CHAPTER 7.
 Thermal Stresses and Deformation

SangJoon Shin
School of Mechanical and Aerospace Engineering
Seoul National University

7. Thermal stresses and deformation

Will look at

- free expansion of a ply
- constraint and thermal stress
- rotation of plies
- laminate and effective properties
- stresses and deformation

Consider a body changing temperature

$$
\begin{aligned}
& \varepsilon=\alpha \Delta T=\alpha\left(\mathrm{T}-\mathrm{T}_{0}\right) \\
& \begin{array}{l}
\text { coefficient of thermal } \\
\text { expansion, CTE }
\end{array}
\end{aligned}
$$

Fiber: Anisotropic CTE

$$
\begin{aligned}
& \alpha_{L} \simeq-.5 \mu \varepsilon /{ }^{\circ} \mathrm{F} \\
& \alpha_{T} \text { small positive } \simeq 2 \sim 3 \mu \varepsilon /{ }^{\circ} \mathrm{F}
\end{aligned}
$$

7. Thermal stresses and deformation

Matrix isotropic

$$
\alpha \simeq 20 \text { to } 30 \mu \varepsilon /{ }^{\circ} F
$$

ply? Did micromechanics
\rightarrow ply equivalent properties
Also microstresses between fiber and matrix some will ignore these here

Ply Properties (G_{r} / E_{P} material)

$$
\begin{aligned}
& \alpha_{L} \simeq-1.0 \text { to }+5 \mu \varepsilon /{ }^{o} F \\
& \alpha_{T} \simeq 16 \mu \varepsilon /{ }^{o} F
\end{aligned}
$$

7. Thermal stresses and deformation

Consider In-plane Thermal strains

$$
\begin{aligned}
& {\underset{\sim}{\dot{\sim}}}^{T}=\underset{\sim}{\alpha} \Delta T \\
& {\underset{\sim}{\varepsilon}}^{T}=\left\{\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{6}
\end{array}\right\} \quad \underset{\sim}{\alpha}=\left\{\begin{array}{l}
\alpha_{L} \\
\alpha_{T} \\
0
\end{array}\right\}
\end{aligned}
$$

No stress!!
Before had

$$
\underset{\sim}{\sigma}=\underset{\sim}{\mathcal{E}} \underset{\sim}{x}
$$

Now need new constitutive law
To modify, note

$$
\begin{aligned}
& {\underset{\sim}{\mathcal{E}}}^{M}=\underset{\sim}{\mathcal{E}} \underset{\sim}{\sigma} \text { mechanical stress- } \text { strain } \\
& \underset{\sim}{\varepsilon}=\underset{\sim}{\underset{\sim}{\underset{\sim}{\alpha}} \underset{\sim}{\sigma}} \underset{\sim}{\mathcal{E}}{ }^{T}=\underset{\sim}{\operatorname{S}} \underset{\sim}{\alpha}+\underset{\sim}{\alpha} \Delta T \\
& \text { or } \underset{\sim}{\sigma}=\underset{\sim}{Q}\{\underset{\sim}{\varepsilon}-\underset{\sim}{\alpha} \Delta T\}
\end{aligned}
$$

[Thermoelastic stress - strain laminate]

7. Thermal stresses and deformation

What if constrained ?

$$
\underset{\sim}{\mathcal{E}}=0
$$

$$
\begin{gathered}
\underset{\sim}{\varepsilon}=0=\underset{\sim}{S} \underset{\sim}{\sigma}+\underset{\sim}{\sigma} \underset{\sim}{\alpha} \Delta T \\
\underset{\sim}{\sigma}=-\underset{\sim}{Q} \underset{\sim}{\alpha} \Delta T
\end{gathered}
$$

In 1- $\operatorname{Dim}, \bar{\sigma}_{x}=-E \underset{\sim}{\alpha} \Delta T$
The $\underline{\sigma}$ obtained is called "Thermal Stress"
Actually, this is a mis-usage of the terminology.
Thermal strain O.K

7. Thermal stresses and deformation

Thermal stresses caused by mechanical forces due to constraints, Also one defines "equivalent thermal stress"

$$
{\underset{\sim}{\sigma}}^{T}=+\underset{\sim}{Q} \underset{\sim}{\alpha} \Delta T
$$

