Mechanics of Composite Materials

CHAPTER 3. Ply Elasticity

SangJoon Shin
School of Mechanical and Aerospace Engineering
Seoul National University

Active Aeroelasticity and Rotorcraft Lab.

3. Ply Elasticity

* Look at 3-D and 2-D anisotropic elasticity
- See Jones, Chap. 2 at Appendix A

* Make a brief review

1. Jones Book
2. Bisplinghoff, Mar and Pian, "Statics of Deformable Bodies" -> (tensor notation)
3. Herrmann, "Applied Anisotropic Elasticity"

* Notation

Right hand coord. System, x_{m}

3. Ply Elasticity

* Components of stress, $\sigma_{m n}$
"Stress tensor", 2 subscripts -> $2^{\text {nd }}$ order
6 independent components

* Components of strain, $\varepsilon_{m n}$
"Strain tensor", 2 subscripts -> $2^{\text {nd }}$ order
6 independent components

Extension $\stackrel{\stackrel{\mathrm{dx}}{\longleftrightarrow} \mathrm{u}_{1}}{\square} \quad \varepsilon_{11} \approx \frac{u_{1}}{d x_{1}}$
Shear

$$
\varepsilon_{12} \approx \frac{\phi}{2}
$$

* Note: Stress tensor symmetric : $\sigma_{m n}=\sigma_{n m}$ by equilibrium

Strain tensor symmetric: $\varepsilon_{m n}=\varepsilon_{n m}$ by Geometrical consideration

3. Ply Elasticity

* Stress - Strain Relations

Hooke's Law, $F=k \delta$: linear relation for rod

Can rewrite as $\sigma=E \varepsilon$
where $\quad \sigma=$ stress $=F / A$
$\epsilon=$ strain $=\delta / \ell$
$E=$ modulus of elasticity
Extending to 3-D stress, have "Generalized Hooke's Law"

$$
\begin{gathered}
\sigma_{m n}=E_{m n p q} \varepsilon_{p q} \\
E_{m n p q}->\text { "Elasticity tensor" }(3 \times 3 \times 3 \times 3=81 \text { components })
\end{gathered}
$$

3. Ply Elasticity

* Recall Tensor Notation Rules

Latin subscripts (m, n, p, q, r, ...) -> 1, 2, 3
Greek subscripts ($\alpha, \beta, \gamma, \ldots$) -> 1, 2

1. Subscripts that appear only once in a term are either 1,2 , or 3

$$
\sigma_{i}=f\left(x_{i}\right) \quad->\quad\left\{\begin{array}{l}
\sigma_{1}=f\left(x_{1}\right) \\
\sigma_{2}=f\left(x_{2}\right) \\
\sigma_{3}=f\left(x_{3}\right)
\end{array}\right.
$$

2. Subscripts repeated in a term are "dummy" subscripts -> Sum on them

$$
E_{i j} \varepsilon_{j}=E_{i 1} \varepsilon_{1}+E_{i 2} \varepsilon_{2}+E_{i 3} \varepsilon_{3}=\sum_{j=1}^{3} E_{i j} \varepsilon_{j}
$$

3. No subscript can appear more than twice in a term

$$
f_{i} C_{i j} D_{i} \quad(x)
$$

So, in general stress strain $\sigma_{m n}=E_{m n p q} \varepsilon_{p q} 9$ equations are represented.

3. Ply Elasticity

$$
\begin{aligned}
& \sigma_{11}=E_{11 p q} \varepsilon_{p q} \\
& \sigma_{12}=E_{12 p q} \varepsilon_{p q} \\
& \sigma_{13}=E_{13 p q} \varepsilon_{p q} \\
& \sigma_{21}=E_{21 p q} \varepsilon_{p q} \\
& \vdots \\
& \sigma_{31}=E_{31 p q} \varepsilon_{p q} \\
& \vdots \\
& \sigma_{33}=E_{33 p q} \varepsilon_{p q}
\end{aligned}
$$

Look at $1^{\text {st }}$ equations and sum over P

$$
\sigma_{11}=E_{11} \varepsilon_{1 q}+E_{11} \varepsilon_{2 q}+E_{11} \varepsilon_{3 q}
$$

