CHAPTER 3. Static Electric Fields

Reading assignments: Cheng Ch.3, Ulaby Ch.3,

Halliday Chs.21-25

1. Electrostatics in Free Space (or in Vacuum or in ~Air)

N

by electric charges at rest

Deductive Approach:

Define E = Fundamental postulates

Steady-state (time—independent) electric phenomena caused

Hayt Chs.2-4, 6, 7

= Derive other laws, theorems, and relations (Coulomb's

law, Gauss's law, Electric potential,
verified by experiments

A. Fundamental Postulates

to represent the physical laws of electrostatics in free space

1) Electric field intensity F

= force per unit
. F
E=Ilim—

0 4

charge

(V/m or N/C)

...), which are

(3-1)

where F' is the electric force on a stationary charge ¢ in the field

F = qF

2) Differential form of postulates
Point relations which hold at every point in space:

p v

V. E="—"
€

VXE=0

o

non-solenoidal FE field, charge source p,

irrotational E field (no vortex source)

3) Integral form of postulates
Global relations which hold over the whole space considered:

/(S—S)dv = /V-Edvzel/pvdv
v

dwergence theorem
(2—175)

Stokes% theorem\
(2—103)

ygE’ ds =
€

where @ =

/(34) ds = /VXE) ds =0

ygE’ dl =

o

Gauss's law

total charge in V bounded by S

conservative field,
path—independent integral
(only end-point dependent)

(3-2)



(cf.) V= /E dl in (3-7) for circuit analysis:

I ““‘ 4 EV = 0 Kirchhoff's 2nd law (voltage theorem) (3-7)
‘I‘\W % . algebraic sum of voltages (emf, ohmic) around any
closed circuit is zero

B. Electric Field Intensities and Coulomb's Law
1) Electric field intensity due to a point charge

For a point charge ¢ at the origin, &
Gauss's law (3-6): FIGUREZS~1(a) B
,.\ ,'.- i E &
_ 75 _9q R
5515- ds = / (REy) - dsg =1 A
/ “
!
= / - (RR%in db dp) = eq — 1 ._.ﬂfg. £
I r b
o \ i %,
q W ol
= EnR’ sm@d@ dgb = = N4
0 /\H-...
= EBRQ(2>(27T> =4 ¥ =RR’sinf df do
: .
Gaussian surface - A hvpothetical enclosed surface
= E,= q . over which the normal comp. of E is a constant
- Adme, R
F(R) =RE,=R — 3-8
(R) R 4dre, R2 (3-8)
2
1 Ho€ _
where —— = =10""¢*=9x10° (m/F) (3-12)
4re, 4
Note) E in (3-8) is an irrotational (or conservative) field.
(proof) By using (2-99),
R 0OR ¢Rsind )
oF aE4
VvV X E = I N 9 L 1
R2sin@ |0R 90 op R81n0 5] 9
E, RE, (RSinH);__'E
A ;.f
e fp
For a point charge ¢ at an arbitrary location, g - R N
R-R
by (3-8) # N\
’ |
R—R 1 q | L, 1
E,(R) = - ; (3-10, 9) \ g !
r |R— R'| 4me, |R— R'|? \ R -
Q / ’
¢ R-R N /
= 3 (3-11) S 7
TE, |R_R | T



2) Coulomb's law

. Electrostatic force between two point charge
(measured by Coulomb in 1785)
A force F), exerted on @2

due to E12 generated by -

/ /o

F,(Ry)

Notes) i) Mutual force:

= ¢ By =Ry,

47‘(’6

q1 42
R}

1 a0
Fon dTe, R,

- F21(R1)

i) qqo >0

G192 <0

F, (RQ) =

1

_F21 (Rl)

= repulsive force between two same charges

— attractive force between two opposite charges

(cf) Law of universal gravitation (Newton, 1687)

}7_:;:_}?1\2(;

M, M,
2
2

<0:

attractive force

i) F' (or E) is a linear function about charge g.
(F(aql) =aF(q)
Flaq+bgy) =aF(q )+ bF(qy) : distributive

