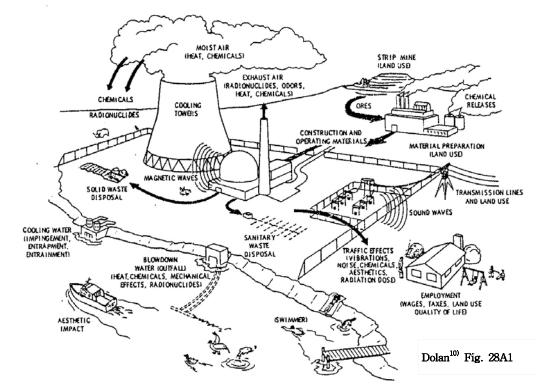
Chapter 7. Safety, Tritium & Environmental Impacts

Reading assignments: Dolan, Chap. 28, Harms Chap. 14; Stacey Chap. 11


1. Safety and environmental considerations

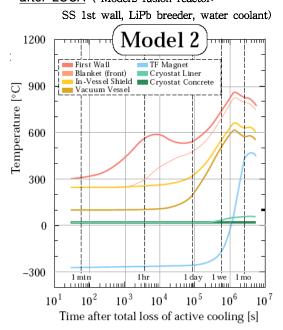
A. Safety & environmental goals of fusion reactor

- Protection of workers and general public from accidents, radioactivity and toxic materials
- Protection of environments from pollutants and waste
- Minimization of investment for power plant construction

B. Potential hazards of fusion reactors

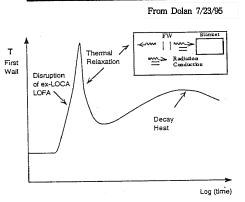
- Routine release of tritium
- Accidental releases or disposals of radioactivity (T, activated structures)
- Discharges of chemical and toxic materials
- Thermal discharge to water and air
- Stored energy release (radioactive afterheat, liquid metal fire, hydrogen explosion, stray magnetc fields,)
- Accidents associated with high vacuum, high pressure, cryogenic fluids,
 high voltage & current, heavy masses,
- Plant decommissioning
- Proximity to population centers, industry, transportation facilities
- Effects on local economic and social conditions

2. Safety of fusion power plantss

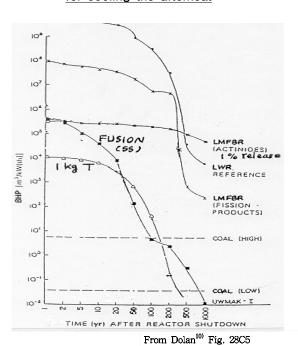

A. Types of accidents

- Reactor core plasma events (fusion overpower, disruptions,
 - delayed shutdown)
- Loss of coolant accident (LOCA)
- Loss of flow accident (LOFA)
- Loss of vacuum accident (LOVA)
- Loss of cryogen
- Magnet events
- Tritium plant events
- Auxiliary system events

Energy Sources in Fusion Reactors

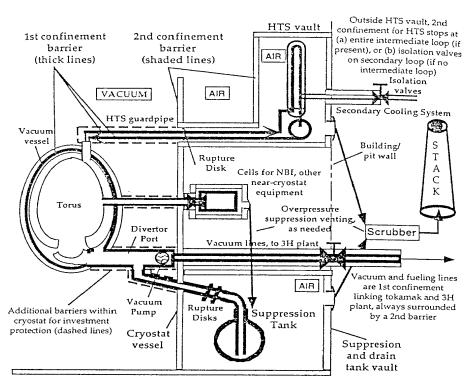

		ITER Valu	R Value, GJ		
•	asma thermal energy	1.2			
	ssel thermal energy sion reactions, 20 s	30	į		
	asma magnetic energy	1.3	,		
	agnet coil stored energy cay heat, first week	120 910	(260 in first day)		
	echanical stresses				
	cuum /ogens				
	olant internal energy	300			
ch	emical reactions coolant	800			
	water or air with hot n	netals.			

