Mechanics of Composite Materials

CHAPTER 2. Micromechanics of Composites

SangJoon Shin
School of Mechanical and Aerospace Engineering
Seoul National University

Chap 2. Micromechanics of Composites

2. Micromechanics of Composites

- Lock at fibers, matrix and interactions in a polymer matrix composite
- Fibers: very small diameter fibers of glass are much stronger than bulk properties of glass
- Griffith Experiment, 1921

- For brittle materials, strength $\propto \frac{1}{\sqrt{a}}$ (flaw size)

2. Micromechanics of Composites

- Small fibers \rightarrow smaller flaws, fewer flaws
\rightarrow much higher strengths than large fibers, bulk properties
- Similarly for graphite fivers, etc.
- Fibers for composite - graphite

Pitch

- Strong along fiber direction, weak bond perpendicular to fiber direction fiber test

1. Brittle
2. Much scatter on $\sigma_{\text {uit }} / \rho$ (less scatter on E)

2. Micromechanics of Composites

* Statistics of Failure

Normal distribution: Convenient for statistics but physical problem
i) Negative tail
ii) Goes to infinite in both direction

- Weibull Distribution

2. Micromechanics of Composites

- Weibull $p(x)=\frac{\alpha}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$ Better for fits here for $x \geq 0$
β : scale factor (analogous to mean)

α : shape factor

$S($ standard dev. $)=\beta \underbrace{\left[\Gamma\left(\frac{2}{\alpha}+1\right)-\Gamma^{3}\left(\frac{1}{\alpha}+1\right)\right]^{1 / 2}}_{* *} \cong \beta / \alpha$| α | $* *$ |
| :---: | :---: |
| 5 | 1.05 |
| 25 | 1.23 |

coefficient of variation $=\frac{S}{\bar{X}} \cong \frac{1}{\alpha}$

2. Micromechanics of Composites

- Cumulative Distribution $P(x)=\int_{0}^{x} p(x) d x=1-e^{-(x / \beta)^{\alpha}}$

$P(x)$ is probability that failure will occur before load x is reached.
where, Mean $\cong \beta$,
S.D. $\cong \beta(* *) \cong \beta / \alpha$,
C.O.V. $\cong 1 / \alpha$
- Typical Values (100 Ksi = 690Mpa)

Fiber	β	α	C.O.V.
Kevlar	$\sim 600 \mathrm{Ksi}$	6	17%
Graphite	$\sim 450 \mathrm{Ksi}$	4	25%
Steel	$\sim 200 \mathrm{Ksi}$	$25 \sim 50$	$2 \sim 4 \%$
	$(100 \mathrm{Ksi}=690 \mathrm{MPa})$		

2. Micromechanics of Composites

- Consider longer fiber, 21

21 weaker, more scatter

- Consider a bundle of fibers,

When one fiber breaks, others carry load.
Stress goes up since net area is down.
Generally, generate less scatter, not more strength

2. Micromechanics of Composites

- Fiber Bundles called tows

12 K tow $\rightarrow 12,000$ fibers
20 K tow $\rightarrow 20,000$ fibers
$\mathrm{G}_{\mathrm{r}} / \mathrm{E}_{\mathrm{p}} \rightarrow$ fiber $7 \mu \mathrm{~m}$, tow $700 \mu \mathrm{~m}$

- Use of fiber bundles good: high strength, less scatter, but need greater rigidity \rightarrow compression as well as tension
- Use matrix to enclose fiber

2. Micromechanics of Composites

* Key role of matrix

1. Protect fibers
2. Provide rigidity for fibers
3. Stress transfer about fiber fracture
4. Reduce stress concentration at break

If matrix and fiber are well bonded, what happens?
First consider simple pullout problem
break
not to scale
Typically, $\mathrm{V}_{\mathrm{F}} \approx 70 \%$
(matrix really more of a thin sheath around fiber)

