CHAPTER 3. Static Electric Fields

Reading assignments: Cheng Ch.3, Ulaby Ch.3, Hayt Chs.2-4, 6, 7 Hallidav Chs.21-25

1. Electrostatics in Free Space (or in Vacuum or in ~Air)

Steady-state (time-independent) electric phenomena caused by electric charges at rest

Deductive Approach:

Define $E \Rightarrow$ Fundamental postulates

 \Rightarrow Derive other laws, theorems, and relations (Coulomb's law, Gauss's law, Electric potential, ...), which are verified by experiments

A. Fundamental Postulates

to represent the physical laws of electrostatics in free space

1) Electric field intensity E

= force per unit charge

$$\boldsymbol{E} \equiv \lim_{q \to 0} \frac{\boldsymbol{F}}{q} \quad (V/m \text{ or } N/C) \tag{3-1}$$

where F is the electric force on a stationary charge q in the field

$$F = qE \tag{3-2}$$

2) Differential form of postulates

Point relations which hold at every point in space:

$$abla \cdot E = rac{
ho_v}{\epsilon_o}$$
 non-solenoidal E field, charge source ho_v (3-3)

$$abla imes E = 0$$
 irrotational *E* field (no vortex source) (3-4)

3) Integral form of postulates

Global relations which hold over the whole space considered:

$$\int_{V} (3-3) dv \implies \int_{V} \nabla \cdot \boldsymbol{E} \, dv = \frac{1}{\epsilon_o} \int_{V} \rho_v \, dv \tag{3-5}$$

$$\stackrel{divergence \ theorem}{(2-75)} \implies \boldsymbol{\phi}_{\boldsymbol{E}} \cdot d\boldsymbol{s} = \frac{Q}{\epsilon} \qquad \text{Gauss's law} \tag{3-6}$$

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = \frac{Q}{\epsilon_{o}} \qquad \text{Gauss's law} \qquad (3-6)$$

where Q = total charge in V bounded by S

(only end-point dependent)

- B. Electric Field Intensities and Coulomb's Law
- 1) Electric field intensity due to a point charge

For a point charge q at the origin,
Gauss's law (3-6):

$$\oint_{S} \mathbf{E} \cdot d\mathbf{s} = \int_{S} (\hat{\mathbf{R}} E_{R}) \cdot d\mathbf{s}_{R} = \frac{q}{\epsilon_{o}}$$

$$\Rightarrow \int_{S} (\hat{\mathbf{R}} E_{R}) \cdot (\hat{\mathbf{R}} R^{2} \sin\theta \, d\theta \, d\phi) = \frac{q}{\epsilon_{o}}$$

$$\Rightarrow E_{R} R^{2} \int_{0}^{\pi} \sin\theta \, d\theta \int_{0}^{2\pi} d\phi = \frac{q}{\epsilon_{o}}$$

$$\Rightarrow E_{R} R^{2} (2) (2\pi) = \frac{q}{\epsilon_{o}}$$

$$\Rightarrow E_{R} = \frac{q}{4\pi\epsilon_{o}R^{2}}$$
Gaussian surface : A hypothetical enclosed surface over which the normal comp. of **E** is a constant

$$\therefore \quad \boldsymbol{E}(\boldsymbol{R}) = \hat{\boldsymbol{R}} E_{\boldsymbol{R}} = \hat{\boldsymbol{R}} \frac{1}{4\pi\epsilon_o} \left(\frac{q}{\boldsymbol{R}^2} \right)$$
(3-8)

where
$$\frac{1}{4\pi\epsilon_o} = \frac{\mu_o c^2}{4\pi} = 10^{-7} c^2 = 9 \times 10^9$$
 (m/F) (3-12)

Note) E in (3-8) is an irrotational (or conservative) field. (proof) By using (2-99), \cap

$$\nabla \times \mathbf{E} = \frac{1}{R^2 \sin\theta} \begin{vmatrix} \hat{\mathbf{R}} & \hat{\theta}R & \hat{\phi}R\sin\theta \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ E_R & RE_{\theta} & (R\sin\theta)E_{\phi} \end{vmatrix} = \hat{\theta} \frac{1}{R\sin\theta} \frac{\partial E_R}{\partial \phi} - \hat{\phi} \frac{1}{R} \frac{\partial E_R}{\partial \theta} = 0 = 0$$