Temperature Variation of reactor materials after LOCA (Model 2 fusion reactor:



(From H.-S. Bosch, MP-IPP Summer Univ. (1999))

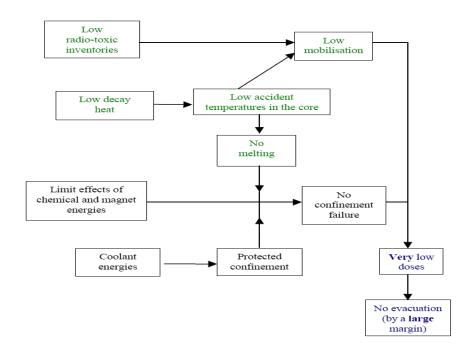
First Wall Temperature vs. Time after Disruption or LOCA


Biological Hazard Potential (안전농도희석량) for cooling the afterheat

B. Safety philosophy of fusion reactor

- Passive multiple barriers
 - (vacuum vessel + cryostat + containment building)
- Design for reliability (redundancy of components, diversity, independence, simplicity, surveillance & testing)
- Consideration of human factors
- Fail-safe design
- Remote maintenance
- Safety culture in worker attitudes
- Quality assurance (codes & standards, verification & validation, safety analysis)
- Operational controls (parameter limits, fault detection, automatic corrective response)
- Safety and protective systems
- Accident preparedness & management
- Emergency planning

Illustration of Confinement Strategy for the Tokamak Building


Not shown: fueling lines (similar to vacuum lines), divertor HTS lines (similar to the HTS that are shown), and ECRF/ICRF lines (which extend outside the tokamak building)

(From ITER Design Report (July, 1995), Fig. 2.6-1)

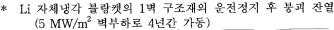
C. Intrinsic passive safety of fusion reactor

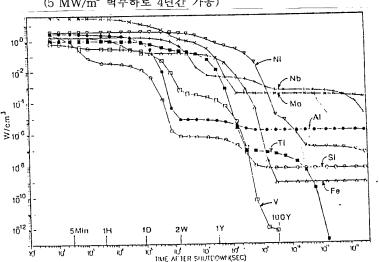
Intrinsically no core melt-down accident in the fusion reactor

- No chain reactions by neutrons
- Continuous fuel supply of few g into a reactor of few hundred m^3 (cf) ~ 50 tons of fuel in a fission reactor
- Automatic shutdown and rapid cooling in case of control failures
- Low decay heats after the shutdown of reactor operation
- No evacuation of residents in case of severe accidents
- Public acceptance from the aspect of safety

Passive Safety Features

Active Safety Features


◆ Multiple barriers	Typical failure rates*				
vessels & ducts	10 ⁻⁴ -10 ⁻⁵ / y for strong vessels	◆ Active safety systems	Typical failure rates*		
– shell	10 ⁻¹ -10 ⁻² / demand, weak barriers				
building	10 ⁻¹ / demand	Stack exhaustLi fire suppression system	10 ⁻⁴ -10 ⁻⁵ / h fan failure 10 ⁻² -10 ⁻³ / demand		
♦ Lithium drains to tanks	10 ⁻¹ -10 ⁻² / demand	Air filtration	10 ⁻⁵ / hour failure of filter fibers		
◆ Concrete liner	10 ⁻³ / demand	Det E			
◆ Inert cover gas	10 ⁻¹ / demand	◆ Design Features - No water in building			
◆ Stack structure 10 ⁻⁴ -10 ⁻⁵ / y for earthquakes	- Low pressure coolant				
♦ Aerosol plate-out	~0.01-10 % releasable	- Natural convection cooling of	of decay heat		
		* Provide	ed by Lee Cadwallader, INEL.		