Sum over q

$$
\begin{aligned}
\sigma_{11} & =E_{1111} \varepsilon_{11}+E_{1112} \varepsilon_{12}+E_{113} \varepsilon_{13} \\
& +E_{1121} \varepsilon_{21}+E_{1122} \varepsilon_{22}+E_{1123} \varepsilon_{23} \\
& +E_{1131} \varepsilon_{31}+E_{1132} \varepsilon_{32}+E_{1133} \varepsilon_{33}
\end{aligned}
$$

9 Eqn.s -> 9 terms -> $81 \mathrm{E}_{\text {mnpq }}$'s. Symmetries reduce number of independent $\mathrm{E}_{\mathrm{mnpq}}$

$$
\begin{gathered}
\sigma_{m n}=\sigma_{n m} \\
\downarrow \\
E_{m n p q}=E_{n m p q}
\end{gathered}
$$

$$
\varepsilon_{p q}=\varepsilon_{q p}
$$

$$
E_{m n p q}=E_{n m q p}
$$

(Equilibrium consideration)
Overall symmetry (Energy considerations)

$$
E_{m n p q}=E_{p q m n}
$$

3. Ply Elasticity

So at most 21 independent constants

E_{1111}	E_{1122}	E_{1212}	E_{1213}	E_{1112}	E_{2212}	E_{3312}
E_{2222}	E_{2233}	E_{1313}	E_{1323}	E_{1113}	E_{2213}	E_{3314}
E_{3333}	E_{3311}	E_{2323}	E_{2312}	E_{1123}	E_{2223}	E_{3323}
Shear-Shear	Coupling	Shear-Extension				

Material with all 21 independent constants is Anisotropic
Have used Tensor Notation
To here mary books use a "contracted" notation (Jones, Tsai, etc)
Also called "Engineering" Notation
3 major difference
(1) Subscript changes

Tensor		Contracted		Physical		
11	\longrightarrow	1	\longrightarrow	Extens	in 1	
22	\longrightarrow	2	\longrightarrow	Extens	in 2	
33	\longrightarrow	3	\longrightarrow	Extens	in 3	
23		4	\rightarrow	Rotate	about	1
31		5		"		2
12	\longrightarrow	6	\longrightarrow			3

3. Ply Elasticity

(2) Shear strain changes

Tensor shear strain is $1 / 2$ of Engineering shear strain.
We change the notation from ε to γ
Engineering Tensor

γ_{12}	$=$	$\varepsilon_{12}+\varepsilon_{21}$
γ_{13}	$=$	$\varepsilon_{13}+\varepsilon_{31}$
γ_{23}	$=$	$\varepsilon_{23}+\varepsilon_{32}$

Contracted
ε_{6}
\mathcal{E}_{5}
ε_{4}
(3) Elasticity constants represented by $C_{i j}$ instead $E_{\text {mppq }}$ (Still 21 components)

Tensor		Engin
$E_{m n p q}$	\rightarrow	$C_{i j}$
$m n$	\rightarrow	i
$p q$	\rightarrow	j

The "Generalized Hooke's Law" is

$$
\begin{array}{ll}
\sigma_{m n}=E_{m n p q} \varepsilon_{p q} & \text { (Tensor notation) } \\
\sigma_{i}=C_{i j} \varepsilon_{j} & \text { (Engineering notation) }
\end{array}
$$

Still use summation convention

$$
\begin{aligned}
\sigma_{i}=\sum_{j} C_{i j} \varepsilon_{j}= & C_{i j} \varepsilon_{j} \\
& j=1,2,3, \ldots 6
\end{aligned}
$$

3. Ply Elasticity

$\mathrm{C}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ji}} \leftarrow$ Symmetry of the Elasticity constants still applies $E_{m n p q}=E_{p q m n}$ other symm.s in $E_{m n p q}=E_{n m p q}$, etc. all automatically included in Engineering Notation.
Be careful of 2 in shear strain.

$$
2 \varepsilon_{m n}=\gamma_{m n}
$$

* Can see usefulness of Engineering notation by writing Tensor notation in matrix form

$$
=\underset{\sim}{\sigma} \longleftarrow\left\{\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{23} \\
\sigma_{31} \\
\sigma_{12}
\end{array}\right\}=\left[\begin{array}{lllll}
E_{1111} & E_{1122} & E_{1133} & 2 E_{1123} & 2 E_{1131} \\
\vdots & & 2 E_{1112} \\
E_{3311} & & \vdots & & \\
E_{2311} & & 2 E_{2323} & \vdots \\
\vdots & \vdots & \\
E_{1211} & & 2 E_{1223} & \\
\hline \underbrace{}_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
\varepsilon_{23} \\
\varepsilon_{31} \\
\varepsilon_{12}
\end{array}\right\} \longrightarrow=\left(\begin{array}{c}
\varepsilon \\
\hline
\end{array}\right.
$$