2. Micromechanics of Composites

- B.C. ${ }^{\text {s }}$

$$
\left\{\begin{array}{l}
@ Z=0, \sigma_{F}=0 \\
@ Z=L, \sigma_{f}=\sigma_{0} \\
@ r=r_{a}, \text { Displacement }=0 \text { (rigid) }
\end{array}\right.
$$

- Assume uniform σ_{f}

$$
\text { zero } \sigma_{m}\left(E_{m} \approx 3.5 \mathrm{GPa}, E_{f} \approx 210 \mathrm{GPa}\right)
$$

matrix acts only in shear (adhesives)

- Unknowns u_{f}-displacement
$\varepsilon_{f}, \gamma_{m}$ - strain
σ_{f}, τ_{m} - stress
- Strain-Displacement Equation

$$
\begin{equation*}
\varepsilon_{f}=\frac{\partial u_{f}}{\partial \varepsilon}=u_{f}^{\prime} \tag{1}
\end{equation*}
$$

2. Micromechanics of Composites

- Equilibrium Equation

$$
\begin{align*}
& \left(\sigma_{f}+\frac{\partial \sigma_{f}}{\partial z} d z\right) \pi r_{f}^{2}-\sigma_{f} \pi r_{f}^{2}+\tau_{m} 2 \pi r_{f} d z=0 \\
& \frac{\partial \sigma_{f}}{\partial z}+\frac{2 \tau_{m}}{r_{f}}=0, \quad \sigma_{f}^{\prime}+\frac{2 \tau_{m}}{r_{f}}=0 \quad \cdots(3) \tag{3}
\end{align*}
$$

- Stress-strain Equation

$$
\begin{equation*}
\sigma_{f}=E_{f} \varepsilon_{f} \quad \cdots(4) \quad \tau_{m}=G_{m} \gamma_{m} \tag{5}
\end{equation*}
$$

- 5 Equations $\rightarrow 5$ unknowns

$$
\begin{aligned}
& \text { (5) } \rightarrow \text { (3) } \quad \sigma_{f}^{\prime}+\frac{2 G_{m} \gamma_{m}}{r_{f}}=0 \cdots \text { (6) } \\
& \text { (2) } \rightarrow \text { (6) } \quad \sigma_{f}^{\prime}+\frac{2 G_{m}}{r_{f}}\left(-\frac{u_{f}}{\left(r_{a}-r_{f}\right)}\right)=0 \quad \cdots \text { (7) } \\
& \text { taking derivative } \sigma_{f}^{\prime \prime}+\frac{2 G_{m}}{r_{f}\left(r_{a}-r_{f}\right)} u_{f}^{\prime}=0 \cdots \text { (8) }
\end{aligned}
$$

2. Micromechanics of Composites

(1) \rightarrow (8) $\quad \sigma_{f}^{\prime \prime}-\frac{2 G_{m}}{r_{f}\left(r_{a}-r_{f}\right)} \varepsilon_{f}=0 \cdots$ (9)
(4) \rightarrow (9) $\quad \sigma_{f}^{\prime \prime}-\frac{2 G_{m}}{r_{f}\left(r_{a}-r_{f}\right) E_{t}} \sigma_{f}=0$

$$
\sigma_{f}^{\prime \prime}-\lambda^{2} \sigma_{f}=0 . .\left(10 \quad \text { where } \quad \lambda^{2}=\frac{2}{r_{f}\left(r_{a}-r_{f}\right)} \frac{G_{m}}{E_{f}}\right.
$$

Solving, $\sigma_{f}=A \sinh \lambda z+B \cosh \lambda z$
B.C. @ $z=0, \sigma_{f}=B=0$
$@ z=L, \sigma_{f}=A \sinh \lambda L=\sigma_{0}$
Final solution, $\sigma_{f}=\sigma_{0} \frac{\sinh \lambda z}{\sinh \lambda L}$

