0} \qquad \sigma_{f} \quad \text{Decays exponentially,} \quad \zeta \eta' = 3 \rightarrow 5\% \text{ of } \sigma_{0} \qquad \eta' = \frac{5}{\zeta} \rightarrow \frac{z'}{r_{f}} = \frac{5}{0.218} = 23$$

$$\zeta \eta' = 5 \rightarrow <1\% \text{ of } \sigma_{0} \qquad \eta' = \frac{5}{\zeta} \rightarrow \frac{z'}{r_{f}} = \frac{5}{0.218} = 23$$

$$F_{f} = 0.6$$

$$F_{f} = 0.6$$

- Similarly for shear stress

stress concentration in matrix (like adhesives)

- Have solved this problem

2-17

- To examine fiber-break problem, superimpose 2 solutions

Our problem with $-\sigma_0$ had said $E_c = \infty$ but if $r_c >> r_f$, still rigid

- Adding 1 & 2 gives

2-18

$$\sigma_{f} \quad \sigma_{f} = \sigma_{0} - \sigma_{0}e^{-\zeta\eta'} = \sigma_{0}\left(1 - e^{-\zeta\eta'}\right)$$

$$\tau_{m} = \sigma_{0}\frac{\zeta}{2}e^{-\zeta\eta'}$$
So fiber picks up load again after

So fiber picks up load again after break (also τ_m stress concentration)

- Less than 10 fiber diameters from break, stress in fiber reaches ~ σ_0
- This region called "ineffective zone" total ineffective length for one break $\approx 20d_f$ (one zone each side)
- In real lives, a little worse { matrix deform plastically
 debonding, sliding
- How this affects a composite

5 fiber, one breaks
Ineffective length
$$\delta = 40r_j$$

$$L >> \delta$$

No. of breaks	No Matrix		With Matrix		
	# fiber	Ave. load	Ave. # fiber	Ave. load	
0	5	P/5	5	P/5	-
1	4	P/4	5- δ/L	$\frac{P}{5-\delta/L} \approx \frac{P}{5}$	still good

- Locally, neighboring fibers pick up load,

2-20

See Sastry and Phoenix

"Shielding and Magnification of Loads in composites"

SAMPE Journal

Vol.30, No.4, July-Aug 1994 p.61

- Locally have load > P/5, but it is over small length less chance of break
- Chance of break goes up for larger specimens (more flaws) but damage is localized

- So, Matrix transfers load,
 - only local effect when fiber breaks
 - Distribution shift and tightens
 - Length scaling goes down (fewer flaws)

for Kevlar	without matrix	with matrix	
Ave. bundle strength	350 Ksi	550 Ksi	
C.V.	20~25%	4~5%	
α	4~5	20~25	

 $\sigma_{_0}$

 σ_0

Also have "Whisker Problem" _

- Effective Properties of a Composite (see Jones, Chap.3)
 would like to predict effects of composite constituents and fiber volume fraction on macro-properties of a laminate (modulus, Poisson`s ratio, strength, thermal expansion, conductivity, etc.)
- Use Mechanics of Materials approach (simpler than Theory of Elasticity)
 - Basic idea Choose representative volume element and repeat to form composite Analyze element importance of fiber volume fraction

Assumption

-

- ① Composite (Lamina) is macroscopically homogeneous
 - linear elastic (but orthotropic)
 - initially stress free

- ② Fibers are homogeneous
 - linear elastic
 - isotropic
 - regularly spaced, aligned
- ③ Matrix is homogeneous
 - linear elastic ?
 - isotropic ?
 - void free ?
- Matrix and fibers assumed perfectly bonded.
- Measuring volume fraction
 - Cross-section, polish and count fibers in microscope (area fraction → volume fraction)
 - 2) Dissolve matrix, weigh fibers → get mass fraction
 From densities → volume fraction