E matrix not symmetric, inconvenient; contracted(Engineeriñg) more convenient
$\underset{\sim}{\sigma}=\underset{\sim}{\mathcal{C}} \underset{\sim}{\varepsilon}, \sigma_{i}=C_{i j} \varepsilon_{j}$
Note $\varepsilon_{4}=2 \varepsilon_{23}$ etc.
$\gamma_{23} \sigma_{11}=\cdots \cdots \underbrace{}_{2 \text { Tensor }} \mathbb{E}_{1123} \varepsilon_{23}+\cdots$

$$
\sigma_{1}=\cdots \quad \cdots C_{14} \varepsilon_{4}+\cdots
$$

C is symmetric, $\mathrm{C}_{12}=\mathrm{E}_{1123}$

3. Ply Elasticity

* COMPLI ANCE

Just we have $\sigma_{m n}=E_{\text {mnpq }} \varepsilon_{p q}$
Also have inverse $\varepsilon_{m n}=S_{m n p q} \sigma_{p q}$
$\mathrm{S}_{\text {mnpq }} \rightarrow$ Compliance tensor

Same symmetries as $E_{m n p q}$
Writing out Tensor Relations as matrices

3. Ply Elasticity

Wish to write in Engineering Notation

$$
\begin{aligned}
& \left\{\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\\
\varepsilon_{6}
\end{array}\right\}=\left[\begin{array}{llllll}
S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\
S_{21} & & & & & \\
\vdots & & & & & \\
\vdots & & & & & \\
S_{61} & & & S_{66}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\vdots \\
\sigma_{6}
\end{array}\right\} \\
& \text { Symmetric : relate } \mathrm{S}_{\mathrm{ij}} \text { to } \mathrm{S}_{\text {mnpa }}
\end{aligned}
$$

$$
\begin{array}{r}
\left\{\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\\
\sigma_{6}
\end{array}\right\}=\left[\begin{array}{llllll}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{21} & & & & & \\
\vdots & & & & & \\
\vdots & & & & & \\
C_{61} & & & & C_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{6}
\end{array}\right\} \\
\\
C_{i j}^{-1}=S_{i j}
\end{array}
$$

All symmetric matrices in Engineering Notation

* Problem Set \# 1

Weight Figure of Merit $=\frac{\sigma_{u t r}}{\text { (Specific Gravity) }}$
Cost Figure of Merit $=\frac{\sigma_{u l T}}{(S . G)(\$ / \mathrm{lb})}$

3. Ply Elasticity

Stress-Strain relations (Engineering Notation)

$$
\underset{\sim}{\sigma}=\underset{\sim}{C} \underset{\sim}{\mathcal{E}} \quad \underset{\sim}{\mathcal{E}}=\underset{\sim}{S} \underset{\sim}{\sigma}
$$

where
$\sigma_{6}=\sigma_{12,}$ etc $\underset{\sim}{\sigma}=\left[\begin{array}{c}\sigma_{1} \\ \sigma_{2} \\ \vdots \\ \sigma_{6}\end{array}\right]$
$\underset{\sim}{C}$: elasticity
$\underset{\sim}{S}$: compliance $]$

$$
\underline{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{6}
\end{array}\right]_{\varepsilon_{6}=\gamma_{12}=2 \varepsilon_{12}}
$$

6×6 Symm. matrices
21 Independent constants

$$
\underset{\sim}{S}={\underset{\sim}{C}}^{-1}
$$

* Type of Materials

- Fully Anisotropic $\rightarrow 21$ constants

Vary along non-orthogonal axis.
Different stiffness along each direction (Same crystals)

- Monoclinic Material $\rightarrow 13$ constants

$\uparrow \quad$| 1 axis \perp other two |
| :--- |
| Different stiffness along each direction |

(Some crystals, some composites)