2. Micromechanics of Composites

- Useful to non-dimensionalize the problem,

Define, $\left\{\begin{array}{l}\eta=\frac{z}{r_{f}}, \eta_{\max }=\frac{L}{r_{f}} \\ \lambda_{z}=\lambda r_{f} \eta=\zeta \eta\end{array}\right.$

$$
\text { then, } \zeta^{2}=\lambda^{2} r_{f}^{2}=\frac{2 r_{f}^{2}}{r_{f}\left(r_{a}-r_{f}\right)} \frac{G_{m}}{E_{f}} \text { or } \zeta^{2}=\frac{2\left(r_{f} / r_{a}\right)}{1-\left(r_{f} / r_{a}\right)} \frac{G_{m}}{E_{f}}
$$

- Define fiber volume fraction

$$
V_{f}=\frac{\text { Volume of fibers }}{\text { Total volume }} \quad V_{f}=\frac{\pi r_{f}^{2} L}{\pi r_{a}^{2} L}=\frac{r_{f}^{2}}{r_{a}^{2}}, \quad \zeta^{2}=\frac{2 \sqrt{V_{f}}}{1-\sqrt{V_{f}}} \frac{G_{m}}{E_{f}}
$$

$$
\text { so, } \zeta=\sqrt{\frac{2 \sqrt{V_{f}}}{1-\sqrt{V_{f}}} \frac{G_{m}}{E_{f}}}
$$

Non-dim. parameter in terms of measurable composite properties

$$
\sigma_{f}=\sigma_{0} \frac{\sinh \zeta \eta}{\sinh \zeta \eta_{\max }}
$$

2. Micromechanics of Composites

- For shear stress in matrix, recall

$$
\sigma_{f}^{\prime}+\frac{2 \tau_{m}}{r_{f}}=0 \rightarrow \tau_{m}=-\frac{r_{f}}{2} \sigma_{f}^{\prime}=\sigma_{0} \frac{\zeta}{2} \frac{\cosh \zeta \eta}{\sinh \zeta L}
$$

Also, from $u_{f}=-\left(r_{a}-r_{f}\right) r_{m}$, can show $\frac{u_{f}}{r_{f}}=-\left(1-\frac{r_{f}}{r_{a}}\right) \frac{\tau_{m}}{G_{m}}$
consider magnitude of ζ (will scale problem)

$$
\zeta=\sqrt{\frac{2 \sqrt{V_{f}}}{1-\sqrt{V_{f}}}} \sqrt{\frac{G_{m}}{E_{f}}}
$$

Typical $G_{r} / E_{p} \cdots G_{m}=133 G p a, E_{f}=193 G p a \quad \sqrt{G_{m} / E_{f}}=0.83$

r_{a} / r_{f}	V_{f}	$\sqrt{2 \sqrt{V_{f}} / 1-\sqrt{V_{f}}}$	$\zeta \quad$ (typically $\zeta<1$)
0.16	0.4	1.86	0.154
0.25	0.5	2.20	0.182
0.36	2.26	0.218	
0.49	0.6 3.20 0.7 practical value	0.226	

2. Micromechanics of Composites

- Look at stress distribution in fiber

$$
L \gg r_{f} \rightarrow \eta_{\max } \gg 1
$$

$$
e^{\zeta \eta_{\max }} \gg e^{-\zeta \eta_{\max }}, \frac{\sigma_{f}}{\sigma_{0}} \approx e^{-\zeta \eta^{\prime}} \quad \text { (also similarly, } \frac{\tau_{m}}{\sigma_{0}} \approx-\frac{\zeta}{2} e^{-\zeta \eta^{\prime}} \text {) }
$$

Decays exponentially,

$$
\begin{aligned}
& \zeta \eta^{\prime}=3 \rightarrow 5 \% \text { of } \sigma_{0} \\
& \zeta \eta^{\prime}=5 \rightarrow<1 \% \text { of } \sigma_{0}
\end{aligned} \quad \eta^{\prime}=\frac{5}{\zeta} \rightarrow \frac{z^{\prime}}{r_{f}}=\frac{5}{0.218}=23
$$