This is a fictitious but is computationally useful.

```
\(\underset{\sim}{\bar{\sigma}}={\underset{\sim}{\sigma}}^{m}+{\underset{\sim}{\sigma}}^{T} \longrightarrow I\)
\(\underset{\sim}{\varepsilon}=\underset{\sim}{S} \sigma=\underset{\sim}{S} \sigma^{m}+\underset{\sim}{S} \underset{\sim}{\alpha} \Delta T\)
「Allows one to use old constitutive law with "fictitious" thermal stress
```


7. Thermal stresses and deformation

* Ply at Arbitrary Angle

$$
\begin{aligned}
& \underset{\sim}{\alpha} \Delta X^{\prime}=T_{\sim}^{-1} \alpha \Delta \not \subset \\
& \underset{\sim}{\bar{\alpha}}={\underset{\sim}{\tau}}_{-1}^{\sim} \underset{\sim}{\alpha}
\end{aligned}
$$

where,

$$
{\underset{\sim}{*}}_{-1}^{-1}={\underset{\sim}{x}}_{T}^{T}=\left[\begin{array}{ccc}
c^{2} & s^{2} & -c s \\
s^{2} & c^{2} & c s \\
2 c s & -2 c s & \left(\mathrm{c}^{2}-s^{2}\right)
\end{array}\right]
$$

In general,

$$
\underset{\sim}{\bar{\alpha}}=\left\{\begin{array}{l}
\alpha_{x} \\
\alpha_{y} \\
\alpha_{x y}
\end{array}\right\}
$$

Can get shear

7. Thermal stresses and deformation

* Laminate Thermal Properties

Have for a single ply

$$
\begin{aligned}
& \underset{\sim}{\varepsilon}={\underset{\sim}{c}}^{m}+{\underset{\sim}{e}}^{T}=\underset{\sim}{S} \underset{\sim}{\sigma}+\underset{\sim}{\alpha} \Delta T \quad \text { (ply words) } \\
& \underset{\sim}{\bar{\varepsilon}}={\underset{\sim}{\varepsilon}}^{0} \underset{\sim}{\bar{S}} \bar{\sim}+\underset{\sim}{\bar{\alpha}} \Delta T \text { (laminate coordinate) }
\end{aligned}
$$

For laminate, want force and moment resultants,

$$
\underset{\sim}{N}=\int \underset{\sim}{\sigma} d z \quad, \underset{\sim}{M}=\int \underset{\sim}{\bar{\sigma}} z d z
$$

Rewriting stress-strain, get

$$
\begin{aligned}
& \bar{\sim}=\underset{\sim}{\bar{Q}}\left(\underset{\sim}{\varepsilon}{ }^{0}+\underset{\sim}{\kappa} z-\underset{\sim}{\alpha} \Delta T\right)
\end{aligned}
$$

Last is what we call "Thermal Force"

$$
\left.{\underset{\sim}{N}}^{T}=\int \underset{\sim}{\bar{Q}} \underset{\sim}{\bar{\alpha}} \Delta T d z \begin{array}{c}
\text { fake } \\
\text { useful quantity }
\end{array}\right)
$$

7. Thermal stresses and deformation

${\underset{\sim}{N}}^{T}$ is not a physical load, it is a convenience

N^{T} is mechanical load necessary to provide same deformation in laminate as ΔT with no N.

For "thermal stresses"

$$
\begin{aligned}
& \underset{\sim}{\bar{\sigma}}=\underset{\sim}{\mathcal{Q}}\left(\mathcal{\sim}^{0}+\underset{\sim}{\kappa} z-\underset{\sim}{\bar{\alpha}} \Delta T\right) \\
& \underset{\sim}{N}=\int \underset{\sim}{\sigma} d z=\underset{\sim}{A} \tilde{\sim}^{0}+\underset{\sim}{B \kappa}-N^{T}
\end{aligned}
$$