First property to model, $\rho_c \rightarrow$ density

- Look @ E_L - Longitudinal modulus

 $\sigma_{_T}$ Look @ E_{τ} - Transverse Modulus _ Ø This looks messy. Simplify as lumped series model. $\sigma_{T} \qquad \sigma_{T} \qquad \sigma_{T} \qquad \sigma_{T} \qquad \sigma_{T} = \sigma_{f} = \sigma_{m}$ Note $\mathcal{E}_{f} = \frac{\sigma_{f}}{E_{Tf}}, \quad \mathcal{E}_{m} = \frac{\sigma_{m}}{E_{m}}$ $a_m/2$ a_{f} $u_f = \varepsilon_f a_f, \ u_m = \varepsilon_m a_m$ $a_{m}/2$ consider displacement, $u_T = u_f + u_m = \varepsilon_f a_f + \varepsilon_m a_m$ $\varepsilon_T = \frac{u_T}{a_m + a_f} = \frac{\varepsilon_f a_f + \varepsilon_m a_m}{a_f + a_m}$ For the same width and depth, $\frac{a_f}{a_m + a_f} = V_f$, $\frac{a_m}{a_m + a_f} = V_m$ $\varepsilon_T = \varepsilon_f V_f + \varepsilon_m V_m$ Divide by stress $\sigma_{T} \left(=\sigma_{f} = \sigma_{m}\right)$ $\frac{\varepsilon_T}{\sigma_T} = V_f \frac{\varepsilon_f}{\sigma_f} + V_m \frac{\varepsilon_m}{\sigma_m} \rightarrow \left| \frac{1}{E_T} = \frac{V_f}{E_{Tf}} + \frac{V_m}{E_m} \right|$ Inverse R.O.M. Inverse R.O.M

- But if we picked parallel model

2-27

$$\varepsilon_T = \varepsilon_f = \varepsilon_m$$

Get R.O.M. $E'_T = E_{Tf}V_f + E_mV_m$

These 2 cases represent bounds on E_T

- For transverse properties, wide bounds from R.O.M.

Many possible theory – depends on model used

- More complex to analyze / elasticity theorem / F.E.M / Rayleigh-Ritz
 But still might be approx.
- Real composite statistical distribution of fibers

- Mixed models (empirical)

simplest idea

$$E_T = E_T (\text{Inverse R.O.M.}) \times \eta + E_T (\text{R.O.M.}) \times (1 - \eta)$$

Fit η to data

Much work along these lines

Hahn
$$E_T = \frac{1+V^*}{\frac{1}{E_{Tf}} + \frac{V^*}{E_m}}, V^* = \eta' \frac{V_m}{V_f}$$
 Chanus $E_T = \frac{1}{\frac{1-\sqrt{V_f}}{E_{Tf}} + \frac{\sqrt{V_f}}{E_m}}, etc$

Another problem, E_{Tf} hard to determine

Practically

- 1. Find an η that works for $V_f \approx 0.60$
- 2. Get E_{Tf} as best problem
- 3. Find $\vec{E_T}$ for V_f not too far from $0.60 \rightarrow (0.55 \sim 0.70)$

Model seems to work

2 - 30

Anyway $v_m \& v_{LTf}$ both ~.3, so anything works

- Look @ shear modulus,

 ΛT

- Could also do a parallel model, get R.O.M. rule
- Use some Mixed model or some experimental fit of η
- Hard to measure $G_{\scriptscriptstyle LTf}$

Another property, Look @ Thermal Expansion, CTE α_L

(Coeff. Thermal Expansion)

If matrix and fiber were independent,

Assume bonded,

$$\Box \longrightarrow \sigma_m = E_m (\varepsilon_m - \alpha_m \Delta T) \cdots (1)$$

$$\Box \longrightarrow \sigma_f = E_{Lf} (\varepsilon_f - \alpha_f \Delta T) \cdots (2)$$
No total load over end $\sigma_m A_m + \sigma_f A_f = 0 \cdots (3)$
Note $\varepsilon_m = \varepsilon_f = \varepsilon_c = \alpha_c \Delta T \cdots (4)$

- Placing 1, 2, 4 into 3 gives

 $E_{m}(\varepsilon_{c} - \alpha_{m}\Delta T)A_{m} + E_{Lf}(\varepsilon_{c} - \alpha_{Lf}\Delta T)A_{f} = 0$ Multiple by L and divided by volume and recall $V_{m} = \frac{A_{m}L}{vol.}, etc, V_{f} = etc$ $E_{m}(\varepsilon_{c} - \alpha_{m}\Delta T)v_{m} + E_{Lf}(\varepsilon_{c} - \alpha_{Lf}\Delta T)v_{f} = 0$

This yield

$$\varepsilon_{c} = \frac{\alpha_{m}E_{m}V_{m} + \alpha_{Lf}E_{Lf}V_{f}}{E_{m}V_{m} + E_{Lf}V_{f}}\Delta T$$

Modulus weighted R.O.M.