For a point charge q at an arbitrary location, by (3-8)

$$E_{P}(R) = \frac{R - R'}{|R - R'|} \frac{1}{4\pi\epsilon_{o}} \frac{q}{|R - R'|^{2}} \quad (3-10, 9)$$
$$= \frac{q}{4\pi\epsilon_{o}} \frac{R - R'}{|R - R'|^{3}} \quad (3-11)$$

2) Coulomb's law

- : Electrostatic force between two point charge (measured by Coulomb in 1785)

due to E_{12} generated by q_1 :

$$\boldsymbol{F}_{12}(\boldsymbol{R}_{2}) = q_{2}\boldsymbol{E}_{12} = \boldsymbol{\widehat{R}_{12}} \frac{1}{4\pi\epsilon_{o}} \frac{q_{1}q_{2}}{R_{12}^{2}}$$

$$= -\mathbf{R}_{21} \frac{1}{4\pi\epsilon_o} \frac{1}{\mathbf{R}_{21}^2}$$
$$= -\mathbf{F}_{21}(\mathbf{R}_1)$$

Notes) i) Mutual force: $F_{12}(R_2) = -F_{21}(R_1)$

ii) $q_1q_2 > 0 \implies$ repulsive force between two same charges $q_1q_2 < 0 \implies$ attractive force between two opposite charges (cf) Law of universal gravitation (Newton, 1687)

$$F_{g}=-\widehat{R_{12}}Grac{M_{1}M_{2}}{R_{12}^{2}}$$
 < 0 : attractive force

iii) F (or E) is a linear function about charge q. $\begin{pmatrix}
F(a q_1) = a F(q_1) & : \text{ associative} \\
F(a q_1 + b q_2) = a F(q_1) + b F(q_2) & : \text{ distributive} \\
\Rightarrow \text{ Linear (or Fourier) superposition principle:}
\end{cases}$

near (or Fourier) superposition principle:

$$E(R_p) = \sum_{k=1}^{n} E_k(R_p) = \sum_{\substack{k=1 \ k \neq p}}^{n} \widehat{R_{kp}} \frac{1}{4\pi\epsilon_o} \frac{q_k}{R_{kp}^2}$$
(3-11)

$$\boldsymbol{F}(\boldsymbol{R}_{\boldsymbol{p}}) = \sum_{k=1}^{n} \boldsymbol{F}_{\boldsymbol{k}}(\boldsymbol{R}_{\boldsymbol{p}}) = \sum_{\substack{k=1\\k\neq p}}^{n} \widehat{\boldsymbol{R}_{kp}} \frac{1}{4\pi\epsilon_{o}} \frac{q_{k}q_{p}}{\boldsymbol{R}_{kp}^{2}}$$
(3-13)*

3) Electric field intensity due to charge distributions

For a system of discrete point charges, E at R by the superposition principle using (3-11):

$$\boldsymbol{E}(\boldsymbol{R}) = \frac{1}{4\pi\epsilon_o} \sum_{k=1}^{n} \frac{q_k(\boldsymbol{R} - \boldsymbol{R_k}')}{|\boldsymbol{R} - \boldsymbol{R_k}'|^3}$$
(3-14)

- 3 -

For a system of volume charge distribution,

$$dE(R) = \frac{1}{4\pi\epsilon_o} \frac{(R-R')}{|R-R'|} \frac{\rho_v(R')}{|R-R'|^2} dv'$$

$$E(R) = \int_{V'} dE$$

$$= \frac{1}{4\pi\epsilon_o} \int_{V'} \frac{(R-R')}{|R-R'|} \frac{\rho_v(R')}{|R-R'|^2} dv' \qquad (3-16)$$

$$FIGURE 3-3$$

E

For a system of surface charge distribution,

$$E(R) = \frac{1}{4\pi\epsilon_o} \int_{S'} \frac{(R-R')}{|R-R'|} \frac{\rho_s(R')}{|R-R'|^2} ds'$$
(3-17)