By $\sim 20 r_{f}$ (10 diam. $), \sigma_{f}$ all gone

2. Micromechanics of Composites

- Similarly for shear stress

stress concentration in matrix (like adhesives)
- Have solved this problem

Formed load transfer quickly to matrix

2. Micromechanics of Composites

- To examine fiber-break problem, superimpose 2 solutions

- Adding (1) \& (2) gives

2. Micromechanics of Composites

- Less than 10 fiber diameters from break, stress in fiber reaches $\sim \sigma_{0}$
- This region called "ineffective zone"
total ineffective length for one break $\approx 20 d_{f}$ (one zone each side)
- In real lives, a little worse $\{$ - matrix deform plastically
- debonding, sliding
- How this affects a composite

5 fiber, one breaks
I neffective length $\delta=40 r_{f}$
$L \gg \delta$

No. of breaks	No Matrix		With Matrix	
	5	$\mathrm{P} / 5$	5	$\mathrm{P} / 5$
1	4	$\mathrm{P} / 4$	$5-\delta / L$	$\frac{P}{5-\delta / L} \approx \frac{P}{5}$

2. Micromechanics of Composites

- Locally, neighboring fibers pick up load,

See Sastry and Phoenix
"Shielding and Magnification of Loads in composites"
SAMPE Journal
Vol.30, No.4, July-Aug 1994 p. 61

- Locally have load $>P / 5$, but it is over small length less chance of break
- Chance of break goes up for larger specimens (more flaws) but damage is localized

more length, more breaks, but localized

2. Micromechanics of Composites

- So, Matrix transfers load,
- only local effect when fiber breaks
- Distribution shift and tightens
- Length scaling goes down (fewer flaws)

for Kevlar	without matrix	with matrix
Ave. bundle strength	350 Ksi	550 Ksi
C.V.	$20 \sim 25 \%$	$4 \sim 5 \%$
α	$4 \sim 5$	$20 \sim 25$

- Also have "Whisker Problem"

fibers pick up load

2. Micromechanics of Composites

- Effective Properties of a Composite (see Jones, Chap.3)
would like to predict effects of composite constituents and fiber volume fraction on macro-properties of a laminate
(modulus, Poisson`s ratio, strength, thermal expansion, conductivity, etc.)
- Use Mechanics of Materials approach (simpler than Theory of Elasticity)

Basic idea - Choose representative volume element and repeat to form composite Analyze element importance of fiber volume fraction

- Define L-T coordinate system

Length Transverse

- Assumption
(1) Composite (Lamina) is - macroscopically homogeneous
- linear elastic (but orthotropic)
- initially stress free

2. Micromechanics of Composites

(2) Fibers are - homogeneous

- linear elastic
- isotropic
- regularly spaced, aligned
(3) Matrix is - homogeneous
- linear elastic?
- isotropic?
- void free?
- Matrix and fibers assumed perfectly bonded.
- Measuring volume fraction

1) Cross-section, polish and count fibers in microscope (area fraction \rightarrow volume fraction)
2) Dissolve matrix, weigh fibers \rightarrow get mass fraction From densities \rightarrow volume fraction

2. Micromechanics of Composites

First property to model, $\rho_{c} \rightarrow$ density

$$
\begin{aligned}
& \left.A_{m}^{A_{m}} \begin{array}{l}
M_{f}=\rho_{f} A_{f} L, M_{m}=\rho_{m} A_{m} L \\
\rho_{c}=\frac{M_{f}+M_{m}}{v o l}=\frac{\rho_{f} A_{f} L+\rho_{m} A_{m} L}{\left(A_{f}+A_{m}\right) L} \\
\text { where } V_{f}=\frac{A_{f}}{A_{f}+A_{m}}=\frac{r_{f}^{2}}{r_{a}^{2}}, V_{m}=1-V_{f} \\
\text { Rule of Mixtures }
\end{array}\right\} \begin{array}{l}
\text { If no voids }
\end{array} \\
& \text { Fiber vol. fraction }
\end{aligned}
$$