. associative

= Linear (or Fourier) superposition principle:

m&wiig

i q
kp
= 47T€ Rkp
k#=p
N~ 1 49
Z Rkp kgp
k=1 47T€0 Rkp
k#p

3) Electric field intensity due to charge distributions
For a system of discrete point charges,
E at R by the superposition principle

using (3-11):

E(R)=

1 & o(R—R)

dme, ;=1 IR— R,

E f—

(3=11)*

(3-13)*



For a system of volume charge distribution, E’

Iy
— R’ L (R") - dE
iB(R)= L BR) P — dv’
dme, IR—R'| |R—R'| R
E(R) = / dE
v
1 (R—R) pR) :
4re,J v IR—R'| |R— R’ (3-16) FIGURE 3—3
For a system of surface charge distribution,
1 R—R') pr(R)
E(R) = ( ,) (3-17)
dre, J ¢ IR—R/| IR—R')?
For a system of line charge distribution,
1 R—R) m(R) |
E(R) = ( ,) l I (3-18)
4re,J - IR—R'| |[R—R']?
(e.g. 3-3) Infinitely long uniform line charge:
(3-18) for an cylindrically symmetric field (8/a¢ = 0):
_ 1 teo o pdd 4
E(R) = 4re, J _o, (rr—27) (212 FIGURE 3—4
R L
4re, 7w(r+z) iE e dz"' er)
3 = % R= |R*R,|

dme, J = (P +27)2

0 (. integrand = odd ftn. about z') 7' R-R =rr—2zz

7 =q—4oco R 22 W B/ = (2 +27)/2
N pﬂ“ Z,
=r
e, PP, p
~ P 2 R=rr g id‘r“r
- dme r 2 1
0 W 4 —> 00 {fE: ..... ':adE
0 forr € a
~ P
- r - (V/m) (3-23)
2me, T



4) Electric field lines
= Electric field flux lines (or streamlines or direction lines)

y
A
Functional form of E, and E, E(r)
EA4 FE
—> Equation of field lines (streamlines):
E d Y E,
¥y Y —_— . . r x
Ex Qo solutlon Eq. of field lines (1)
0 z ’x
(e.g.1) Point charge field lines 0 B
)
dy _ By
dx E, x
., dy _ dx . P
y T
= hrz=hy—In¢, = y=c¢x (2)

(e.g.2) Toroidal magnetic field lines

B,y dly rdo

B¢ dl¢ Rdg
Safety factor:
_dp _ r By
q(r) = 0 BB (4)

C. Gauss's Law and Electric Flux Density
1) Gauss's law in free space
Differential form in free space: (3-3) = Vv - (¢, E) = p, (3-3)«

Integral form in free space:  (3-6) = 55 (e,F) - ds= Q (3-6)
s

4 ds =R R*sinf df do
Total flux thru closed surface S _ e o
. A E= RF,

= Total charge in V enclosed by S "\ T 4 =k

Faraday's experiment i A ,\&
Electric flux (Field lines thru surface): ff "*-,\ ,;f’ \ ng
v =Q (C) 5 —— CS(FR — 14
Electric flux density (Electric displacemenﬁ)\ N fjg
(Field lines per unit area normal to the field): ™ " s
P . NG
— E (C/mz) ) i - _\ = |

S
_5_



= §£Sd¢ = §£SD -ds=Q (7)

(e.g.) For a positive charge Q in free space,

(3-8): E(R) =R E,— R—%—
dme, R } —~ D 5 )
:60
(7): D(R):R%:R QQ
AR

2) Generalization of Gauss's law in any medium

Integral form: (7) = ygD cds = Q = f P, dv (9)
s v

Differential form:
Applying divergence (or Gauss's ) theorem to (9),

/V(V-D)dUZ/vadv = /V(V-D—pv)dvzo

= V-D=p, (10)

3) Electric field intensity due to symmetric charge distributions
(e.g. 3-4)
Infinitely long uniform line charge p;
For a cylindrically symmetric field (a/a¢ = 0),
Gauss's law (3-6) for E=rE,

