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Will look at

7. Thermal stresses and deformation

- free expansion of a ply
- constraint and thermal stress
- rotation of plies
- laminate and effective properties
- stresses and deformation

Consider a body changing temperature

coefficient of thermal
expansion, CTE

ref. temperature

Fiber : Anisotropic CTE

small	positive
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Matrix isotropic

7. Thermal stresses and deformation

to 

ply?  Did micromechanics
→ ply equivalent  properties

Also microstresses between fiber and matrix some
will ignore these here                   

Ply Properties (           material)
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Consider In-plane Thermal strains

7. Thermal stresses and deformation

No stress!!
Before had
Now need new constitutive law
To modify, note

mechanical thermaltotal strain

“real” ≃	 ∆

mechanical stress- strain

or

[ Thermoelastic stress –strain laminate]
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What if constrained ?

7. Thermal stresses and deformation

In 1-Dim, 
The obtained is called  “Thermal Stress”
Actually, this is a mis-usage of the terminology.
Thermal strain O.K
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7. Thermal stresses and deformation

Thermal stresses caused by mechanical forces due to constraints,
Also one defines “equivalent thermal stress”

This is a fictitious but is computationally useful.

Allows one to use old constitutive law with “fictitious” thermal stress
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7. Thermal stresses and deformation

In general,

Can get shear

∶ strain	transformation

← CTE in laminate axes

where, 

 Ply at Arbitrary Angle
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7. Thermal stresses and deformation

Have for a single ply
(ply words)

For laminate, want force and moment resultants,

Rewriting stress-strain, get
	

Last is what we call “Thermal Force”

 Laminate Thermal Properties
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is not a physical load , it is a convenience

7. Thermal stresses and deformation

0

∆ 0

∆

is mechanical load necessary to provide same deformation
in laminate as ∆ with no N.

For “thermal stresses”

Likewise,

TN
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Combining,

7. Thermal stresses and deformation

or

If laminate is unloaded – free thermal deformation

One step up from single ply case
Plies may have stresses, but

If 	∆ 	constant with z
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In symmetric case,

7. Thermal stresses and deformation

single ply case →

Engineering CTE
of laminate

This is stiffness – weighted rotated average CTE of each ply
- order doesn`t matter. (like    )
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7. Thermal stresses and deformation

If       constant and laminate symmetric
→ no bending

If gradient and laminate symmetric,
laminate bends / twists

If laminate unsymmetric,       and               ,
laminate bends / twists. (some exceptions)

Note on 

An experiment –

 Bending

,  What is        ? 

T
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																														 ㅎ
	 	

@ room temperature →

7. Thermal stresses and deformation

To: usually the cure temperature

0T 
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7. Thermal stresses and deformation

Have

What happens at ply level?
Total strains are just

 Thermal stresses in Plies
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(Laminate coordinate)

Just transform to get ply coordinate

T 
 

(ply coordinate)

Mechanical strain (these cause stress in material) 
m T    
  

total    thermal

What are stresses?
Recall,

Also,
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7. Thermal stresses and deformation

Msi, 

Laminate coordinates

(stress – free)

Example → T300/934 material  [0 / 90]s
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7. Thermal stresses and deformation

For       ply,

(for symmetric laminate,           )
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7. Thermal stresses and deformation

For       ply90
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7. Thermal stresses and deformation

Sym.
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7. Thermal stresses and deformation

average 1.3
1.3 /
0
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7. Thermal stresses and deformation

Recall allowables,

0ToT TN N N 
  

1 2 6

190 6
160 25

  
 
 

10

Residual stresses close to allowable      here.
In progressive failure analysis , should include this 

A little complicates
See Jones Sec.4 failure with

tY

Include this

T
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7. Thermal stresses and deformation

Thermal strains          cause residual stresses due to cool down,

For symmetric laminates,               → no accompanying warping

For unsymmetric laminate, →
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7. Thermal stresses and deformation

See Tsai and Hahn, Chap. 8
Matrix absorbs water, and swells
By micromechanics, can calculate ply swelling
(also have microstresses, ignore here)

 Moisture

Careful :        sometimes expressed as percent ( factor of 100)

h M  
Hydro

Moisture change = weight of moisture/dry weight

CME : Coefficient of Moisture Expansion

0M M M  
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M
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7. Thermal stresses and deformation

Moisture partly cancels some of strains.
Fortunate Relaxes Stresses.
CLPT works exactly same as before.

Where,  

Note: typically, 280, 1%T M   
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7. Thermal stresses and deformation

Define =  

 Moisture Absorption

can measure

mass of water
mass of dry material

100(%)M m 
m average through specimen

 Fick`s Diffusion
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7. Thermal stresses and deformation

Moisture can affect cracks, cyclic effects, edge effects.
Equilibrium moisture content is, 
Typically                     in air 

in water                   air  

: diffusion constant HD K
/

0, C Tgenerally D D e

property 
of material

T 300/1034→ 2
0

0

2.28 / sec

5554
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M

m m   

Ref. Humidity

wm m  100 RH 

The        is usually the B.C,
Differential Equation 
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7. Thermal stresses and deformation

Also interested in average moisture in specimen

can then show

A single approximation to above is

Solution
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7. Thermal stresses and deformation

Some formulas apply to heat conduction with appropriate constants 
In addition to swelling, moisture causes deterioration of material properties.

See Tsai, “ Composite Design” 4th Ed. 1988
Chap. 16, 17

Time     to reach 95% final value 

or

pt
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7. Thermal stresses and deformation

1. Moisture tends to relieve residual thermal stresses obtained from cure 
(some moisture better than dry)

2. Similarly can do other strains. e.g. → piezoelectric

Then

For computing convenience, can sometimes combine 

And do analysis with Equivalent

 summary

voltage

P
Td V  

Coefficient of piezo expansion

0 ( )M
Tz T M d V           

mechanical
strain total 

strain

T m P

T equivalent EqT M d V T        

Eq EqT 
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