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7. Thermal stresses and deformation

Will look at

- free expansion of a ply

- constraint and thermal stress

- rotation of plies

- laminate and effective properties
- stresses and deformation

Consider a body changing temperature

. g=aAT =q(T-T,)

i e o\

coefficient of thermal ref. temperature
expansion, CTE

! Fiber : Anisotropic CTE

a, =—5Sucl°F

o, small positive =2 ~3us/ °F
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7. Thermal stresses and deformation

Matrix isotropic

a=20 to 30us/°F

________

ply? Did micromechanics
— ply equivalent properties

___________

Also microstresses between fiber and matrix some
will ignore these here

Ply Properties ( G, / E, material)

a, =-1.0 to +5uel°F
o, =16uel °F
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7. Thermal stresses and deformation

Consider In-plane Thermal strains

s =q AT
& a,
T
& =14 =10y
Eq 0
No stress!!
Before had g=Q¢
Now need new constitutive law
To modify, note E = gM + gT

total strain mechanical thermal

Al
“real”

~

=T
So mechanical stress- strain
gte' =Sg+aAT

~

§

~

c=Qq{e-a AT}

[ Thermoelastic stress —strain laminate]
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7. Thermal stresses and deformation

What if constrained ?

e
/]
1 - =0
] % -
E=0=So+aAT
Sg=-aAT
g:—QqAT

In 1-Dim, &, =—Ea AT
The o obtained is called “Thermal Stress”

Actually, this is a mis-usage of the terminology.
Thermal strain O.K
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7. Thermal stresses and deformation

Thermal stresses caused by mechanical forces due to constraints,
Also one defines “equivalent thermal stress”

gT =+Qa AT

This is a fictitious but is computationally useful.

— m T

=0 +0O |

~ ~ ~ /'

£=Sg=3g" +SQaAT
X <

Allows one to use old constitutive law with “fictitious” thermal stress
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7. Thermal stresses and deformation

< Ply at Arbitrary Angle

— -1
o 1« c=T"¢ : strain transformation

X < a=T"'a | < CTE in laminate axes
where, Y _cs
T'=T =] s «c° cs
2cs —2cs (c°—s%)
In general, a,
a=ya, ¢
(94

Xy

Can get shear

Active Aeroelasticity and Rotorcraft Lab., Seoul National Universit



7. Thermal stresses and deformation

J/

 Laminate Thermal Properties

Have for a single ply

=" +&' =So+aAT (ply words)
O

YIRS

+x2=SG+aAT (laminate coordinate)
For laminate, want force and moment resultants,
\ :jgdz , M =I§zdz
Rewriting stress-strain, get
5:6(50 +KZ—-aAT)

jadz_(dez)g +(jdez)K anAsz

A B N
Last is what we call “Thermal Force”
= _[ Qa ATdz
B fake
useful quantity
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7. Thermal stresses and deformation

T. . o .
N is not a physical load , it is a convenience

AT =0
] - [+ N’
| R | N=0
Nar

N"is mechanical load necessary to provide same deformation
in laminate as AT with no N.

For “thermal stresses”

Likewise,

M =I§zdz =B’ + I;)/g—J‘Q@ATzdz
%_J
MT
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7. Thermal stresses and deformation

Combining,

o g [a b][N+NT
| |b d||M+MT

If laminate is unloaded — free thermal deformation

One step up from single ply case
Plies may have stresses, but N=M =0

If AT constant with z
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7. Thermal stresses and deformation

In symmetric case, b=0,M" =0

g’ >=§j(§@dZAT

y
gzo (s, Engineering CTE
R o, «— of laminate
é‘z

single ply case — &° =@ AT

This is stiffness — weighted rotated average CTE of each ply
- order doesn"t matter. (like A)

NOTE
a =-.5 a; =16 ue | °F

6, =20 0, =14 (AS4/3501-6)

Can play off & and ply angle @ to get zero CTE™S
E,>>E. helps. (scissors effect with @)
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7. Thermal stresses and deformation

s Bending

If AT constant and laminate symmetric

MT = j@&ATZdZ — no bending

: : : T
If AT gradient and laminate symmetric, M =0
laminate bends / twists
: . T
If laminate unsymmetric, lg and M #0 |
laminate bends / twists. (some exceptions)

Note on AT
AT =T-T, , Whatis T, ?