ITER Mobilizable Tritium Inventory Estimates___

(ESECS, 1995)	grams Tritium
(20200, 1000)	
Plasma, vessel, vacuum system	700 - 2000
Fueling cell	140
Exhaust processing	80-160
Baking system	0-100
Divertor coolant	150
FW/B/S coolant	80
Baffle & limiter coolant	150
Vacuum vessel coolant	5 .
On-line storage	600
Long-term secure storage	1000
In waste & hot cells	500-1000

ITER mobilizable radioactive materials inventory

	<u>kg</u>
Tokamak dust	20-100
Vaporized Be or W per di	sruption 1-60
Divertor corrosion produc	ts < 10 loop
FW/baffle/limiter corrosion	n products 1-10 per loop
Blanket/shield corrosion p	products 1-10 per loop
Mobile in-vessel corrosion	n products ~ 0.01
Volatile oxides, 773 K Volatile oxides, 1073 K	Cu: 80-800 g/h
	W: 600-6000 g/h.
From Dolar	1 7/23/95

3. Radioactive materials

A. Radioactivity in fusion reactors

1) Radioactivity sources and reduction strategy

a. Radioactivity sources

- Intrinsic radioactivity: Tritium(T) fuel (β decay, Haf-life 12.3 years)
- Induced radioactivity: 14.1-MeV neutron activation of reactor materials (PFC, structure, blanket, shield, coolant, magnet, ...)

b. Strategy for reducing radioactivity

- Reactor design for low inventory and minimum release of T
- Development of low activation materials

2) Radiological aspects of tritium

• β decay : $T \rightarrow {}^{3}\text{He} + \beta + v + 18.5 \text{ keV}$

Half-life : 12.3 years Biological half-life : 10 days

· Activity : $\sim 10 \text{ MCi/kg} \simeq 3.7*10^{17} \text{ Bq/kg}$

· Dose from ingestion: ~ 70 mrem/Ci

· Inventory of a 1-GWe D-T reactor: 10~100 MCi (1~10kg)

· Release limit from a reactor: 10~100 Ci/day

· Release form: gaseous - TH, T2, TD (rapid dispersion, skin)

aqueous - THO, T2O, TDO (intrusion into tissues & organs)

• Routine release: vacuum pump, coolant, blanket, recovery system, permeation
4 MCi/year from 1000 plants

・ Maximum Permissible Concentration (THO 또는 T_2O): 0.2 μ Ci/m³ (air) 3 mCi/m³ (water)

• Biological Hazard Potential : 5×10^{14} m³ (air)

 $\equiv \text{Inventory/MPC} \qquad \qquad 3 \times 10^{10} \text{ m}^3 \text{ (water)}$

(cf) LWR 131 L BHP : 6×10^{20} m³ (air) LMFBR Pu 21 BHP : 2×10^{19} m³ (air)

* Advantages of low T inventory

- Low initial cost of tritium fuel (about 1~2 M\$/kg)

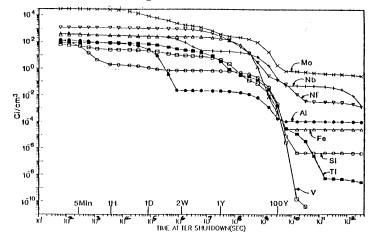
- Prevention of structure from embrittlement ($n_T \ge 100 \text{ appm}$)

- Low release to the environment ($n_T < 1$ -10 appm)