Likewise,

$$
\underset{\sim}{M}=\int \underset{\sim}{\bar{\sigma}} z d z=\underset{\sim}{B} \varepsilon_{\tilde{c}}+\underset{\sim}{D} \underset{\sim}{\mathcal{\sim}}-\underbrace{\int \underbrace{\bar{\alpha}}_{\underset{\sim}{Q}} \Delta T z}_{\underline{M}^{T}} d z
$$

7. Thermal stresses and deformation

Combining,

$$
\left\{\begin{array}{c}
\underset{\sim}{N}+{\underset{\sim}{N}}^{T} \\
\underset{\sim}{M}+{\underset{\sim}{M}}^{T}
\end{array}\right\}=\left[\begin{array}{cc}
\underset{\sim}{A} & \underset{\sim}{B} \\
\underset{\sim}{B} & \underset{\sim}{D}
\end{array}\right]\left\{\begin{array}{c}
\underset{\sim}{\underset{\sim}{\underset{\sim}{\sim}}}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{c}
\underset{\sim}{\dot{\varepsilon}} \\
\underset{\sim}{\underset{\sim}{r}}
\end{array}\right\}=\left[\begin{array}{cc}
\underset{\sim}{a} & \underset{\sim}{b} \\
\underset{\sim}{b} & \underset{\sim}{d}
\end{array}\right]\left\{\begin{array}{c}
\underset{\sim}{N}+{\underset{\sim}{N}}^{T} \\
\underset{\sim}{M}+{\underset{\sim}{M}}^{T}
\end{array}\right\}
$$

If laminate is unloaded - free thermal deformation

One step up from single ply case
Plies may have stresses, but $\underset{\sim}{N}=\underset{\sim}{M}=0$

$$
\left\{\begin{array}{c}
\underset{\sim}{\dot{\varepsilon}} \\
\underset{\sim}{\boldsymbol{\kappa}}
\end{array}\right\}=\left[\begin{array}{cc}
\underset{\sim}{a} & \underset{\sim}{b} \\
{\underset{\sim}{b}}^{T} & \underset{\sim}{d}
\end{array}\right]\left\{\begin{array}{c}
{\underset{\sim}{\underset{\sim}{N}}}^{T} \\
{\underset{\sim}{\sim}}^{T}
\end{array}\right\}
$$

If ΔT constant with z

$$
=\left[\begin{array}{cc}
\underset{\sim}{a} & \underset{\sim}{b} \\
\underset{\sim}{b} & \underset{\sim}{d}
\end{array}\right]\left\{\begin{array}{c}
\int \underset{\sim}{\int \underset{\sim}{Q}} \underset{\sim}{\bar{\alpha}} d z \\
\int \underset{\sim}{\bar{Q}} \underset{\sim}{\bar{\alpha}} z d z
\end{array}\right\} \Delta T
$$

7. Thermal stresses and deformation

In symmetric case, $\underset{\sim}{b}=0,{\underset{\sim}{M}}^{T}=0$
single ply case $\rightarrow{\underset{\sim}{*}}^{0}=\bar{\sim} \Delta T$
This is stiffness - weighted rotated average CTE of each ply

- order doesn`t matter. (like $\underset{\sim}{A}$)

NOTE

$$
\begin{array}{ll}
\alpha_{L}=-.5 & \alpha_{T}=16 \mu \varepsilon /{ }^{\circ} \mathrm{F} \\
\theta_{11}=20 & \theta_{22}=1.4 \quad(\mathrm{AS} 4 / 3501-6)
\end{array}
$$

Can play off α and ply angle θ to get zero CTE`S \(E_{L} \gg E_{T}\) helps. (scissor`s effect with θ)

7. Thermal stresses and deformation

* Bending

If ΔT constant and laminate symmetric

$$
{\underset{\sim}{M}}^{T}=\int \underset{\sim}{\mathcal{Q}} \underset{\sim}{\underset{\sim}{\alpha}} \Delta T z d z \quad \rightarrow \text { no bending }
$$