= yg E-ds= Q
= / Eﬂds —/ Eﬂds +/ Q

top bottom cy lmdm €

L pox o L Cylindrical
= / / E rdpdz = Gaussian

00 € surface

P P
= 2rrLE = ZJ/ E, l
271'6 r
o~ Py Infinitely long
E(T) =T (3-23) uniform line

charge, P,



(e.g. 3-5)
Infinite uniform sheet charge p,

By EF= &+ zF,
Area A Q
/ Gauss's law: yg E-ds=—7
23, F ’ i, S S €
Gauss}lan a.=n
Ll T - = [ Bds+ B ds,= 2
AI'::'»d A s ,ﬁ top A bottom A €
/ v ds,
b A _Q
Infinite uniform E = 2E AdSZ T e
surface charge, p, é’/ ’
Ps P
= 2B A= = k= 25
€

=+
E _Z2e

[

Notes) E o 1/r* for a point charge source. (3-8)
E o« 1/r for a line charge source. (3-23)
FE is independent of r for a surface charge source. (3-25)

(e.g. 3-6)
A spherical electron cloud of volume charge p,
E=RE S
Gauss's law: f vy
N\
1 o
fE-dszQZ—/pvdv i v " I
S € € 14 ! Xt \ll
I {
| Yink b |
\ T ls 5o . s
il ds =/R R"sinf df d¢
For 0< R<Wb, \ o 3 P
1 N ¢
7 — “lectrol
¢S(RER) cds = — 6_ Vpod’u \\\_5_ s < h;;é;(n
i o ==
T 2
ERR* | sinfdo [ d¢ Frf
0 0 0 2

~ Ps
(+ for above the sheet, — for below the sheet) (3-25a,b)

!
T
|
|
|
b \!
nrrJ [ |

Po R s 2
:——/ RQdR/ sinfdf | do
€& Yo 0 0

~ B,
) 3 ! o[ PRt
EpdnR*= —pArR*/3¢, = Ep,=—p,R/3¢, = E =R|— e
Similarly, for b< R < oo,
~ po b ™ 21
55 (REy) - ds :——/ RQdR/ sinfdd | do
s, ' € Yo 0 0
Py b’

EATR? = — p ATb’/3e, = Ep=—p,b°/3¢,R* = FE = R[— T
!
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D. Electric (Scalar) Potential V

1) Definition of V
The fundamental postulate (3-4) in electrostatics: ¥V X F =0 (3-4)
Null vector identity (2-105): v x(Vf)=0
Therefore, E can be found by defining an scalar electric potential V/

such that
E=—vV (3-26)

2) Physical meaning of V
Work done by external force
in moving g along di:
dW=—F-dl=—qF-dl 1)
Differential electric potential:

dV:dTW:—E-dl (12)

Electric potential difference (Voltage) between points Py and P» :

P‘Z
Vle VQ_ Vlz_f E'dl (V or J/C)
Pl

= Work done in moving a unit charge from Py to P, (path independent)

(3-28)

. single—value function, one value independent of path,
solely depend on potentials at two points

For a closed path ( path @ - path @ ),

P, P,
fE-dl:/ E-dl+/ Eedl =—(V,—V)—(V—¥,) = 0.
c P, P,

which is identical with (3-7) resulted by Stokes's theorem for Vv X E=0.

Electric scalar potential at any point
= Work per Coulomb required to move a positive test charge

from a reference-zero position to a position R in question

R
V(R)Z—f FE - d (V or J/C)

when a reference zero—potential point is chosen at R = co,

ie., Vlp,o = 0.



Notes) D E=—-VV < @ vxE=0 & @yngll:O
C

FIGURE 3-9

1 = Negative sign (-) :
Direction of F
= Direction of decreasing V

I' e, EUVV
v

®» = F o VV:

Electric field lines L Equipotential lines : Orthogonality
UNIFORM FIELD NONUNIFORM(DIVERGING)FIELD

-

LONGITUDINAL

i

> SECTIONS
e (a) o (b)
10V \
Fleld : ; Field . : Field
uniform  EQuipotentials stronger Equipotentials  yaaker

3-D

10V (c)

E | Conducting surface [ V4 surp.= const.(equipot.)]