- Look @ E_{L} - Longitudinal modulus

2. Micromechanics of Composites

Assume Perfect bond $\rightarrow \varepsilon_{L}=\varepsilon_{L f}=\varepsilon_{L m}$ No lateral constraint, $\sigma_{T}=0$

$$
\begin{aligned}
& \sigma_{L}=\frac{A_{f} \sigma_{f}+A_{m} \sigma_{m}}{A_{f} \sigma_{f}}=V_{f} \sigma_{f}+V_{m} \sigma_{m} \\
& \sigma_{f}=E_{L f} \underbrace{}_{\varepsilon_{L f}}, \sigma_{m}=E_{L m} \varepsilon_{L m} \\
& \frac{\sigma_{L}}{\varepsilon_{L}}=E_{L}=V_{f} E_{L f}+V_{m} E_{m} \quad \text { R.O.M. again }
\end{aligned}
$$

2. Micromechanics of Composites

- Look @ E_{T} - Transverse Modulus This looks messy.
Simplify as lumped series model.

consider displacement, $u_{T}=u_{f}+u_{m}=\varepsilon_{f} a_{f}+\varepsilon_{m} a_{m}$

$$
\varepsilon_{T}=\frac{u_{T}}{a_{m}+a_{f}}=\frac{\varepsilon_{f} a_{f}+\varepsilon_{m} a_{m}}{a_{f}+a_{m}}
$$

For the same width and depth, $\frac{a_{f}}{a_{m}+a_{f}}=V_{f}, \frac{a_{m}}{a_{m}+a_{f}}=V_{m} \quad \varepsilon_{T}=\varepsilon_{f} V_{f}+\varepsilon_{m} V_{m}$
Divide by stress $\sigma_{T}\left(=\sigma_{f}=\sigma_{m}\right)$
$\frac{\varepsilon_{T}}{\sigma_{T}}=V_{f} \frac{\varepsilon_{f}}{\sigma_{f}}+V_{m} \frac{\varepsilon_{m}}{\sigma_{m}} \rightarrow \frac{1}{E_{T}}=\frac{V_{f}}{E_{T f}}+\frac{V_{m}}{E_{m}}$

2. Micromechanics of Composites

- But if we picked parallel model

$\varepsilon_{T}=\varepsilon_{f}=\varepsilon_{m}$
Get R.O.M. $E_{T}^{\prime}=E_{T f} V_{f}+E_{m} V_{m}$
These 2 cases represent bounds on E_{T}
- For transverse properties, wide bounds from R.O.M.

Many possible theory - depends on model used

2. Micromechanics of Composites

- More complex to analyze / elasticity theorem / F.E.M / Rayleigh-Ritz But still might be approx.
- Real composite - statistical distribution of fibers

- Mixed models (empirical)
simplest idea

$$
E_{T}=E_{T}(\text { Inverse R.O.м. }) \times \eta+E_{T}(\text { R.O.M. }) \times(1-\eta)
$$

Fit η to data

Family of curves, Try fit

2. Micromechanics of Composites

Much work along these lines

$$
\text { Hahn } E_{T}=\frac{1+V^{*}}{\frac{1}{E_{T f}}+\frac{V^{*}}{E_{m}}}, V^{*}=\eta^{\prime} \frac{V_{m}}{V_{f}} \quad \text { Chanus } E_{T}=\frac{1}{\frac{1-\sqrt{V_{f}}}{E_{T f}}+\frac{\sqrt{V_{f}}}{E_{m}}} \text {, etc }
$$

Another problem, $E_{T f}$ hard to determine

Practically

1. Find an η that works for $V_{f} \approx 0.60$
2. Get $E_{T f}$ as best problem
3. Find E_{T} for V_{f} not too far from $0.60 \rightarrow(0.55 \sim 0.70)$