If ΔT gradient and laminate symmetric, $\quad{\underset{\sim}{\sim}}^{T} \neq 0$
laminate bends / twists
If laminate unsymmetric, $\underset{\sim}{b}$ and $\underset{\sim}{M} \neq 0$, laminate bends / twists. (some exceptions)
Note on ΔT

$$
\Delta T=T-T_{0}, \text { What is } T_{0} ?
$$

An experiment - $[0 / 90]_{T}$

7. Thermal stresses and deformation

@ room temperature \rightarrow

T_{0} : usually the cure temperature
NOTE : To calculate N^{T} and M^{T} for $\Delta T=$ const.

$$
\begin{aligned}
& {\underset{\sim}{N}}^{T}=\int \underset{\sim}{\bar{Q}} \underset{\sim}{\bar{\alpha}} \Delta T d z=\Delta T \sum_{\sim}^{k}{\underset{\sim}{Q}}^{k}{\underset{\sim}{\alpha}}^{k}\left(z_{u k}-z_{l k}\right) \\
& {\underset{\sim}{M}}^{T}=\int \underset{\sim}{\underset{\sim}{\underset{\sim}{\alpha}}} \underset{\sim}{\bar{\alpha}} \Delta T z d z=\Delta T \frac{1}{2} \sum^{k}{\underset{\sim}{Q}}^{k} \bar{\sim}^{k}\left(z_{u k}{ }^{2}-z_{l k}{ }^{2}\right)
\end{aligned}
$$

Same as $\underset{\sim}{A}, \underset{\sim}{B},{\underset{\sim}{D}}^{D}$ matrices
Always use Z_{k-1} and $A B$ for each ply, rather than Z_{k} and $Z_{l k}$

7. Thermal stresses and deformation

* Thermal stresses in Plies

Have

$$
\left\{\begin{array}{c}
\underset{\sim}{\dot{\varepsilon}} \\
\underset{\sim}{\mathcal{N}}
\end{array}\right\}=\left[\begin{array}{cc}
a & b \\
b^{T} & d
\end{array}\right]\left\{\begin{array}{c}
\underset{\sim}{\underset{\sim}{N}}+\underset{\sim}{\underset{\sim}{\underset{N}{N}}}
\end{array}\right\}
$$

What happens at ply level?
Total strains are just

$$
\overline{\mathcal{E}}={\underset{\sim}{\varepsilon}}^{0}+Z \underset{\sim}{\mathcal{K}} \quad \text { (Laminate coordinate) }
$$

Just transform to get ply coordinate

$$
\underset{\sim}{\mathcal{E}}={\underset{\sim}{T}}_{\mathcal{E}}^{\underset{\sim}{\mathcal{E}}} \quad \text { (ply coordinate) }
$$

Mechanical strain (these cause stress in material)

$$
\bar{\sim}_{\sim}^{m}=\underset{\sim}{\bar{\varepsilon}}-\underset{\sim}{\alpha} \Delta T
$$

What are stresses?
Recall,

$$
\underset{\sim}{\bar{\sigma}}=\underset{\sim}{\bar{Q}} \overline{\mathcal{E}}^{m}=\underset{\sim}{\bar{Q}}\{\underset{\sim}{\bar{\varepsilon}}-\underset{\sim}{\bar{\alpha}} \Delta T\} \quad \text { (Laminate coordinate) }
$$

Also,

$$
\underset{\sim}{\sigma}={\underset{\sim}{\sigma}}^{\underline{\sigma}} \underset{\sim}{\sigma}
$$

(ply coordinate)

7. Thermal stresses and deformation

Example $\rightarrow[0 / 90]_{s}$ T300/934 material

$$
\begin{aligned}
& \underset{\sim}{Q}=\left[\begin{array}{ccc}
20.1 & .4 & 0 \\
.4 & 1.4 & 0 \\
0 & 0 & .7
\end{array}\right] \quad \text { Msi, } \underset{\sim}{\alpha}=\left[\begin{array}{c}
+.05 \\
16.0 \\
0
\end{array}\right] \mu \varepsilon /{ }^{\circ} \mathrm{F} \\
& T_{0}=350^{\circ} \mathrm{F} \quad \text { (stress - free) } \\
& T=70^{\circ} \mathrm{F} \\
& \Delta T=-280^{\circ} \mathrm{F}
\end{aligned}
$$