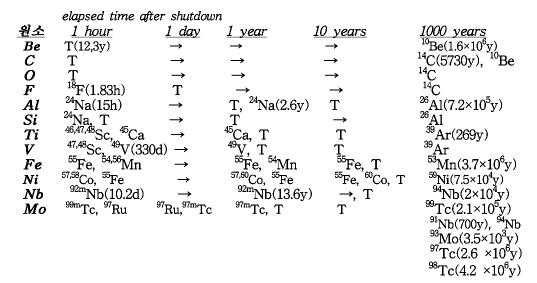
3) Neutron activation of materials

a. Neutron fluxes from reactor core

- Flux : $2\sim5 \times 10^{14}/\text{cm}^2$.sec at 1 MW/m² wall loading

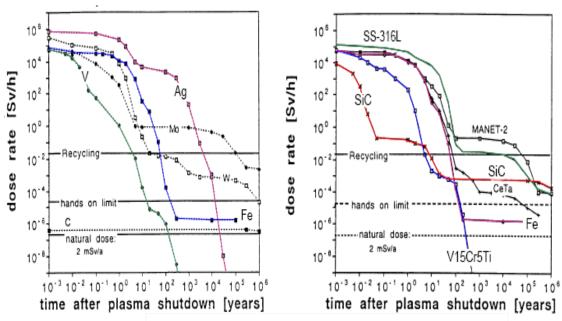

- Biological dose rate : $\sim 10^{10}$ rem/h

b. Induced radioactivity of structural elements after shutdown


(For FW of a Li self-cooled blanket after four-year operation

at 5 MW/m² neutron wall loading)

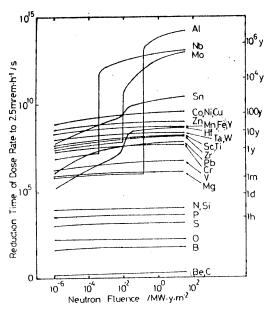
- Activity

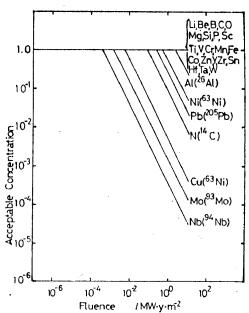

- Induced raioactive nuclides

c. Classification of structural elements

<u>activity</u>	<u>elements</u>	structural cand	<u>lidates envir</u>	onmental regul
lowest(decay < 2 weeks)	Li,Be,B,C,O,Si,Mg	SiC, C comp	osites h	and maintenance
low (1 mo~5 years)	Ti,V,Cr,W	V alloy	low-leve	l waste disposal
medium (10~30 years)	Mn,Fe,Zn	Fe-Cr alloy	medium-leve	el waste disposal
high (> 100 years)	Co,Ni,Nb,Mo,Mn			

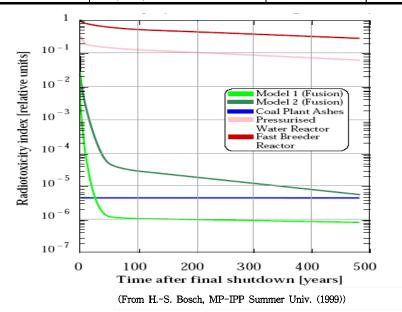
Dose rate after neutron irradiation (12 MWa/m²)




(H.-W. Bartels, MP-IPP Summer Univ. (2005)), Figs. 17.3 & 17.5)

d. Environmental requirements

Reduction time of dose rate


Acceptable concentration for shallow disposal (10CFR61, Class C) to acceptable exposure rate

d. Possible low activation materials (From EC SEAFP (1999))

발전소모델	구조재	T 증식재	n 증배재	냉각재
Model 1	V 합금	Li ₂ O ceramic pebble bed	없음	He
Model 2	저방사화 SS	액체 Li ₁₇ Pb ₈₃	Li ₁₇ Pb ₈₃	경수
Model 3	저방사화 SS	Li ₄ SiO ₄ ceramic pebble bed	Be	He
Model 4	SiC	액체 Li ₁₇ Pb ₈₃	Li ₁₇ Pb ₈₃	액체 Li ₁₇ Pb ₈₃
Model 5	저방사화 SS	액체 Li ₁₇ Pb ₈₃	Li ₁₇ Pb ₈₃	He, 액체 Li ₁₇ Pb ₈₃
Model 6	SiC	Li ₄ SiO ₄ ceramic pebble bed	Be	He