2. Micromechanics of Composites

- Look @ $v_{L T}$ Poisson's Ratio

$$
\begin{aligned}
& \text { Assume } \varepsilon_{L}=\varepsilon_{L f}=\varepsilon_{L m} \\
& \varepsilon_{T f}=-v_{L T f} \varepsilon_{L f} \\
& \varepsilon_{T m}=-v_{m} \varepsilon_{L m} \\
& \quad u=u_{m}+u_{f}=\varepsilon_{T m} a_{m}+\varepsilon_{T f} a_{f} \\
& -u=a_{m} v_{m} \varepsilon_{L m}+a_{f} v_{L T f} \varepsilon_{L f}
\end{aligned}
$$

$$
-\frac{u}{a_{m}+a_{f}}=\left(\frac{a_{m}}{a_{m}+a_{f}} v_{m}+\frac{a_{f}}{a_{m}+a_{f}} v_{L T f}\right) \varepsilon_{L}
$$

$$
\varepsilon_{T}=\left(V_{m} v_{m}+V_{f} v_{L T f}\right) \varepsilon_{L}
$$

$$
-\frac{\varepsilon_{T}}{\varepsilon_{L}}=v_{L T}=V_{m} v_{m}+V_{f} v_{L T f} \quad: \text { R.O.M }
$$

Model seems to work
Anyway $v_{m} \& v_{L T f}$ both $\sim .3$, so anything works

2. Micromechanics of Composites

- Look @ shear modulus,

$$
\begin{aligned}
& \tau_{m}=\tau_{f}=\tau \\
& \gamma_{m}=\tau_{m} / G_{m}, \quad \gamma_{f}=\tau_{f} / G_{L T f} \\
& u=\gamma_{m} a_{m}+\gamma_{f} a_{f} \\
& \frac{u}{a_{m}+a_{f}}=\gamma_{m} \frac{a_{m}}{a_{m}+a_{f}}+\gamma_{m} \frac{a_{m}}{a_{m}+a_{f}} \\
& \bar{\gamma}=\gamma_{m} V_{m}+\gamma_{f} V_{f}
\end{aligned}
$$

2. Micromechanics of Composites

- Could also do a parallel model, get R.O.M. rule
- Use some Mixed model or some experimental fit of η
- Hard to measure $G_{L T f}$

Another property, Look @ Thermal Expansion, CTE α_{L}

(Coeff. Thermal Expansion)

If matrix and fiber were independent,

Assume bonded,

No total load over end $\sigma_{m} A_{m}+\sigma_{f} A_{f}=0 \cdots$ (3)
Note $\varepsilon_{m}=\varepsilon_{f}=\varepsilon_{c}=\alpha_{c} \Delta T \cdots(4)$

2. Micromechanics of Composites

- Placing (1), (2), (4) into (3) gives

$$
E_{m}\left(\varepsilon_{c}-\alpha_{m} \Delta T\right) A_{m}+E_{L f}\left(\varepsilon_{c}-\alpha_{L f} \Delta T\right) A_{f}=0
$$

Multiple by L and divided by volume and recall $V_{m}=\frac{A_{m} L}{\text { vol. }}$, etc, $V_{f}=$ etc

$$
E_{m}\left(\varepsilon_{c}-\alpha_{m} \Delta T\right) v_{m}+E_{L f}\left(\varepsilon_{c}-\alpha_{L f} \Delta T\right) v_{f}=0
$$

This yield

$$
\varepsilon_{c}=\frac{\alpha_{m} E_{m} V_{m}+\alpha_{L f} E_{L f} V_{f}}{E_{m} V_{m}+E_{L f} V_{f}} \Delta T
$$

Modulus weighted R.O.M.
Deal with $\frac{E_{L f} V_{f}}{E_{m} V_{m}+E_{L f} V_{f}}$ instead of $\frac{V_{f}}{V_{m}+V_{f}}$

- Note: composite stress-free at cure temperature when cools down $(\Delta T<0)$ residual stresses $\sigma_{m}, \sigma_{L f}$ will be created.

2. Micromechanics of Composites

- Transverse C.T.E, $\alpha_{\text {Tc }}$, harder to obtain

Moisture cause a similar problem
Matrix swells, fiber doesn t.