Laminate coordinates

$$
\begin{aligned}
& \underset{\sim}{Q}={\underset{\sim}{\tau}}^{T}{ }_{\sim}^{T} \underset{\sim}{Q} \underset{\sim}{\underset{\sim}{\alpha}}=\underset{\sim}{T}{ }^{-1} \underset{\sim}{\alpha}=\left[\begin{array}{ccc}
c^{2} & s^{2} & -c s \\
s^{2} & c^{2} & c s \\
2 c s & -2 c s & \left(c^{2}-s^{2}\right)
\end{array}\right]\left\{\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
0
\end{array}\right\} \\
& \underset{\sim}{\bar{\sim}}=\underset{\sim}{\mathcal{Q}} \underset{\sim}{\alpha}=\left\{\begin{array}{l}
n_{x} \\
n_{y} \\
n_{x y}
\end{array}\right\}
\end{aligned}
$$

7. Thermal stresses and deformation

$$
\text { (for symmetric laminate, }{\underset{\sim}{\sim}}^{T}=0 \text {) }
$$

For 0° ply,

$$
\begin{aligned}
& \underset{\sim}{\alpha}=\left\{\begin{array}{c}
c^{2} \alpha_{1}+s^{2} \alpha_{2} \\
s^{2} \alpha_{1}+c^{2} \alpha_{2} \\
2 c s\left(\alpha_{1}-\alpha_{2}\right)
\end{array}\right\}=\left\{\begin{array}{c}
+.05 \\
16.0 \\
0
\end{array}\right\} \mu \varepsilon /{ }^{\circ} F \\
& \underset{\sim}{\bar{n}}=\left\{\begin{array}{ccc}
20.1 & .4 & 0 \\
.4 & 1.4 & 0 \\
0 & 0 & .7
\end{array}\right\}\left\{\begin{array}{c}
+.05 \\
16.0 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
7.41 \\
22.4 \\
0
\end{array}\right\} l b s / \mathrm{in}^{2} F \\
& \times 10^{6} \times 10^{6}
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{\sim}{N}}^{T}=\int \underset{\sim}{\underset{\sim}{\underset{\sim}{\alpha}}} \underset{\sim}{\underset{\sim}{\alpha}} \Delta T d z=\Delta T \sum \underset{\sim}{\underset{\sim}{\bar{n}}}{ }^{k}\left(z_{u k}-z_{l k}\right) \\
& {\underset{\sim}{M}}^{T}=\int \underset{\sim}{\underset{\sim}{\underset{\sim}{\sim}}} \underset{\sim}{\underset{\sim}{\alpha}} \Delta T z d z=\Delta T \frac{1}{2} \sum_{\sim}^{k}{\underset{\sim}{n}}^{k}\left(z_{u k}^{2}-z_{l k}{ }^{2}\right)
\end{aligned}
$$

7. Thermal stresses and deformation

For 90° ply

$$
\begin{aligned}
& \bar{\sim}=\left\{\begin{array}{c}
\\
\underset{\sim}{x} \\
0
\end{array}\right\}=\left\{\begin{array}{c}
16.0 \\
+.05 \\
0
\end{array}\right\} \varepsilon /{ }^{\circ} F \\
& \underset{\sim}{\bar{\sim}}=\left\{\begin{array}{ccc}
1.4 & .4 & 0 \\
.4 & 20.1 & 0 \\
0 & 0 & .7
\end{array}\right\}\left\{\begin{array}{c}
16.0 \\
.05 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
22.4 \\
7.41 \\
0
\end{array}\right\}
\end{aligned}
$$

Ply	$Z_{k u}$	$z_{k l}$	$z_{k u}-z_{k l}$	\bar{n}_{x}	\bar{n}_{y}	$\bar{n}_{x y}$
0°	.010	.005	.005	7.41	22.4	0
90°	.005	0	.005	22.4	7.41	0

7. Thermal stresses and deformation

Sym.

