Graphs and Complexity (4541.554 Introduction to Computer-Aided Design)

School of EECS Seoul National University

Graphs

- Graph: G = (V, E)
 - V : vertices v_1, v_2, \dots
 - E : edges = pairs of distinct vertices (v_i, v_j) ordered pairs ---> directed edges

- Walk: sequence of vertices (v₁, v₂, ..., v_n) such that v_i is adjacent to v_{i+1}
- Trail: walk with distinct edges
- Path: trail with distinct vertices
- Circuit: $\mathbf{v}_1 = \mathbf{v}_n$

Path

- Degree: # of edges incident to the vertex
 - for directed graph: in-degree, out-degree
 - sum of degrees of all vertices = 2 x (number of edges)
 => number of vertices of odd degree is even

Graphs

- Isomorphism: one-to-one correspondence of vertices
 - Used for LVS

 Subgraph: graph formed by a subset of vertices and edges

Complete graph: for every pair of vertices v_i and v_i, there exists an edge

• Clique: complete subgraph

- Complement of G = (V, E): $\overline{G} = (V, \overline{E})$
 - same set of vertices
 - edges between pairs not linked in G

 Cut-set: set of edges in a connected graph whose removal disconnects the graph, but no proper subset causes disconnection

• Planar graph : can be drawn on a plane without edges crossing

- Theorem (Euler's formula)
 - Given a connected planar graph
 - |R| = |E| |V| + 2 where R is the set of regions including the unbounded region
 - Proof by induction starting with |E| = 1

- Corollary

- $|\mathbf{E}| \le 3|\mathbf{V}|$ 6 for $|\mathbf{E}|$ >1
- Proof
 - Degree of a region = # of edges on the boundary
 - Degree of each region \ge 3
 - Sum of degrees of all regions $\ge 3|\mathsf{R}|$
 - Sum of degrees of all regions = 2|E|
 - $-2|E| \ge 3|R| = 3(|E| |V| + 2)$
 - $|E| \le 3|V| 6$
- Degrees of vertices
 - If each vertex has degree ≥ 6, then
 |E| = (sum of degrees)/2 ≥ 6/2 |V| > 3|V| 6
 and the graph cannot be planar.
 - A planar graph has a vertex of degree at most 5.

• Dual graph and vertex coloring

- Euler circuit, Euler trail
 - Traverse all edges once
 - Euler circuit: the degree of each vertex must be even
 - Euler trail: no more than 2 vertices must have odd degree
 - Königsberg (Kaliningrad) bridges

- Hamilton circuit/path
 - Visit each vertex once
 - Exactly two edges are incident at each vertex.
- Traveling Salesman Problem
 - Find a minimum cost Hamilton circuit in a complete graph
- DAG: directed acyclic graph
 - set of vertices: strict partial order
 - (direct) successor (or descendant)
 - (direct) predecessor (or ancestor)

- reflexive: $(x, x) \in R$ (irreflexive : $(x, x) \notin R$)
- antisymmetric: (x, y) ∈ R and (y, x) ∈ R ⇒ x=y (asymmetric: (x, y) ∈ R ⇒ (y, x) ∉ R)
- transitive: $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$
- Polar DAG: any v is reachable from source, and sink is reachable from any v

• Incidence matrix :

- undirected : (i, j) = 1 if e_i is incident to v_i else 0

= 0 otherwise

• Adjacency matrix :

- (i, j) = 1 if v_i is adjacent to v_j

$$V_i V_j$$

- Clique number: cardinality of the largest clique
- Clique partition: disjoint
- Clique cover: possibly overlapping
- Clique cover number: cardinality of a minimum clique cover
- Independent set: no two vertices in the set are adjacent
- independence number: cardinality of the largest independent set
- Coloring: partition of vertices into independent sets
- Chromatic number: minimum number of colors needed
- clique number ≤ chromatic number (vertices in a clique ⇒ different colors)

 independence number ≤ clique cover number (vertices in an independent set ⇒ different cliques) • Chordal (triangulated) graph: every cycle with more than 3 edges possesses a chord

• Interval graph: subclass of chordal graph

- Tree: root vertex + unique path from the root to each vertex
- parent, child, sibling (same parent)
- ancestor, descendant
- A tree with n vertices has n-1 edges.
- Leaf: vertex with no children Internal vertex: non-leaf vertex
- m-ary tree: each non-leaf vertex has m children m=2: binary tree
 - i = # of internal vertices => (mi+1) vertices in total
 - I = # of leaves => I + i vertices in total
 - => I = (m-1)i + 1

- Height: length (# of edges) of the longest path from the root
- Level of a node: length of the path from the root to the node
- Balanced: all leaves are at levels h and h-1 (h=height)
- m-ary tree: at most m^h leaves => h ≥ ⌈ log_ml ⌉
 balanced => h= ⌈ log_ml ⌉

- Tree enumeration
 - Depth-first search (backtracking, branch and bound)
 - Breadth-first search
 - Balanced binary tree with height=n
 - About 2x2ⁿ nodes
 - Worst case traversal visits all nodes
 - Runtime=c2ⁿ

Computational Complexity

- Notation
 - f(n) = O(g(n))

if there exist c>0 and n_0 >0 such that f(n)≤cg(n) for n≥n₀

 $- f(n) = \Omega(g(n))$

if there exist c>0 and $n_0>0$ such that $f(n)\ge cg(n)$ for $n\ge n_0$

$$- f(n) = \Theta(g(n))$$

if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Function	Approximate Values		
n	10	100	1000
nlogn	33	664	9966
n ³	1,000	1,000,000	10 ⁹
10 ⁶ n ⁸	10 ¹⁴	10 ²²	10 ³⁰
2 ⁿ	1024	1.27x10 ³⁰	1.05x10 ³⁰¹
n ^{logn}	2099	1.93x10 ¹³	7.89x10 ²⁹
n!	3,628,800	10 ¹⁵⁸	4x10 ²⁵⁶⁷

Function	Size of Instance Solved in One Day	Size of Instance Solved in a Computer 10 Times Faster
n	10 ¹²	10 ¹³
nlogn	0.948x10 ¹¹	0.87x10 ¹²
n²	10 ⁶	3.16x10 ⁶
n ³	10 ⁴	2.15x10⁴
10 ⁸ n ⁴	10	18
2 ⁿ	40	43
10 ⁿ	12	13
n ^{logn}	79	95
n!	14	15