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- See Jones, Chap. 2 at Appendix A     

3. Ply Elasticity

 Look at 3-D and 2-D anisotropic elasticity

 Make a brief review
1. Jones Book

2. Bisplinghoff, Mar and Pian, “Statics of Deformable Bodies” -> (tensor notation)

3. Herrmann, “Applied Anisotropic Elasticity”

 Notation
Right hand coord. System, xm

Test Laminate
Theory

LaminatePly

Micromechanics

Need to develop

x3

x1

x2
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3. Ply Elasticity

 Components of stress, 

11

22

33





12 21

23 32

31 13

 
 
 





Extension Shear
11

12

33

32

mn

force

direction

“Stress tensor” , 2 subscripts -> 2nd order

6 independent components

mn

 Components of strain, 
“Strain tensor” , 2 subscripts -> 2nd order

6 independent components

mn

dx u1

11

22

33





12 21

23 32

31 13

 
 
 





Extension Shear

Extension 1
11

1

u
dx

 

Shear


12 2
 

 Note : Stress tensor symmetric :                  by equilibrium

Strain tensor symmetric :                  by Geometrical consideration 

mn nm 

mn nm 
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3. Ply Elasticity

 Stress – Strain Relations

Hooke’s Law,   F = kδ : linear relation for rod

F F
ℓ δ

Can rewrite as

where    σ = stress = F/A

є = strain = δ/ℓ

E = modulus of elasticity

Extending to 3-D stress, have “Generalized Hooke’s Law”

-> “Elasticity tensor”  (3 3 3 3 = 81 components)

E 

mn mnpq pqE 

mnpqE
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3. Ply Elasticity

 Recall Tensor Notation Rules

Latin subscripts (m, n, p, q, r, …) -> 1, 2, 3

Greek subscripts (           , … ) -> 1, 2

1. Subscripts that appear only once in a term are either 1, 2, or 3

-> 

2. Subscripts repeated in a term are “dummy” subscripts -> Sum on them

3. No subscript can appear more than twice in a term

So, in general stress strain                        9 equations are represented.

, ,  

( )i if x  1 1( )f x 

2 2( )f x 

3 3( )f x 

3

1 1 2 2 3 3
1

ij j i i i ij j
j

E E E E E    


   

i ij if C D

mn mnpq pqE 

(x)
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3. Ply Elasticity
1 1 1 1

1 2 1 2

1 3 1 3

2 1 2 1

3 1 3 1

3 3 3 3

p q p q

p q p q

p q p q

p q p q

p q p q

p q p q

E
E
E
E

E

E

 
 
 
 

 

 














Look at 1st equations and sum over P

Sum over q

9 Eqn.s ->  9  terms  ->  81Emnpq’s. Symmetries reduce number of independent Emnpq

11 11 1 11 2 11 3q q qE E E     

11 1111 11 1112 12 1113 13E E E     

1121 21 1122 22 1123 23E E E    

1131 31 1132 32 1133 33E E E    

(Equilibrium consideration)

Overall symmetry (Energy considerations)

mn nm 

mnpq nmpqE E

pq qp 

mnpq nmqpE E

mnpq pqmnE E
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3. Ply Elasticity
So at most 21 independent constants

Material with all 21 independent constants is Anisotropic

Have used Tensor Notation
To here mary books use a “contracted” notation (Jones, Tsai, etc)
Also called “Engineering” Notation
3 major difference
① Subscript changes

Tensor               Contracted                      Physical
11                         1                          Extens.   in  1
22                         2                          Extens.   in  2
33                         3                          Extens.   in  3
23                         4                          Rotate    about  1
31                         5                               “                  2
12                         6                               “                  3

11221111

22332222

3333 3311

EE
EE

E E
Extension-Extension

12131212

1313 1323

2323 2312

EE
E E
E E

Shear-Shear

1112 2212 3312

1113 2213 3314

1123 2223 3323

E E E
E E E
E E E

Coupling   Shear-Extension
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3. Ply Elasticity

② Shear strain changes
Tensor shear strain is ½ of Engineering shear strain.
We change the notation from ε to   
Engineering                        Tensor               Contracted