An experiment — [0/90],

e @ cure temperature
|
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7. Thermal stresses and deformation

@ room temperature — A AT =0

A/oven
S __wrule ¢

7 NI /

T

|

TO = cure temperature

T,: usually the cure temperature

NOTE : To calculate N'and MT' for AT = const.

IQ@ Z_ATZK‘,Ejk@k(Zuk_Zlk)

j(?@ATzdz =AT = Zk:(§ a“(z,” -2,%)

Same as A, B, D matrices
Always use Za and AH for each ply, rather than Zx and Zi
N J
Y
(confusing, z direction)
Signs, Jones book
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7. Thermal stresses and deformation

% Thermal stresses in Plies

Have §° a b N+NT
K |p" d M+M'

What happens at ply level?
Total strains are just

— 0
& =& + LK (Laminate coordinate)

~

Just transform to get ply coordinate

&= T & (ply coordinate)

~& ~

Mechanical strain (these cause stress in material)
g" =g - AT
total thermal
What are stresses? _ _
Recall, c=0Qc" =Q{z —aAT} (Laminate coordinate)

Also, c=10 (ply coordinate)

~
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7. Thermal stresses and deformation

Example — [0/90], T300/934 material

201 4 O +.05
Q=] 4 14 0 Msi, a=|16.0|us/°F

o 0 7 0
T, =350°F (stress — free)
T =70°F
AT =-280°F

Laminate coordinates
Q=T,'QT, (as before)
a=T"a= > s —CS A
s ¢ cs a,

2cs —2cs (c*-s?)| |0

3|
Il
Q)
1R
Il
—
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7. Thermal stresses and deformation

NT IG@ATdZ :ATZﬁk(Zuk _Zlk)

. k
M' = jQ@ATzdz = AT %Zﬁ"(zuk2 -7,%)

(for symmetric laminate, MT =0)

For O ply,
C’o, +5°a, +.05)
a=1 sSa,+C°a, +=116.0 ¢ uel°F
2cs(a, — ) 0

J

201 4 0] (+.05] (7.41
N=J 4 14 0:416.0;=:22.4¢lbs/in*°F

o o0 7j[ 0] |oO
X o\

x 106 x 106
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7. Thermal stresses and deformation

For 90° ply
16.0
a= ={+.05} ue ! °F
0

4 0](16.0] (224
m={.4 201 04 .05p=47.41
0 0 .7/ 0 0

Ply Z,, Zy Ly, — Ly ﬁx r]y r]xy

0 .010 .005 .005 741 224 O
90" .005 O 005 224 741 O
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7. Thermal stresses and deformation

Sym
NT =[N k 298] (-84
IN,T b =ATY T(zy —2,) = (-280)4.298} =< -84 Ibs/in
LnyT 0 0
|\/I-I- _ rM T A
~ XT 1 < =k 2 2
M, ?:ATEZD (z,,”—27,°)=0  (symmetric)
M,
215 .0082 0
A=].0082 215 0 (x10°
0 0 .014
g =gN"=[ 465 -177 0 (-84 =377) 1114
~177 465 0 |1-84'x10°=1-377'ue
0 0 714(| 0 0
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7. Thermal stresses and deformation

C.,_Zaverage = @IQ@dz =g [AT = |13

1.3} usl °F
0
O°Ply
g"=¢"-aAT =(-377) (05 363
—377 ¢ —4 16 +(—280) =4 4103 } ue
0 0 0
c=Q&"=1[201 4 0](-363 ~5600

4 14 0[<{-4103!\={+5600" ¢bs/in®
0 0 .7 0
ALY
x 10° x 107°
Similarly obtain90° Ply

In ply coordinate, o' =T o' =5

~ ~O0

%1
o, p=4+95.6 Ksi
O
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7. Thermal stresses and deformation

Recall allowables,

7] O, Oy
+190 +6 10
160 -25

Residual stresses close to allowable Y, here.
In progressive failure analysis , should include this

NTOT ZANO‘F NT

Include this

A little complicates
See Jones Sec.4 failure with AT
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7. Thermal stresses and deformation