3. Ply Elasticity

Orthotropic Material $\rightarrow 9$ constants

3 axis \perp to each other
Different stiffness along each direction

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\varepsilon_{5} \\
\varepsilon_{6}
\end{array}\right\}=\left[\begin{array}{ccccc}
S_{11} & S_{12} & S_{13} & & \\
& & S_{22} & S_{23} & \\
& & S_{33} & & \\
& \text { Symm. } & & S_{44} & 0 \\
& & & & S_{55} \\
& & & & S_{66}
\end{array}\right]\left\{\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{array}\right\} \\
& \longleftrightarrow \text { But no shear } \longleftrightarrow \square
\end{aligned}
$$

3. Ply Elasticity

Transversely isotropic Material $\rightarrow 5$ constants

3 perpendicular axis x_{1} is stiffer than $\mathrm{x}_{2}=\mathrm{x}_{3}$ same stiffness any direction in x_{2}, x_{3} plane

Wood or composite

Like orthotropic, but additionally

$$
\begin{aligned}
& \mathrm{S}_{33}=\mathrm{S}_{22} \\
& \mathrm{~S}_{13}=\mathrm{S}_{12} \\
& \mathrm{~S}_{55}=\mathrm{S}_{66} \\
& \mathrm{~S}_{44}=2\left(\mathrm{~S}_{22}-\mathrm{S}_{23}\right) \longleftarrow G=\frac{E}{2(1+v)} \\
& S=\left[\begin{array}{ccc|c}
S_{11} & S_{12} & S_{12} & \\
& S_{22} & S_{23} & 0 \\
& & S_{22} & \\
\hline & & 2\left(S_{22}-S_{23}\right) \\
& \text { Symm. } & & S_{55} \\
& & & S_{55}
\end{array}\right]
\end{aligned}
$$

3. Ply Elasticity

Isotropic Material $\rightarrow 2$ constants
Same properties in all directions
Most metals, Resin

Many crystals randomly oriented
Polycrystalline material

Same as Transversely Isotropic, but additionally

$$
\begin{aligned}
& \mathrm{S}_{22}=\mathrm{S}_{11} \\
& \mathrm{~S}_{13}=\mathrm{S}_{12} \\
& \mathrm{~S}_{55}=\mathrm{S}_{44}=2\left(\mathrm{~S}_{11}-\mathrm{S}_{12}\right) \\
& \mathrm{S}_{66}=\mathrm{S}_{66}=2\left(\mathrm{~S}_{11}-\mathrm{S}_{12}\right)
\end{aligned}
$$

Only 2 constants S_{11} and S_{12}
S_{mn} 's traditionally expressed in terms of Modulus of Elasticity E and Poisson's Ratio v

$$
\begin{aligned}
& S_{11}=\frac{1}{E}, \quad S_{12}=-\frac{v}{E} \\
& \text { with these } \\
& \varepsilon_{1}=\frac{1}{E}\left[\sigma_{1}-v \sigma_{2}-v \sigma_{3}\right] \\
& \vdots \\
& \varepsilon_{4}=\frac{2(1+v)}{E} \sigma_{4}
\end{aligned}
$$

3. Ply Elasticity

* 2-Dim. Plane stress approximations

Many structures are thin (plate)

Also, not heavily loaded through thickness

$$
(\overbrace{\sqrt{\longleftarrow}}^{\longleftarrow} \quad 10 \mathrm{psi}
$$

$$
\begin{array}{ccccc}
\sigma_{3,} & \sigma_{4,} & \sigma_{5} & \ll \sigma_{1}, & \sigma_{2}, \\
\downarrow & \sigma_{6} \\
\sigma_{33} & \downarrow & \downarrow & & \\
\sigma_{23} & \sigma_{31} & & \sigma_{12}
\end{array}
$$

Assume $\sigma_{3}=\sigma_{4}=\sigma_{5}=0$ in stress-strain

$$
\text { only deal with } \sigma_{1}, \sigma_{2}, \sigma_{3}
$$

In 3-D $\sigma=\underset{\sim}{C \varepsilon} 6 \times 6$ matrix

$$
\begin{aligned}
\sigma_{1} & =C_{11} \varepsilon_{1}+C_{12} \varepsilon_{2}+C_{13} \varepsilon_{3}+0+0+0 \\
\sigma_{2} & =\text { etc. } \\
0=\sigma_{3} & =C_{12} \varepsilon_{1}+C_{13} \varepsilon_{2}+C_{22} \varepsilon_{3} \overleftarrow{+0+0+0} \text { Solve for } \varepsilon_{3} \text { and put into others }
\end{aligned}
$$