@ Irrotational (curl-free) field
(3 Conservative field (path-independent, only end—point dependent)

3) Electric potential V due to charge distributions

At a distance R from a point charge gq,

_ _p 1 oa .
(3-8) E(R) =R 57 N (13):

o

_ R o R 1 ¢ L (f . 1 i
V(R) = /OOE"”‘ foo(R 47@?) (Rar) = =G0 () (o-29

Between any two points Pi(R;) and Ps(R»),

P,
2 q 1 1
2 2 ! P, 47'('60(R2 Rl)




For a system of discrete point charges,
V at R by the superposition principle
using (3-14):

47T€o k=1

Total electric potential in various charge distributions of points, line,
surface and volume by the superposition principle:

1 - Qk / p(R")
V(R)= e ;;1—|R—Rk'|+ TR-mT™ (3-31, 3-40)
ps(R") / p, (R’ ) ¥
+ /S/ R—R| ds + ~TR_R | (3-39, 3-38)
(e.g. 3-7) Electric dipole “ v P

R = R—f—icos€

2 +g% )
e S — g ' ¥
dk
—7R— ol FIGURE 3—10
Electric-field pattern
q 1 1 q 1 1
vim- | ) ;
dme, \ Ry R ame, R—%COSQ R—i—gCOSQ
_ g dco289 - qd COSS (3-35)
dme RQ__ 20 47T€0R
4
p-R
= V(R) = p_z_ (3-36)
where p = qd is the electric dipole moment.
— _wv= RV _goV__ P (j ) si .
E(R)=—-VV=-R -0, S -Rg._:(R 2cos6+ 6 sinf) (3-37)
Notes) Quadrupole Octopole
Vo 1/R? Vo 1/R
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(e.g. 3-8) Uniformly charged circular disk

E(R) ! ps(R") s
~ 4ne,J ¢ IR—R/| i
271'
- 47T€ / / 2; —|—fr'2 1/2
ps
= (2 4+) 2= 2] (3-41)
2¢€,
ER) =-vyv=-32
0z
o2 Ps 2 | 12\—1/2
=+ 2z [1— 12 (2" +b°) ]

2¢

o

[+ for 2> 0 (above the disk), (3-42a)
- for 2< 0 (below the disk)] (3-42b)

(cf) If z< b— oo, then the disk becomes an infinite sheet and
122 +02)"Y2 50 in (3.42).
~ P
. E=+ 22— = (3-25)

26

E. Electrostatic Systems and Applications
1) CRO (Cathode—Ray Oscilloscope)

Deflection
pli‘ltES u, = = (e E,/m)
Electron gun / Uy B 2m)
electron 00 | | 11 ! (eEy/2m) (w/ua)2 -
j' = 0. '##'k t
Cathode -

m

II_

0
w

11‘ =w /uo

I-u

2) Ink—Jet printer

Charging
Nozzle plates
R L I ——
1 7
= /
Ink
drop

FIGURE 3-—2

Deflection

_11_
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3) Corona discharge 4) Electrostatic precipitator

| | I i ) HV Supply

| =
Gas Out C]:\fcfz:(iatévélectmde
+ - +
+ - | - +
Precipitated Dust
+ = | - +
+ - +
C_ —
lon Gas In Rapping Device
¥ current _E\?H Point
Sph —_— _C? . .
Rt > — Negalive Collection Bin
corona
%Dust Out
5) Xerographic copying machine 6) Electrostatic separator

Charge Resmatai
. OCK-meial
Positive corona c agoregate —\@OB0)

Expoy

Cleank

Neutralize

°)

P
Rotating
Drum

@T e e = —I'Eg,s_sit - Aock @
= Paper Motion =y

QO00
Fuser 000 008

8) Van de Graaff accelerator
7) Electrostatic painting \ aT

Charged Droplets

— Induction Charging
. l Air Supply
: :@:

+
L2
s I +
. °% o
Target Object . +
i +
A
Insulating/ Ay VAN DE GRAAFF
— HV Supply column ., GENERATOR
s H
//li,. Motor
i R -~ - )
Paint Supply Supply *__r \ﬁ/
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Homework Set 3
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