For a system of line charge distribution,

$$\boldsymbol{E}(\boldsymbol{R}) = \frac{1}{4\pi\epsilon_o} \int_{L'} \frac{(\boldsymbol{R} - \boldsymbol{R}')}{|\boldsymbol{R} - \boldsymbol{R}'|} \frac{\rho_l(\boldsymbol{R}')}{|\boldsymbol{R} - \boldsymbol{R}'|^2} dl'$$
(3-18)

(e.g. 3-3) Infinitely long uniform line charge:

(3-18) for an cylindrically symmetric field ($\partial/\partial\phi = 0$):

$$\begin{split} \boldsymbol{E}(\boldsymbol{R}) &= \frac{1}{4\pi\epsilon_o} \int_{-\infty}^{+\infty} (\hat{\boldsymbol{r}} r - \hat{\boldsymbol{z}} z') \frac{\rho_l dz'}{(r^2 + z'^2)^{3/2}} & \boldsymbol{FIGURE 3-4} \\ &= \frac{\hat{\boldsymbol{r}}}{4\pi\epsilon_o} \int_{-\infty}^{+\infty} \frac{\rho_l r dz'}{(r^2 + z'^2)^{3/2}} dE_z & dl' = dz \\ &= \frac{\hat{\boldsymbol{z}}}{4\pi\epsilon_o} \int_{-\infty}^{+\infty} \frac{\rho_l z' dz}{(r^2 + z'^2)^{3/2}} dE_z & dl' = dz \\ &= \hat{\boldsymbol{r}} \frac{\hat{\boldsymbol{z}}}{4\pi\epsilon_o} \frac{1}{r^2(r^2 + z'^2)^{3/2}} & \boldsymbol{z}' & \boldsymbol{z}' \\ &= \hat{\boldsymbol{r}} \frac{\rho_l r}{4\pi\epsilon_o r} \frac{z'}{r^2(r^2 + z'^2)^{1/2}} \Big|_{z' = -a \to -\infty}^{z' = a \to +\infty} & \boldsymbol{R}' = \hat{\boldsymbol{r}} r - \hat{\boldsymbol{z}} z' \\ &= \hat{\boldsymbol{r}} \frac{\rho_l}{4\pi\epsilon_o r} \frac{2}{\sqrt{(r/a)^2 + 1}} \Big|_{a \to \infty} & \boldsymbol{R}' = \hat{\boldsymbol{r}} r \\ &= \hat{\boldsymbol{r}} \frac{\rho_l}{2\pi\epsilon_o(r)} & (V/m) \\ &= \hat{\boldsymbol{r}} \frac{\rho_l}{2\pi\epsilon_o(r)} & (V/m) \\ \end{split}$$

4) Electric field lines

= Electric field flux lines (or streamlines or direction lines)

$$\therefore \quad \psi = \oint_{S} d\psi = \oint_{S} D \cdot ds = Q \tag{7}$$

(e.g.) For a positive charge Q in free space,

$$(3-8): \mathbf{E}(\mathbf{R}) = \hat{\mathbf{R}} E_{R} = \hat{\mathbf{R}} \frac{Q}{4\pi\epsilon_{o}R^{2}}$$

$$(7): \mathbf{D}(\mathbf{R}) = \hat{\mathbf{R}} \frac{\psi}{S} = \hat{\mathbf{R}} \frac{Q}{4\pi R^{2}}$$

$$(8)$$

(9)

2) Generalization of Gauss's law in any medium Integral form: (7) $\Rightarrow \oint_{S} D \cdot ds = Q = \int_{V} \rho_{v} dv$

Differential form:

Applying divergence (or Gauss's) theorem to (9),

$$\int_{V} (\nabla \cdot \boldsymbol{D}) \, dv = \int_{V} \rho_{v} dv \implies \int_{V} (\nabla \cdot \boldsymbol{D} - \rho_{v}) \, dv = 0$$
$$\implies \nabla \cdot \boldsymbol{D} = \rho_{v} \tag{10}$$

