Chapter 7. Safety, Tritium & Environmental Impacts
Reading assignments: Dolan, Chap. 28, Harms Chap. 14; Stacey Chap. 11

1. Safety and environmental considerations

A. Safety & environmental goals of fusion reactor
- Protection of workers and general public from accidents, radioactivity and
toxic materials
- Protection of environments from pollutants and waste
- Minimization of investment for power plant construction
B. Potential hazards of fusion reactors
- Routine release of tritium
- Accidental releases or disposals of radioactivity (T, activated structures)
- Discharges of chemical and toxic materials
— Thermal discharge to water and air
- Stored energy release (radioactive afterheat, liquid metal fire,
hydrogen explosion, stray magnetc fields, ..... )
- Accidents associated with high vacuum, high pressure, cryogenic fluids,
high voltage & current, heavy masses, ..... )
- Plant decommissioning
- Proximity to popuilation centers, industry, transportation facilities
- Effects on local economic and social conditions
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2. Safety of fusion power plantss

A. Types of accidents

- Reactor core plasma events (fusion overpower, disruptions,

delayed shutdown)

- Loss of coolant accident (LOCA)

- Loss of flow accident (LOFA)

- Loss of vacuum accident (LOVA)

- Loss of cryogen

- Magnet events

- Tritium plant events

- Auxiliary system events

Energy Sources in Fusion Reactors

ITER Value. GJ
plasma thermal energy 1.2
vessel thermal energy
fusion reactions, 20 s 30
plasma magnetic energy 1.3
magnet coil stored energy 120

decay heat, first week
mechanical stresses

vacuum
cryogens

coolant internal energy 300
chemical reactions 800

coolant
water or air with hot metals.

Temperature Variation of reactor materials

after LOCA ( Model2 fusion reactor:
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B. Safety philosophy of fusion reactor

- Passive multiple barriers
(vacuum vessel + cryostat + containment building)

- Design for reliability (redundancy of components, diversity, independence,
simplicity, surveillance & testing)

- Consideration of human factors

- Fail-safe design

- Remote maintenance

- Safety culture in worker attitudes

- Quality assurance (codes & standards, verification & validation,

safety analysis)

- Operational controls (parameter limits, fault detection,
automatic corrective response)

- Safety and protective systems

- Accident preparedness & management

- Emergency planning

Illustration of Confinement Strategy for the Tokamak Building
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C. Intrinsic passive safety of fusion reactor

Intrinsically no core melt-down accident in the fusion reactor
- No chain reactions by neutrons
- Continuous fuel supply of few g into a reactor of few hundred m®

(cf) ~50 tons of fuel in a fission reactor

- Automatic shutdown and rapid cooling in case of control failures
- Low decay heats after the shutdown of reactor operation
- No evacuation of residents in case of severe accidents

Public acceptance from the aspect of safety

Low
radio-toxic > Low
inventories /' mobilisation
Low decay o Low accident
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No
melting
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Coolant Protected Very low
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No evacuation
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Passive Safety Features Active Safety Features

+ Multiple barriers Typical failure rates*

 vessels & ducts 1041057y or strong vessel ¢ Active safety systems  Typical failure rates*

- shell 101-10?/ demand, weak barriers

B building 10Y demand — Stack exhaust 10-4-105/ h fan failure

o ' — Li fire suppression system  102-10-3/ demand
+ Lithium drains to tanks  10"1-102/ demand ~ Air filtration 105/ hour failure of filter fibers
+ Concrete liner 103/ demand .

I | ¢ Design Features

+ Inert cover gas 10"/ demand ~ No water in building
+ Stack structure 104103/ y for earthquakes ~ ~ “o" pressure coolant

- Natural convection cooling of decay heat

+ Aerosol plate-out ~0.01-10 % releasable

* Provided by Lee Cadwallader. INEL.



ITER Mobilizable Tritium ITER mobilizable radioactive
Inventory Estimates materials inventory
(ESECS, 1995) grams Tritium kq
Plasma, vessel, vacuum system 700 - 2000 Tokamak dust 20-100
Fueling cell 140 Vaporized Be or W per disruption  1-60
Exhaust processing 80-160 Divertor corrosion products <10 loop
‘Baking system 0-100 FW/baffle/limiter corrosion products 1-10 per loop
Divertor coolantb 150 Blanket/shield corrosion products  1-10 per loop
FWI/B/S coolant 80 Mobile in-vessel corrosion products ~ 0.01
Baffle & limiter coolant 180 Volatile oxides, 773 K SS: 20-230 g/h
Cu: 0.1-8 g/h
Vacuum vessel coolant 5 ) W: 80-200 g/h
Volatile oxides, 1073 K SS: 24-240 g/h
On-line storage 600 Cu: 80-800 g/h
. W: 600-6000 g/h.
Long-term secure storage 1000
From Dolan 7/23/95
In waste & hot cells 500-1000