Deal with
$$rac{E_{Lf}V_f}{E_mV_m+E_{Lf}V_f}$$
 instead of $rac{V_f}{V_m+V_f}$

- Note: composite stress-free at cure temperature when cools down $(\Delta T < 0)$ residual stresses σ_m, σ_{Lf} will be created.

- Transverse C.T.E, α_{Tc}, harder to obtain
 Moisture cause a similar problem
 Matrix swells, fiber doesn`t.
- Look @ Thermal Conductivity, K_L

$$\begin{array}{c} T_{1} \\ q \rightarrow \end{array} \\ \hline P_{2} \hline P_{2} \\ \hline P_{2} \\ \hline P_{2} \hline \hline P_{2} \\ \hline P_{2} \hline P_{2} \\ \hline P_{2} \hline \hline P_{2} \\ \hline P_{2} \hline P_{2} \hline P_{2} \hline P_{2} \hline P_{2} \hline \hline P_{2} \hline P_{2}$$

- Transverse thermal conductivity – K_T

$$K_{Tf} >>> K_m, K_{Tf} > K_{Lf}$$

good conductor

consider

 V_f 's same, but K_{Tc} 's much different

 K_{Tc} very dependent on micro structure. can't make good simplified model.

- Electrical Conductivity - $C_{\!_c}$ somewhat similar $C_{\!_f} >>> C_{\!_m}$

so,
$$C_{Lc} \approx R.O.M. \approx C_{Lf}V_f$$

 $C_{\rm Tc} \rightarrow$ difficult to establish (paths @ microstructure)

Also, electrical behavior is dominated by contact

metal

2 - 35

fiber

a little glue on space dominates electrical behavior

- Strength – difficult to predict

```
look @ Tension
```

2-36

$$\leftarrow \textcircled{0}$$
Tempting to use R.O.M. $X_t = X_{ft}V_f + X_{mt}V_m$
Small
Let's try this
$$X_{ft} = 1,990MPa \text{ (length)}$$

$$X_{ct} = 1,660MPa \text{ (typical Gr/Ep) } V_f = 0.60$$

$$X_{mt} = 70MPa$$

$$X_{cT} = 1,990(0.6) + 70(0.4) = 1,270MPa \text{ No!}$$
R.O.M. should have been Upper Bound
Effective fiber strength is increased by load sharing through matrix
$$X_{fT}^{eff} \approx \frac{X_{cT}}{V_f} = \frac{1,660}{0.6} = 2,770MPa$$
For very low fiber volume fractions

actually $V_f < 1.0$ R.O.M. reasonable in practice

- Compressive strength

Dominated by fiber bucking

Controlled by fiber & matrix stiffness, fiber geometry

For most composites, material behavior gives

 $X_c \approx X_T$

But this is not true for Kevlar, Pitch fiber Gr/Ep,

and in structures, careful of delamination, buckling

Layers (laminate)

Transverse Tension Strength

Matrix dominated

 Y_t : very low

crack runs along fibers

impede formation of a plastic zone

- Transverse Compression

- Shear \rightarrow matrix dominated
 - $Y_c > S > Y_T$ typical

splits can cause delamination of layer

- Fatigue
 - For metals \rightarrow crack growth under cyclic loads. a major problem.
 - Carbon fibers are very good in fatigue 0° dominated structures fatigue resistant (in tension) Careful of delaminations in compression and off axis plies
- Impact

For Gr/Ep \rightarrow generally low strain to failure, impact a major concern

- Environmental Resistance

Moisture intake \rightarrow changes matrix properties

Temperature \rightarrow can change matrix properties

People can concern with Hot, Wet, Post Impact, Compression test.

- Talked about Micromechanics
 - (How composites work, trends, and usefulness...)
 - Actually will use Experimental Data in design of structures from composites
 - will now talk about Macromechanics using composites to design structure