=                                            
=
=

③ Elasticity constants represented by        instead         (Still 21 components)
Tensor              Engineering

The “Generalized Hooke’s  Law” is



12 12 21  6

13 13 31  5

23 23 32  4

ijC mnpqE

m n p q i jE C
m n i
p q j





m n m n p q p q

i i j j

E

C

 

 




(Tensor notation)
(Engineering notation)

Still use summation convention
i ij j ij j

j

C C   
j = 1, 2, 3, … 6
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3. Ply Elasticity
Cij = Cji  Symmetry of the Elasticity constants still applies

Emnpq = Epqmn other symm.s in Emnpq = Enmpq , etc.
all automatically included in Engineering Notation.

Be careful of 2 in shear strain.
2       = mn

 Can see usefulness of Engineering notation by writing Tensor 
notation in matrix form

11 111111 11231133 11311122 1112

22 22

33 333311

232323 232311

31 31

1223121112 12

2 2 2

2

2

E EE EE E

E
EE

EE

 
 
 
 
 
 

    
    
    
            

    
    
    
        

 





E matrix not symmetric, inconvenient; contracted(Engineering) more convenient
,

Note                        etc.

C is symmetric, C12 =  E1123

C 
   i ij jC 

4 232 

11 1123 232E    

1 14 4C    

mn




E





23 Tensor
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3. Ply Elasticity
 COMPLIANCE

Just we have  
Also have inverse
Smnpq  Compliance tensor

Same  symmetries as Emnpq

Writing out Tensor Relations as matrices

mn mnpq pqE 

mn mnpq pqS 

1

E
E

 

 




 

 

1 11 1 1 1 1 1 1 1 2 2 1 1 1 2

2 2 2 2

1 2 1 2 1 1 1 2 1 2 1 2

2

2

E E E

E E


 

 

    
    

                    



 

1 11 1 1 1 1 1 1 1 2 2 1 1 1 2

2 2 2 2

1 2 1 2 1 1 1 2 1 2 1 2

2

2

S S S

S S


 

 

    
    

                    



 

6x1 6x6 6x1

S



 E





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3. Ply Elasticity

Wish to write in Engineering Notation
1 1 11 3 1 5 1 61 2 1 41

2 1 22

6 6 1 6 6 6

S S S SS S
S

S S




 

    
    
           
    
    
         


 

Symmetric : relate Sij to Smnpq

1 1 11 3 1 5 1 61 2 1 41

2 1 22

6 6 1 6 6 6

C C C CC C
C

C C




 

    
    
           
    
    
         


 

For Elasticity matrix, use

All symmetric matrices in Engineering Notation

1
ij ijC S  Symmetric

Weight Figure of Merit  =

Cost Figure of Merit =  

( )
ULT

Specific Gravity


( . ) ($ / lb)
ULT

S G


 Problem Set #1
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3. Ply Elasticity
Stress-Strain relations (Engineering Notation)

C 
  

S 
  

where
1

2

6








 
 
 
 
 
 



1

2

6








 
 
 
 
 
 



: elasticity                6x6  Symm. matrices
: compliance             21 Independent constants

C
S


1S C 
 

- Fully Anisotropic   21 constants
 Type of Materials

Vary along non-orthogonal axis.
Different stiffness along each direction (Same crystals)

- Monoclinic Material   13 constants

1 axis     other two
Different stiffness along each direction
(Some crystals, some composites)



6 12,etc 
6 12 122   
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3. Ply Elasticity
- Orthotropic Material   9 constants

3 axis     to each other
Different stiffness along each direction



Important
Practical
Case

Crystals.
Composites

1131 11 12

22 22 23

33 33

44 44

55 55

6 66 6

0

0

SS S
S S

S
S

S
S







 

   
   
   
           

    
    
    
         

Symm.