S summary

Thermal strains g AT cause residual stresses due to cool down,

AT =-280°F
For symmetric laminates, x =0 — no accompanying warping

For unsymmetric laminate, x=#0 —
Warping | g | K, = bending

K, = twisting

One unsymmetric laminate that doesn "t warp

[6/(60-90),/6],
le.) [6/(6-90),/8/-601-(6-90),/-6]
(Also give extension—twist coupling)

Active Aeroelasticity and Rotorcraft Lab., Seoul National Universit



7. Thermal stresses and deformation

% Moisture

See Tsai and Hahn, Chap. 8
Matrix absorbs water, and swells
By micromechanics, can calculate ply swelling
(also have microstresses, ignore here)
Hydro ~
E = IBAM <«——Moisture change = weight of moisture/dry weight

CME : Coefficient of Moisture Expansion
AM =M -M,
M, =0 Dry condition

Careful : AM sometimes expressed as percent ( factor of 100)
AM =5 to 2% typical

= [ % 05
5500 ue /% For T300/934 ,a =116 ruel°F
0 0
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7. Thermal stresses and deformation

Note: typically, AT =—-280, AM =1%
g +&" =a AT + AT

14 45 31
=<—-4480:+<5500; =<1.020 ; ue
0 0 0

Moisture partly cancels some of strains.
Fortunate Relaxes Stresses.
CLPT works exactly same as before.

th_[(jﬁAM zdz
Mh:IQBAM zdz

Where, B=T'p

AN

rotated S

g’ a b|[N+N"+N"

{c}{bT dHM+MT+M“}
& =Q (&’ + zx —aAT — fAM)
D, CLPT as before
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7. Thermal stresses and deformation

J/

s Moisture Absorption

Define m = mass of water
mass of dry material
M =mx100(%)

m =average through specimen

\ can measure

/

< Fick s Diffusion

: =_Da—m(or generally, q" =-D; ﬂ)

OX aXij

om0 4 o’m :

~ -~ ag"=D. 3—Dim

ot OX q ! asz ( )
2

om_pdm (1- Dim.)

ot 0z

(like heat conduction)
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7. Thermal stresses and deformation

D : diffusion constant = K"
generally, D =D, "
T 300/1034— D, =2.28 mm?/sec
C =5554 °K

Moisture can affect cracks, cyclic effects, edge effects.
Equilibrium moisture content is, M._
Typically m_=m_ @ in air

PN

property
of material

Ref. Humidity

m, =m,, in water # 100°RH air

The M, is usually the B.C,
Differential Equation om _ o’m
ot oz’
B.C 2z=0 , h > Mm=mM_
Initial condition : t=0 — m=m,
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7. Thermal stresses and deformation

Solution
. (2 j+1)?n?
« Mm—m 41& 1 . (21+1D)nz ——5—0nt
m=——""1=1-—% — sm(J ) e
m, —m, ri2)+1 n
o h m. Similar to heat conduction
):g ‘( E E( . But very long times (x10°)
- 0 m, m m

Also interested in average moisture in specimen

_ 1 n
m :HJO Mdz < can measure
can then show

coM-M _, 8ZZ _1 e
m,—m, T (2+1)

A single approximation to above is

E]JS

oot e_m(nz
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7. Thermal stresses and deformation

Time tp to reach 95% final value

24.75
e—7.3(Dt/n ) _ 05

.75
or 73(%) =3
n

t_il.93h_2~3h_2
73] D "D

Some formulas apply to heat conduction with appropriate constants
In addition to swelling, moisture causes deterioration of material properties.

See Tsai, “ Composite Design” 4t Ed. 1988
Chap. 16, 17
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7. Thermal stresses and deformation

summary

1. Moisture tends to relieve residual thermal stresses obtained from cure

(some moisture better than dry)
2. Similarly can do other strains. e.g. — piezoelectric

—¢e"=d.A

voltage
Coefficient of piezo expansion

Then &" =&°+ k72— (a AT + SAM +d.AV)
Y g r t

mechanical T m P
strain total & ¢ &

strain

For computing convenience, can sometimes combine

a AT + fJAM +d; AV -« ATg,

equivalent

And do analysis with Equivalent a AT,
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