$$
\begin{aligned}
& {\underset{\sim}{N}}^{T}=\left\{\begin{array}{l}
N_{x}{ }^{T} \\
N_{y}{ }^{T} \\
N_{x y}{ }^{T}
\end{array}\right\}=\Delta T \sum^{k} \bar{\sim}^{k}\left(z_{u k}-z_{l k}\right)=(-280)\left\{\begin{array}{c}
.298 \\
.298 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-84 \\
-84 \\
0
\end{array}\right\} \mathrm{lbs} / \mathrm{in} \\
& \underset{\sim}{\underset{\sim}{T}}=\left\{\begin{array}{l}
M_{x}{ }^{T} \\
M_{y}{ }^{T} \\
M_{x y}{ }^{T}
\end{array}\right\}=\Delta T \frac{1}{2} \sum_{\underset{\sim}{k}}^{\bar{\sim}_{\sim}^{k}}\left(z_{u k}{ }^{2}-z_{l k}{ }^{2}\right)=0 \quad \text { (symmetric) } \\
& \underset{\sim}{A}=\left[\begin{array}{ccc}
.215 & .0082 & 0 \\
.0082 & .215 & 0 \\
0 & 0 & .014
\end{array}\right] \times 10^{6} \\
& {\underset{\sim}{\sim}}^{0}=\underset{\sim}{\alpha}{\underset{\sim}{N}}^{T}=\left[\begin{array}{ccc}
4.65 & -.177 & 0 \\
-.177 & 4.65 & 0 \\
0 & 0 & 71.4
\end{array}\right]\left\{\begin{array}{c}
-84 \\
-84 \\
0
\end{array}\right\} \times 10^{6}=\left\{\begin{array}{c}
-377 \\
-377 \\
0
\end{array}\right\} \stackrel{\text { 신 } 14}{\mu \varepsilon}
\end{aligned}
$$

7. Thermal stresses and deformation

$$
\bar{\sim}_{\underset{\sim}{\alpha}}^{\text {average }}=\underset{\sim}{a} \underset{\sim}{\underset{Q}{\underset{\sim}{\alpha}}} \underset{\sim}{\bar{\alpha}} d z=\varepsilon^{\circ} / \Delta T=\left\{\begin{array}{c}
1.3 \\
1.3 \\
0
\end{array}\right\} \mu \varepsilon /{ }^{\circ} F
$$

$0^{\circ} \mathrm{Ply}$

$$
\begin{aligned}
& {\underset{\sim}{\varepsilon}}^{m}={\underset{\sim}{\varepsilon}}^{0}-\underset{\sim}{\alpha} \Delta T=\left\{\begin{array}{c}
-377 \\
-377 \\
0
\end{array}\right\}-\left\{\begin{array}{c}
0.5 \\
16 \\
0
\end{array}\right\}(-280)=\left\{\begin{array}{c}
-363 \\
4103 \\
0
\end{array}\right\} \mu \varepsilon \\
& \begin{aligned}
\underset{\sim}{\bar{\sigma}}=\underset{\sim}{Q} \underset{\sim}{\underset{\sim}{e}} \\
m
\end{aligned}\left[\begin{array}{ccc}
20.1 & .4 & 0 \\
.4 & 1.4 & 0 \\
0 & 0 & .7
\end{array}\right]\left\{\begin{array}{c}
-363 \\
-4103 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-5600 \\
+5600 \\
0
\end{array}\right\} \mathrm{lbs} / \mathrm{in}^{2}
\end{aligned}
$$

Similarly obtain 90° Ply
In ply coordinate, $\quad{\underset{\sim}{\sigma}}^{\circ}=\underset{\sim}{T} \bar{\sigma}^{\circ}=\bar{\sigma}^{\circ}$

$$
\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{6}
\end{array}\right\}=\left\{\begin{array}{c}
-5.6 \\
+5.6 \\
0
\end{array}\right\} K s i
$$

7. Thermal stresses and deformation

Recall allowables,

σ_{1}	σ_{2}	σ_{6}
+190	+6	
-160	-25	+10

Residual stresses close to allowable Y_{t} here.
In progressive failure analysis, should include this

$$
{\underset{\sim}{N}}^{\text {ToT }}=\lambda{\underset{\sim}{N}}^{0}+{\underset{\sim}{N}}_{\text {Include this }}^{T}
$$