But no shear
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3. Ply Elasticity
- Transversely isotropic Material   5 constants

3 perpendicular axis
x1 is stiffer than x2 = x3

same stiffness any direction in x2 , x3 plane  

Wood or 
composite

Grain
(fiber)

Like orthotropic, but additionally
S33 = S22

S13 = S12

S55 = S66

S44 = 2(S22 - S23)

11 12 12

22 23

22

22 23

55

55

2( )

S S S
S S

S
S

S S
S

S

 
 
 
 

  
 

 
 
  

Symm.

0

5 constants

2(1 )
EG




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3. Ply Elasticity
- Isotropic Material   2 constants

Same properties in all directions
Most metals, Resin  

Many crystals randomly oriented
Polycrystalline material

Same as Transversely Isotropic, but additionally
S22 = S11

S13 = S12

S55 = S44 = 2(S11 - S12)
S66 = S66 = 2(S11 - S12)

Only 2 constants S11 and S12

Smn’s traditionally expressed in terms of Modulus of Elasticity E
and Poisson’s Ratio 

1 1 1 2

1 1 2 3

4 4

1 ,

1 [ ]

2 (1 )

S SE E
w i t h t h e s e

E

E



     

 

  

  




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3. Ply Elasticity
 2-Dim. Plane stress approximations

Many structures are thin (plate)

ℓ
w

h h <<  ℓ , w

Also, not heavily loaded through thickness

10 psi

10,000  psi

б3,  б4,  б5   << б1,  б2,  б6

Assume б3 =  б4  =  б5 = 0  in stress-strain
only deal with  б1,  б2,  б3 

In 3-D  
In 2-D
For Transversely isotropic mat’l

C
Q

 
 




  
 

1 11 1 12 2 13 3

2

3 12 1 13 2 22 3

0 0 0
.

0 0 0

C C C
etc
C C C

   

   

     


     

Solve for ε3 and put into others

б33 б23 б31
б12

6x6 matrix

3x3 matrix3x1

0 =
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3. Ply Elasticity

In general, for fibers not along the axis looks

6 66 6

1 11 1 12 2

2 21 1 22 2

6 66 6

C
Q Q
Q Q
Q

 
  
  
 


 
 


Transversely isotropic

1 11 1 12 2 16 6

2

6 61 1 62 2 66 6

Q Q Q

Q Q Q

   

   

  


  

 [Q] 3x3,  matrix symm.

Homework  Prob.   Relation between 3-D and 2-D

3-17



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

3. Ply Elasticity
 Properties of Single Ply

Ply  flat  plane stress
2-D stress-strain Eqns are 

x1, T

x2, L
L : longitudinal
T : Transverse

Q 
 

On this set of axes  - orthotropic

1 11 12 1

2 12 22 2

6 66 6

0
0

0 0

Q Q
Q Q

Q

 
 
 

     
        
         

4 constants

Also cloth (0/90) weave works this way, but some funny products may not.
From Strength of Materials, we are familiar with Engineering Constants
Those are obtained from experimental tests.
Formal definitions from

L T LT LTE E G

1 1 2

2 2 1

6 6

1 ( )

1 ( )

1

LT
L

TL
T

LT

E

E

G

   

   

 

 

 



3x3 matrix (matrix of 6 constants)
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1 1

2 2

6 6

0
1 1

0
1 1

0 0

L LT T

LT TL LT TL

LT T T

LT TL LT TL

LT

E E

E E

G


   

 
 
   

 

 
      
                 
 
 
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3. Ply Elasticity
Questions
a) How to find Engineering Constants ?
b) How to relate them to Elastic Constants Qij

a) Tests for Engineering constants
① Longitudinal Tests

Apply known P (dead weight, calibrated machine) long, narrow specimen
Know σ1 = P/A (except near ends, reinforce there)

σ2 = 0,   σ6 = 0
Measure ε1,  ε2 (ε6 ?) with strain gages

ε2

ε1

Plot
1

LE

ε1

σ1

-ε2

ε1

LT

1
1

2 1

6 0

L

LT

E


  




 


From this test   2 constants
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3. Ply Elasticity