* Li AN 229 19 F2AY 2A9A F 33 2
(5 MW/m sz 447 7HF)
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3. Radioactive materials

A. Radioactivity in fusion reactors

1) Radioactivity sources and reduction strategy
a. Radioactivity sources
- Intrinsic radioactivity : Tritium(T) fuel (8 decay, Haf-life 12.3 years)
- Induced radioactivity: 14.1-MeV neutron activation of reactor materials
(PFC, structure, blanket, shield, coolant, magnet, ...)
b. Strategy for reducing radioactivity

- Reactor design for low inventory and minimum release of T
- Development of low activation materials



2) Radiological aspects of tritium

B decay : T — °He + B+ v + 185 keV
- Half-life : 12.3 years
- Biological half-life : 10 days
« Activity : ~ 10 MCi/kg = 3.7+10" Ba/kg
+ Dose from ingestion ~ 70 mrem/Ci
+ Inventory of a 1-GWe D-T reactor : 10~100 MCi (1~10kg)
- Release limit from a reactor : 10~100 Ci/day

- Release form : gaseous - TH, Tz TD (rapid dispersion, skin)
aqueous - THO, T20, TDO (intrusion into tissues & organs)
- Routine release : vacuum pump, coolant, blanket, recovery system, permeation
4 MCi/year from 1000 plants
« Maximum Permissible Concentration (THO E& Ty0) : 0.2 uCi/m® (air)
3 mCi/m’ (water)
- Biological Hazard Potential : 5 x 10 m® (air)

= Inventory/MPC 3 x 10" m® (water)
(cf) LWR "'I121 BHP : 6 x 10° m® (air)
LMFBR Pu2l BHP : 2 x 10" m* (air)

* Advantages of low T inventory
- Low initial cost of tritium fuel (about 1~2 M$%/kg)
- Prevention of structure from embrittlement (n, > 100 appm)

- Low release to the environment (n, < 1-10 appm)
3) Neutron activation of materials

a. Neutron fluxes from reactor core
- Flux : 2~5 x 10"/cm?sec at 1 MW/m® wall loading
-~ Biological dose rate : ~ 10 rem/h
b. Induced radioactivity of structural elements after shutdown
(For FW of a Li self-cooled blanket after four-year operation
at 5 MW/m’ neutron wall loading)
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dose rate [Swv/h]

- Induced raioactive nuclides

elapsed time after shutdown

c. Classification of structural elements

activity

elements

structural candidates env

4 1 hour 1 day 1 year 10 vears 1000 vears

Be T123y) — — — 'Be(1.6%10°%)

c T — — — YC(5730y), Be

O T — — — 14C

F *F(1.83h) T — — i i

Al *Na(15h) - T, *Na(26y) T BA1T7.2x10%)

Si  *Na T _ - T — N

Ti  “48gc %ca - “Ca, T T ¥ Ar(269y)

v %8s, ®V(330d) — “V, T T *Ar

Fe e, ***Mn — _°5Fe, *Mn Fe, T °_3Mn(3.7><106y)

Ni  3Co, 5Fe — 8¢Co, ®Fe BFe, Co, T  ®Ni(7.5x10%)

Nb  P™Nb(10.2d) — PONB(13.6y) —, T #Nb(2x10y)

Mo ®™Tc, “Ru Ru,”™Tec  ¥™Tc, T T BTe(2.1x10%)
INB(700y), “*Nb
93Mo(3.5><103g/)

ITe(2.6 x10%)
BTc42 x10%)

ironmental regul.

lowest(decay < 2 weeks) LiBeB,C,0,SiMg SiC, C composites

low (1 mo~5 years)
medium (10~30 years)
high (> 100 years)

Ti,V,Cr,W
Mn,Fe,Zn
Co,Ni,Nb,Mo,Mn

V alloy
Fe-Cr alloy

Dose rate after neutron irradiation (12 MWa/m?)
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Reduction Time of Dose Rate to 25mrem:ht /s

d. Environmental requirements

Reduction time of dose rate

A

cceptable concentration for shallow

to acceptable exposure rate

disposal (10CFR61, Class C)

Time after final shutdown [vears]

(From H.-S. Bosch, MP-IPP Summer Univ. {1999))
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d. Possible low activation materials (From EC SEAFP (1999))
GEADE e\ TSAM n SHHXH 2T
Model 2 M e AL SS MR Liy;Pgg Li,,Pbgs =B
Model 3 M2 ALE SS Li, SiO, ceramic pebble bed Be He
Model 4 SiC W Liy,Pbgs Liy;Pbgs W Liy,Pbgs
Model 5 HEALSE SS W Liy,Pbgs Li;;Pbgs He, 94Xl Li;;Pbgs
Model 6 SiC Li, SiO, ceramic pebble bed Be He
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