3. Ply Elasticity

$$
\triangleleft\left\{\begin{array}{l}
\sigma_{6}=C_{66} \varepsilon_{6} \\
\sigma_{1}=Q_{11} \varepsilon_{1}+Q_{12} \varepsilon_{2} \\
\sigma_{2}=Q_{21} \varepsilon_{1}+Q_{22} \varepsilon_{2} \\
\sigma_{6}=Q_{66} \varepsilon_{6}
\end{array}\right] \quad \text { Transversely isotropic }
$$

In general, for fibers not along the axis looks

$$
\begin{aligned}
& \sigma_{1}=Q_{11} \varepsilon_{1}+Q_{12} \varepsilon_{2}+Q_{16} \varepsilon_{6} \\
& \sigma_{2}=\cdots \\
& \sigma_{6}=Q_{61} \varepsilon_{1}+Q_{62} \varepsilon_{2}+Q_{66} \varepsilon_{6}
\end{aligned}
$$

$$
\sigma_{2}=\cdots \quad[Q] 3 \times 3, \text { matrix symm. }
$$

Homework Prob. \rightarrow Relation between 3-D and 2-D

3. Ply Elasticity

Properties of Single Ply
Ply \rightarrow flat \rightarrow plane stress
2-D stress-strain Eqns are $\underset{\sim}{\sigma}=\underset{\sim}{Q} \underset{\sim}{\mathcal{E}}$
$\uparrow \mathrm{x}_{1}, \mathrm{~T}$

L : longitudinal
T : Transverse

On this set of axes - orthotropic

$$
\left\{\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{6}
\end{array}\right\}=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{6}
\end{array}\right\} \quad \text { 4 constants }
$$

Also cloth (0/90) weave works this way, but some funny products may not.
From Strength of Materials, we are familiar with Engineering Constants $E_{L} \quad E_{T} \quad v_{L T} \quad G_{L T}$ Those are obtained from experimental tests.
Formal definitions from

$$
\begin{aligned}
& \varepsilon_{1}=\frac{1}{E_{L}}\left(\sigma_{1}-v_{L T} \sigma_{2}\right) \\
& \varepsilon_{2}=\frac{1}{E_{T}}\left(\sigma_{2}-v_{T L} \sigma_{1}\right) \\
& \varepsilon_{6}=\frac{1}{G_{L T}} \sigma_{6}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{6}
\end{array}\right\}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{E_{L}}{1-v_{L T} v_{T L}} & \frac{v_{L T} E_{T}}{1-v_{L T} v_{T L}} & 0 \\
\frac{v_{L T} E_{T}}{1-v_{L T} v_{T L}} & \frac{E_{T}}{1-v_{L T} v_{T L}} & 0 \\
0 & 0 & G_{L T}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{6}
\end{array}\right\}
\end{aligned}
$$

3. Ply Elasticity

Questions
a) How to find Engineering Constants ?
b) How to relate them to Elastic Constants $Q_{i j}$
a) Tests for Engineering constants
(1) Longitudinal Tests

Apply known P (dead weight, calibrated machine) long, narrow specimen Know $\sigma_{1}=P / A$ (except near ends, reinforce there)

$$
\sigma_{2}=0, \quad \sigma_{6}=0
$$

Measure $\varepsilon_{1}, \varepsilon_{2}\left(\varepsilon_{6}\right.$?) with strain gages

From this test $\rightarrow 2$ constants

3. Ply Elasticity

(2) Transverse Tension

Same deal, apply known P
From this test, got $E_{T} v_{T L}$
(3) Shear Tests

Apply known shear σ_{6} (not too easy)

Measure shear strain with a rosette

$$
\varepsilon_{6}=e_{c}-e_{a}
$$

Mohr's circle

3. Ply Elasticity

Easier to test 45° Ply in tension

This gives a mixed state of stress in axis system of the material

But can untangle to get G So, we have

$$
\begin{aligned}
& \varepsilon_{1}=\frac{1}{E_{L}} \sigma_{1}-\frac{v_{T L}}{E_{T}} \sigma_{2} \\
& \varepsilon_{2}=-\frac{v_{L T}}{E_{L}} \sigma_{1}+\frac{1}{E_{T}} \sigma_{2} \\
& \varepsilon_{6}=\frac{1}{G_{L T}} \sigma_{6}
\end{aligned}
$$