A little complicates
See J ones Sec. 4 failure with ΔT

7. Thermal stresses and deformation

* summary

Thermal strains $\underset{\sim}{\alpha} \Delta T$ cause residual stresses due to cool down,
$\Delta T=-280^{\circ} \mathrm{F}$
For symmetric laminates, $\quad \underset{\sim}{\mathcal{K}}=0 \rightarrow$ no accompanying warping

For unsymmetric laminate, $\underset{\sim}{\mathcal{K}} \neq 0 \rightarrow$

$$
\text { Warping }\left\{\begin{array}{c}
\boldsymbol{\kappa}_{x}, \boldsymbol{\kappa}_{y}=\text { bending } \\
\boldsymbol{\kappa}_{x y}=\text { twisting } \\
\left.=\frac{\partial}{\partial x} \frac{\partial w}{\partial y}\right)_{=\propto}
\end{array}\right.
$$

One unsymmetric laminate that doesn`t warp

$$
\left[\theta /(\theta-90)_{2} / \theta\right]_{A}
$$

i.e.) $\left[\theta /(\theta-90)_{2} / \theta /-\theta /-(\theta-90)_{2} /-\theta\right]_{t}$ (Also give extension-twist coupling)

7. Thermal stresses and deformation

* Moisture

See Tsai and Hahn, Chap. 8
Matrix absorbs water, and swells
By micromechanics, can calculate ply swelling
(also have microstresses, ignore here)
Hydro
$\stackrel{\rightharpoonup}{\varepsilon}^{h}=\beta \Delta M \longleftarrow$ Moisture change $=$ weight of moisture/dry weight
CME : Coefficient of Moisture Expansion

$$
\begin{aligned}
& \Delta M=M-M_{0} \\
& M_{0}=0 \quad \text { Dry condition }
\end{aligned}
$$

Careful : ΔM sometimes expressed as percent (factor of 100)

$$
\Delta M \cong .5 \text { to } 2 \% \text { typical }
$$

$$
\beta=\left\{\begin{array}{c}
45 \\
5500 \\
0
\end{array}\right\} \mu \varepsilon / \% \quad \text { For T300/934 }, \alpha=\left\{\begin{array}{c}
.05 \\
16 \\
0
\end{array}\right\} \mu \varepsilon /{ }^{\circ} \mathrm{F}
$$

7. Thermal stresses and deformation

Note: typically, $\Delta T \simeq-280, \Delta M=1 \%$

$$
\begin{aligned}
\varepsilon^{T}+\varepsilon^{h} & =\alpha \Delta T+\beta \Delta T \\
& =\left\{\begin{array}{c}
-14 \\
-4480 \\
0
\end{array}\right\}+\left\{\begin{array}{c}
45 \\
5500 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
31 \\
1.020 \\
0
\end{array}\right\} \mu \varepsilon
\end{aligned}
$$

Moisture partly cancels some of strains.
Fortunate Relaxes Stresses.
CLPT works exactly same as before.

$$
\begin{gathered}
N^{h}=\int \bar{Q} \bar{\beta} \Delta M z d z \\
M^{h}=\int \bar{Q} \bar{\beta} \Delta M z d z
\end{gathered}
$$

Where, $\quad \bar{\beta}=\underset{\sim}{T}{ }_{\varepsilon}^{-1} \beta$
${ }^{\wedge}$ rotated β

$$
\begin{gathered}
\left\{\begin{array}{l}
\varepsilon^{0} \\
c
\end{array}\right\}=\left[\begin{array}{cc}
a & b \\
b^{T} & d
\end{array}\right]\left\{\begin{array}{c}
N+N^{T}+N^{h} \\
M+M^{T}+M^{h}
\end{array}\right\} \\
\bar{\sigma}=\bar{Q}\left(\varepsilon^{0}+z \kappa-\bar{\alpha} \Delta T-\bar{\beta} \Delta M\right) \\
D_{0} \text { CLPT as before }
\end{gathered}
$$

7. Thermal stresses and deformation

* Moisture Absorption

Define $\begin{aligned} m & =\frac{\text { mass of water }}{\text { mass of dry material }} \\ M & =m \times 100(\%) \\ \bar{m} & =\text { average through specimen }\end{aligned}$