- Look @ Thermal Conductivity, K_{L}

Assume $\left(\frac{\partial T}{\partial x}\right)_{f}=\left(\frac{\partial T}{\partial x}\right)_{m}=\frac{\partial T}{\partial x}$ (long geometry)

$$
\begin{aligned}
q_{c} A_{T} & =q_{f} A_{f}+q_{m} A_{m} \\
q_{c} & =-(\underbrace{K_{L f} V_{f}+K_{m} V_{m}}_{K_{L c}})
\end{aligned}
$$

Like stiffness
Note $K_{L f} \gg K_{m}$ so $K_{L c} \approx K_{L f} V_{f}$
Also $K_{L f}$ very high for fibers specific conductivity K / ρ can be greater than Al or Cu

2. Micromechanics of Composites

- Transverse thermal conductivity - K_{T}

$$
\begin{aligned}
& K_{T f} \gg K_{m}, \quad K_{T f}>K_{L f} \\
& \text { good conductor }
\end{aligned}
$$

consider

V_{f} 's same, but $K_{T c}$ `s much different \(K_{T c}\) very dependent on micro structure. can`t make good simplified model.

- Electrical Conductivity - C_{c} somewhat similar

$$
C_{f} \ggg C_{m}
$$

so, $C_{L c} \approx$ R.O.M. $\approx C_{L f} V_{f}$
$C_{T c} \rightarrow$ difficult to establish (paths @ microstructure)
Also, electrical behavior is dominated by contact

2. Micromechanics of Composites

- Strength - difficult to predict
look @ Tension

Tempting to use R.O.M. $X_{t}=X_{f t} V_{f}+X_{m t} V_{m}$
Let` s try this
AS1/ 3501-6 $\quad X_{f t}=1,990 M P a$ (length)
Composite
$X_{c t}=1,660 \mathrm{MPa}$ (typical Gr/Ep) $V_{f}=0.60$

$$
X_{m t}=70 \mathrm{MPa}
$$

$$
X_{c T}=1,990(0.6)+70(0.4)=1,270 \mathrm{MPa} a \mathrm{No}!
$$

R.O.M. should have been Upper Bound

Effective fiber strength is increased by load sharing through matrix

$$
X_{f T}^{e f f} \approx \frac{X_{c T}}{V_{f}}=\frac{1,660}{0.6}=2,770 \mathrm{MPa}
$$

For very low fiber volume fractions

$$
\text { actually } V_{f}<1.0 \text { R.O.M. reasonable in practice }
$$

2. Micromechanics of Composites

- Compressive strength

Dominated by fiber bucking
Controlled by fiber \& matrix stiffness, fiber geometry
For most composites, material behavior gives
$X_{c} \approx X_{T}$
But this is not true for Kevlar, Pitch fiber Gr/Ep,
and in structures, careful of delamination, buckling

sublaminate

Layers (laminate)

- Transverse Tension Strength

Matrix dominated
Y_{t} : very low
crack runs along fibers
impede formation of a plastic zone

2. Micromechanics of Composites

- Transverse Compression

- Shear \rightarrow matrix dominated

$$
Y_{c}>S>Y_{T} \quad \text { typical }
$$

- Other strength related properties
- For fracture for metals $\sigma_{f}=\sigma_{y}$ or ${\frac{K_{1 c}}{\sqrt{\pi a}}}_{1 / 2 \text { crack size }}^{\text {fracture toughn }}$
- For composite

splits in matrix
as well as in fiber
splits can cause delamination of layer

2. Micromechanics of Composites

- Fatigue

For metals \rightarrow crack growth under cyclic loads. a major problem.

- Carbon fibers are very good in fatigue

00 dominated structures fatigue resistant (in tension)
Careful of delaminations in compression and off axis plies

- Impact

For $\mathrm{Gr} / \mathrm{Ep} \rightarrow$ generally low strain to failure, impact a major concern

- Environmental Resistance

Moisture intake \rightarrow changes matrix properties
Temperature \rightarrow can change matrix properties
People can concern with Hot, Wet, Post Impact, Compression test.

2. Micromechanics of Composites

- Talked about Micromechanics
(How composites work, trends, and usefulness...)
Actually will use Experimental Data in design of structures from composites will now talk about Macromechanics using composites to design structure