Because of symmetry

$$
\begin{array}{lll}
\frac{v_{T L}}{E_{T}}=\frac{v_{L T}}{E_{L}} & \begin{array}{l}
v_{L T}: \text { Major Poisson's Ratio }
\end{array} & \sim 0.3 \\
v_{T L}: \mathrm{E}_{T} / \mathrm{E}_{\mathrm{L}} \cdot v_{L T} & \sim 0.02
\end{array}
$$

3. Ply Elasticity

* Rotation of Plies

Ply at angle θ from lamina axis \bar{X}_{1}
$\left(+\theta \rightarrow x_{1}\right.$ going towards $\left.x_{2}\right)$
In X_{1}, X_{2} (Ply axes) \rightarrow 2-D orthotropic Material

$$
\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{6}
\end{array}\right\}=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{6}
\end{array}\right\} \quad \text { or } \quad \underset{\sim}{\sigma}=\underset{\sim}{\underset{\sim}{\underset{\sim}{e}}} \underset{\sim}{c}
$$

Q's from $\quad E_{L} \quad E_{T} \quad v_{L T} \quad G_{L T}$
To find stress-strain in \bar{x}_{1}, \bar{X}_{2} (laminate axes)
First relate stresses in 2 axis systems.

3. Ply Elasticity

Table of cosines

	x_{1}	x_{2}	
	\bar{x}_{1}	$\cos \theta$	$\cos (90+\theta)=-\sin \theta$
	\bar{X}_{2}	$\cos (90-\theta)=\sin \theta$	$\cos \theta$
σ_{11}	$=l_{1 \overline{1}} l_{1 \overline{1}} \bar{\sigma}_{11}+l_{1 \overline{1}} l_{1 \overline{2}} \bar{\sigma}_{22}+l_{1 \overline{1}} l_{1 \overline{2}} \bar{\sigma}_{12}+l_{12} l_{1 \overline{1}} \bar{\sigma}_{21}$		
	$=\cos ^{2} \theta \bar{\sigma}_{11}+\sin ^{2} \theta \bar{\sigma}_{22}+\cos \theta \sin \theta \bar{\sigma}_{12}+\cos \theta \sin \theta \bar{\sigma}_{21}$		
σ_{22}	$=$ etc.		
σ_{12}	$=$ etc.		

So obtain

$$
\begin{aligned}
& \left\{\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{6}
\end{array}\right\}=\left[\begin{array}{ccc}
c^{2} & s^{2} & 2 c s \\
s^{2} & c^{2} & -2 c s \\
-c s & c s & \left(c^{2}-s^{2}\right)
\end{array}\right]\{\begin{array}{c}
\bar{\sigma}_{1} \\
\bar{\sigma}_{2} \\
\bar{\sigma}_{6}
\end{array} \underbrace{}_{\text {Laminate }} \\
& \text { Ply } \\
& \text { or } \underset{\sim}{\sigma}=T_{\sigma} \bar{\sigma} \\
& \text { where } c=\cos \theta \quad s=\sin \theta
\end{aligned}
$$

3. Ply Elasticity

Also for strain

$$
\varepsilon_{m n}=l_{m \bar{p}} l_{n \bar{q}} \bar{\varepsilon}_{p q} \longleftarrow \text { standard transform law }
$$

Tensor strain
in X_{1}, x_{2}

$$
\left\{\begin{array}{ll}
\varepsilon_{1} & \\
\varepsilon_{2} & \\
\frac{1}{2} & \varepsilon_{6}
\end{array}\right\}=T_{\sigma}\left\{\begin{array}{ll}
\bar{\varepsilon}_{1} & \\
\bar{\varepsilon}_{2} & \\
\frac{1}{2} & \bar{\varepsilon}_{6}
\end{array}\right\}
$$

