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Graphs

Graphs
• Graph: G = (V, E)

V : vertices v1, v2, ...
E : edges = pairs of distinct vertices (vi, vj)

ordered pairs ---> directed edges

v1 is adjacent to v2

• Walk: sequence of vertices (v1, v2, ..., vn) such 
that vi is adjacent to vi+1

• Trail: walk with distinct edges
• Path: trail with distinct vertices
• Circuit: v1 = vn
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v1 v2

Path



Graphs

• Degree: # of edges incident to the vertex

– for directed graph: in-degree, out-degree

– sum of degrees of all vertices = 2 x (number of edges)
=> number of vertices of odd degree is even

• Isomorphism: one-to-one correspondence of 
vertices
– Used for LVS



Graphs

• Subgraph: graph formed by a subset of vertices 
and edges

• Complete graph: for every pair of vertices vi and 
vj, there exists an edge

• Clique: complete subgraph



Graphs

• Complement of G = (V, E): G = (V, E)
– same set of vertices
– edges between pairs not linked in G

• Cut-set: set of edges in a connected graph whose 
removal disconnects the graph, but no proper 
subset causes disconnection



Graphs

• Planar graph : can be drawn on a plane without 
edges crossing



Graphs

– Theorem (Euler’s formula)
• Given a connected planar graph
• |R| = |E| - |V| + 2

where R is the set of regions including the unbounded 
region

• Proof by induction starting with |E| = 1

|E|=1 |E|=n-1

|E|=n |E|=n



Graphs

– Corollary
• |E| ≤ 3|V| - 6 for |E|>1
• Proof

– Degree of a region = # of edges on the boundary
– Degree of each region ≥ 3
– Sum of degrees of all regions ≥ 3|R|
– Sum of degrees of all regions = 2|E|
– 2|E| ≥ 3|R| = 3(|E| - |V| + 2)
– |E| ≤ 3|V| - 6

– Degrees of vertices
• If each vertex has degree ≥ 6, then 

|E| = (sum of degrees)/2 ≥ 6/2 |V| > 3|V| - 6
and the graph cannot be planar.

• A planar graph has a vertex of degree at most 5.



Graphs

• Dual graph and vertex coloring



Graphs

• Euler circuit, Euler trail
– Traverse all edges once
– Euler circuit: the degree of each vertex must be even
– Euler trail: no more than 2 vertices must have odd 

degree
– Königsberg (Kaliningrad) bridges
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Graphs

• Hamilton circuit/path 
– Visit each vertex once
– Exactly two edges are incident at each vertex.

• Traveling Salesman Problem
– Find a minimum cost Hamilton circuit in a complete 

graph
• DAG: directed acyclic graph

– set of vertices:  strict partial order
– (direct) successor (or descendant)
– (direct) predecessor (or ancestor)

• (Strict) partial order: relation R that is
– reflexive: (x, x) ∈ R (irreflexive : (x, x) ∉ R)
– antisymmetric: (x, y) ∈ R and (y, x) ∈ R ⇒ x=y 

(asymmetric: (x, y) ∈ R ⇒ (y, x) ∉ R)
– transitive: (x, y) ∈ R and (y, z) ∈ R ⇒ (x, z) ∈ R

• Polar DAG: any v is reachable from source, and 
sink is reachable from any v



Graphs

• Incidence matrix :
– undirected : (i, j) = 1 if ej is incident to vi else 0

ej

vi

– directed :     (i, j) = 1 if

= -1 if

= 0  otherwise
• Adjacency matrix :

– (i, j) = 1 if vi is adjacent to vj

ej vi

ejvi

vi vj



Graphs

• Clique number: cardinality of the largest clique
• Clique partition: disjoint
• Clique cover: possibly overlapping
• Clique cover number: cardinality of a minimum clique cover
• Independent set: no two vertices in the set are adjacent
• independence number: cardinality of the largest 

independent set
• Coloring: partition of vertices into independent sets
• Chromatic number: minimum number of colors needed

• clique number ≤ chromatic number
(vertices in a clique ⇒ different colors)

• independence number ≤ clique cover number
(vertices in an independent set ⇒ different cliques)



Graphs

• Chordal (triangulated) graph: every cycle with 
more than 3 edges possesses a chord

• Interval graph: subclass of chordal graph
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Graphs

• Tree: root vertex + unique path from the root to 
each vertex

• parent, child, sibling (same parent)
• ancestor, descendant
• A tree with n vertices has n-1 edges.
• Leaf: vertex with no children

Internal vertex: non-leaf vertex
• m-ary tree: each non-leaf vertex has m children

m=2: binary tree
i = # of internal vertices => (mi+1) vertices in total
l = # of leaves => l + i vertices in total
=> l = (m-1)i + 1



Graphs

• Height: length (# of edges) of the longest path 
from the root

• Level of a node: length of the path from the root 
to the node

• Balanced: all leaves are at levels h and h-1 
(h=height)

• m-ary tree: at most mh leaves => h ≥ ⎡ logml ⎤
balanced => h= ⎡ logml ⎤



Graphs

• Tree enumeration
– Depth-first search (backtracking, branch and bound)
– Breadth-first search
– Balanced binary tree with height=n

• About 2x2n nodes
• Worst case traversal visits all nodes
• Runtime=c2n

solution

solution



Computational Complexity

Computational Complexity
• Notation

– f(n) = Ο(g(n)) 
if there exist c>0 and n0>0 such that f(n)≤cg(n) for n≥n0

– f(n) = Ω(g(n)) 
if there exist c>0 and n0>0 such that f(n)≥cg(n) for n≥n0

– f(n) = Θ(g(n)) 
if f(n) = Ο(g(n)) and f(n) = Ω (g(n)) 
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Computational Complexity

Function Approximate Values 

n 10 100 1000

nlogn 33 664 9966

n3 1,000 1,000,000 109

106n8 1014 1022 1030

2n 1024 1.27x1030 1.05x10301

nlogn 2099 1.93x1013 7.89x1029

n! 3,628,800 10158 4x102567

 

 



Computational Complexity

Function 
Size of Instance 
Solved in One 

Day 

Size of Instance 
Solved in a 

Computer 10 
Times Faster 

n 1012 1013

nlogn 0.948x1011 0.87x1012

n2 106 3.16x106

n3 104 2.15x104

108n4 10 18

2n 40 43

10n 12 13

nlogn 79 95

n! 14 15
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