② Transverse Tension

Same deal, apply known P

From this test, got  TL

③ Shear Tests

Apply known shear σ6 (not too easy)

a b c Measure shear strain with a rosette

6 c ae e  

Mohr’s circle

ec

eb

ea
Normal stress 1

LTG

ε6

σ6

Shear Tests difficult to perform

3-20
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3. Ply Elasticity

Easier to test 45° Ply in tension

45°

P

[±45°]s laminate
or

This gives a mixed state of stress in axis system of the material 
P

But can untangle to get G
So, we have 

1 1 2

2 1 2

6 6

1

1

1

T L

L T

L T

L T

L T

E E

E E

G

  

  

 

 

  



Because of symmetry

TL LT

T LE E
 

 L T

T L
: Major Poisson’s Ratio    ~ 0.3 
: ET/EL · ~ 0.02LT
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3. Ply Elasticity
 Rotation of Plies

 ply axes
 laminate axes (also x, y)

1x

2x 1x
2x


1x 2x

2x1x

Ply at angle    from lamina axis      
(       going towards     )
In      ,     (Ply axes)   2-D orthotropic Material

 1x
 1x 2x

1x 2x

1 11 12 1

2 12 22 2

6 66 6

0
0

0 0

Q Q
Q Q

Q

 
 
 

     
        
         

Q 
 

or

Q’s from                          
To find stress-strain in     ,     (laminate axes)
First relate stresses in 2 axis systems.

L T LT LTE E G

2x1x

mn mp nq pql l 

Stress tensor
in x1, x2

Direction cosine
= cos(angle xm and xp)

Stress in 1x 2x

Standard transform Law
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3. Ply Elasticity
Table of cosines

cos cos(90+  ) = -sin

cos(90- ) = sin cos
1x

2x

1x 2x


 

 



11 11 22 12 211 1 1 1 12 12 1 1 12 12 1 1l l l l l l l l       
2 2

11 22 12 21cos sin cos sin cos sin        

22

12

.

.
etc
etc







So obtain
2 2

1 1
2 2

2 2
2 2

6 6

2
2

(c )

c s cs
s c cs
cs cs s

 
 
 

    
         

         
Ply Laminate

T 


or

where cosc  sins 
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3. Ply Elasticity
Also for strain

m n m p n q p ql l 
Tensor strain 
in x1, x2

Tensor strain 
in

1x 2x

Standard transform law

1 1

2 2

6 6
1 1
2 2

T

 
 

 

   
   
   

   
   
   
   

Recall

12 12 6
1 1
2 2

   

Absorb the ½ into       gives T
2 2

1 1
2 2

2 2
2 2

6 62 2 (c )

c s cs
s c cs

cs cs s

 
 
 

    
         

         
Ply Tε Laminate

T 
 

or

Placing into Ply axes stress strain

1

Q
T Q T

T Q T
o r Q

 

 

 
 

 

 











Q

Stress-strain Relation
In laminate             axes1x 2x
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3. Ply Elasticity
Now Note Inverses

1

1

( )

( )

T

T

T T T

T T T
  

  









  

  

So rotated Q matrix is
TQ T QT 

Q fully populated now
Also in Jones Notation,
Laminated Axes     ,      x , y
Laminated stress 
Laminated strain 

2x1x
, ,i x y xy    

, ,i x y xy    

Final Laminated stress – strain Eqns

1 1 1 2 1 3

1 2 2 2 2 6

1 6 2 6 6 6

x x

y y

x y x y

Q Q Q
Q Q Q
Q Q Q

 
 

 

    
        
        

Multiplies, out matrices
4 2 2 4

11 11 12 66 22

2 2 4 4
12 11 22 66 12

22

66

cos 2( 2 )sin cos sin

( 4 )sin cos (sin cos )
.
.

Q Q Q Q Q

Q Q Q Q Q
Q etc
Q etc

   

   

   

    




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3. Ply Elasticity
Similarly can transform compliances.

from
obtain
where T

S
S

S T S T 

 
 







Alternate ways of rotating

m n p q m r n s p t q u rstuE l l l l E

Also, can mathematically reduce     by                       , etc.
can then express

A, B, C, D, E   depend only on 4 invariants

ijQ 2 1 cos 2cos
2

 


cos 2 cos 4 sin 2 sin 4ij ij ij ijQ A B C D E       
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