* Fick` s Diffusion

$$
\begin{array}{ll}
q^{H}=-D \frac{\partial m}{\partial x}\left(\text { or generally, } q_{i}^{H}=-D_{i j} \frac{\partial M}{\partial x_{i j}}\right) \\
\frac{\partial m}{\partial t}=-\frac{\partial}{\partial x} q^{H}=D_{i j} \frac{\partial^{2} m}{\partial x_{j}^{2}} & (3-\text { Dim. }) \\
\frac{\partial m}{\partial t}=D \frac{\partial^{2} m}{\partial z^{2}} & (1-\text { Dim. })
\end{array}
$$

(like heat conduction)

7. Thermal stresses and deformation

$$
D: \text { diffusion constant }=K^{H}
$$

$$
\text { generally, } D=D_{0} e^{-C / T}
$$

$$
\text { T } 300 / 1034 \rightarrow D_{0}=2.28 \mathrm{~mm}^{2} / \mathrm{sec}
$$

$$
C=5554{ }^{0} K
$$

Moisture can affect cracks, cyclic effects, edge effects.
Equilibrium moisture content is, M_{∞}
Typically $m_{\infty}=m_{\infty} \phi \quad$ in air
property
of material Ref. Humidity

$$
m_{\infty}=m_{\infty w} \text { in water } \neq 100^{\circ} R H \text { air }
$$

The m_{∞} is usually the B.C,
Differential Equation $\frac{\partial m}{\partial t}=D \frac{\partial^{2} m}{\partial z^{2}}$

$$
\begin{array}{cll}
\text { B.C } & : \mathrm{z}=0, \mathrm{~h} \rightarrow \quad & m=m_{\infty} \\
\text { Initial condition }: \mathrm{t}=0 \rightarrow & & m=m_{0}
\end{array}
$$

7. Thermal stresses and deformation

Solution

$$
m^{*}=\frac{m-m_{0}}{m_{\infty}-m_{0}}=1-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{1}{2 j+1} \sin \frac{(2 j+1) n z}{n} e^{-\frac{(2 j+1)^{2} \mathrm{n}^{2}}{n^{2}} D t}
$$

Similar to heat conduction
But very long times ($\times 10^{5}$)

Also interested in average moisture in specimen

$$
\bar{m}=\frac{1}{h} \int_{0}^{h} m d z \leftarrow \text { can measure }
$$

can then show

$$
G=\frac{\bar{m}-m_{0}}{m_{\infty}-m_{0}}=1-\frac{8}{\pi^{2}} \sum \frac{1}{(2 j+1)^{2}} e^{-\frac{(2 j+1)^{2} \pi^{2}}{n^{2}} D t}
$$

A single approximation to above is

$$
G \simeq 1-e^{-7.3\left(\frac{D t}{n^{2}}\right)^{75}}
$$

7. Thermal stresses and deformation

Time t_{p} to reach 95% final value

$$
\begin{aligned}
& e^{-7.3\left(D t / n^{2}\right)^{75}}=.05 \\
& \text { or } 7.3\left(\frac{D t}{n^{2}}\right)^{.75}=3 \\
& t_{p}=\left(\frac{3}{7.3}\right)^{1.93} \frac{h^{2}}{D} \simeq .3 \frac{h^{2}}{D}
\end{aligned}
$$

Some formulas apply to heat conduction with appropriate constants
In addition to swelling, moisture causes deterioration of material properties.
See Tsai, " Composite Design" 4 ${ }^{\text {th }}$ Ed. 1988
Chap. 16, 17

7. Thermal stresses and deformation

* summary

1. Moisture tends to relieve residual thermal stresses obtained from cure (some moisture better than dry)
2. Similarly can do other strains. e.g. \rightarrow piezoelectric

For computing convenience, can sometimes combine

$$
\alpha \Delta T+\beta \Delta M+d_{T} \Delta V \rightarrow \alpha_{\text {equivalent }} \Delta T_{E q}
$$

And do analysis with Equivalent $\alpha_{E q} \Delta T_{E q}$