Tensor strain
in $\bar{X}_{1} \bar{x}_{2}$

Recall

$$
\varepsilon_{12}=\frac{1}{2} \gamma_{12}=\frac{1}{2} \varepsilon_{6}
$$

Absorb the $1 / 2$ into T_{σ} gives

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{6}
\end{array}\right\} \\
& \text { Ply }
\end{aligned} \underset{\left.\begin{array}{ccc}
c^{2} & s^{2} & C S \\
s^{2} & c^{2} & -C S \\
-2 c s & 2 c s & \left(\mathrm{c}^{2}-s^{2}\right)
\end{array}\right]\left\{\begin{array}{c}
\bar{\varepsilon}_{1} \\
\bar{\varepsilon}_{2} \\
\bar{\varepsilon}_{6}
\end{array}\right\}}{\text { Laminate }}
$$

$$
\text { or } \underset{\sim}{\mathcal{E}}=\underset{\sim}{\underset{\varepsilon}{\mathcal{E}}} \underset{\sim}{\bar{\varepsilon}}
$$

Placing into Ply axes stress strain

$$
\begin{aligned}
& \sigma=Q \varepsilon \\
& T_{\tilde{\sigma}} \bar{\sigma}=Q T_{\varepsilon} \bar{\varepsilon} \bar{Q} \\
& T_{\sigma} \bar{\sigma} \\
& \bar{\sigma}=T_{\sigma}{ }^{-1} Q ग_{\varepsilon} \bar{\varepsilon} \\
& \text { or } \bar{\sigma}=\bar{Q} \bar{\varepsilon}<\begin{array}{l}
\text { Stress-strain Relation } \\
\text { In laminate } \\
\bar{x}_{1} \\
\bar{x}_{2} \text { axes }
\end{array}
\end{aligned}
$$

3. Ply Elasticity

Now Note Inverses

$$
\begin{aligned}
& T_{\sigma}{ }^{-1}=T_{\sigma}(-\theta)=T_{\varepsilon}{ }^{T}{ }^{T} T_{\varepsilon}{ }^{-1}=T_{\varepsilon}(-\theta)=T_{\sigma}{ }^{T}
\end{aligned}
$$

So rotated Q matrix is

$$
\bar{Q}=T_{\varepsilon}^{T} Q T_{\varepsilon}
$$

Q fully populated now
Also in Jones Notation,
Laminated Axes $\bar{x}_{1}, \bar{x}_{2} \rightarrow \mathrm{x}, \mathrm{y}$
Laminated stress $\bar{\sigma}_{i} \rightarrow \sigma_{x}, \sigma_{y}, \tau_{x y}$
Laminated strain $\bar{\varepsilon}_{i}->\varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}$
Final Laminated stress - strain Eqns

$$
\left\{\begin{array}{c}
\bar{\sigma}_{x} \\
\bar{\sigma}_{y} \\
\bar{\tau}_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{13} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{array}\right]\left\{\begin{array}{l}
\bar{\varepsilon}_{x} \\
\bar{\varepsilon}_{y} \\
\bar{\gamma}_{x y}
\end{array}\right\}
$$

Multiplies, out matrices

$$
\begin{aligned}
& \bar{Q}_{11}=Q_{11} \cos ^{4} \theta+2\left(Q_{12}+2 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta+Q_{22} \sin ^{4} \theta \\
& \bar{Q}_{12}=\left(Q_{11}+Q_{22}-4 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta+Q_{12}\left(\sin ^{4} \theta+\cos ^{4} \theta\right) \\
& \bar{Q}_{22}=\text { etc. } \\
& \bar{Q}_{66}=\text { etc. }
\end{aligned}
$$

3. Ply Elasticity

Similarly can transform compliances.

$$
\begin{aligned}
& \text { from } \varepsilon=S \sigma \\
& \text { obtain } \bar{\varepsilon}=\bar{S} \bar{\sigma} \\
& \text { where } \bar{S}=T_{\sigma}{ }^{T} S T_{\sigma}
\end{aligned}
$$

Alternate ways of rotating

$$
\bar{E}_{m n p q}=l_{m \bar{r}} l_{n \bar{s}} l_{p \bar{t}} l_{q \bar{u}} E_{r s t u}
$$

Also, can mathematically reduce $\bar{Q}_{i j}$ by $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$, etc. can then express

$$
\bar{Q}_{i j}=A_{i j}+B_{i j} \cos 2 \theta+C_{i j} \cos 4 \theta+D \sin 2 \theta+E \sin 4 \theta
$$

$A, B, C, D, E \rightarrow$ depend only on 4 invariants