3) Electric field intensity due to symmetric charge distributions (e.g. 3-4)

Infinitely long uniform line charge ho_l

For a cylindrically symmetric field $(\partial/\partial \phi = 0)$,

Gauss's law (3-6) for ${m E}=\,\hat{{m r}}\,E_r$

$$\Rightarrow \oint_{S} \mathbf{E} \cdot d\mathbf{s} = \frac{Q}{\epsilon_{o}}$$

$$\Rightarrow \int_{top} \mathbf{E}_{z} ds_{z} - \int_{bottom} \mathbf{E}_{z} ds_{z} + \int_{cylinder} \mathbf{E}_{r} ds_{r} = \frac{Q}{\epsilon_{o}}$$

$$\Rightarrow \int_{0}^{L} \int_{0}^{2\pi} \mathbf{E}_{r} r d\phi dz = \frac{\rho_{l} L}{\epsilon_{o}}$$

$$\Rightarrow 2\pi r \mathbf{E}_{r} = \frac{\rho_{l} \mathbf{E}}{\epsilon_{o}} \Rightarrow \mathbf{E}_{r} = \frac{\rho_{l}}{2\pi\epsilon_{o} r}$$

$$\therefore \mathbf{E}(r) = \hat{r} \frac{\rho_{l}}{2\pi\epsilon_{o} r}$$
(3-23)

(e.g. 3–5)

Infinite uniform sheet charge ho_s

 $\therefore E = \pm \hat{z} \frac{\rho_s}{2\epsilon_o} \text{ (+ for above the sheet, - for below the sheet)} \quad (3-25a,b)$ *Notes)* $E \propto 1/r^2$ for a point charge source. (3-8) $E \propto 1/r$ for a line charge source. (3-23)

E is independent of r for a surface charge source. (3-25)

$$(e.g. 3-6)$$
A spherical electron cloud of volume charge ρ_v

$$for 0 \le R \le b,$$

$$\oint_{S_i} (\hat{R} E_R) \cdot ds = -\frac{1}{\epsilon_o} \int_V \rho_v dv$$

$$E = \hat{R} E_R$$

$$\int_{S_i} \rho_v dv$$
For $0 \le R \le b,$

$$\oint_{S_i} (\hat{R} E_R) \cdot ds = -\frac{1}{\epsilon_o} \int_V \rho_o dv$$

$$E_R R^2 \int_0^{\pi} \sin\theta \, d\theta \int_0^{2\pi} d\phi$$

$$= -\frac{\rho_o}{\epsilon_o} \int_0^R R^2 dR \int_0^{\pi} \sin\theta \, d\theta \int_0^{2\pi} d\phi$$

$$E_R 4\pi R^2 = -\rho_o 4\pi R^3/3\epsilon_o \Rightarrow E_R = -\rho_o R/3\epsilon_o \Rightarrow E = \hat{R} \left(-\frac{\rho_o R}{3\epsilon_o} \right)$$

Similarly, for $b < R < \infty$,

$$\oint_{S_o} (\hat{\boldsymbol{R}} E_R) \cdot d\boldsymbol{s} = -\frac{\rho_o}{\epsilon_o} \int_0^b R^2 dR \int_0^\pi \sin\theta \, d\theta \int_0^{2\pi} d\phi$$

$$E_R 4\pi R^2 = -\rho_o 4\pi b^3 / 3\epsilon_o \Rightarrow \quad E_R = -\rho_o b^3 / 3\epsilon_o R^2 \Rightarrow \quad \boldsymbol{E} = \hat{\boldsymbol{R}} \left(-\frac{\rho_o b^3}{3\epsilon_o R^2} \right)$$

D. Electric (Scalar) Potential V

1) Definition of V

The fundamental postulate (3-4) in electrostatics: $\nabla \times E = 0$ (3-4) Null vector identity (2-105): $\nabla \times (\nabla f) = 0$

Therefore, E can be found by defining an scalar electric potential V such that

 $\boldsymbol{E} = -\nabla V \tag{3-26}$

2) Physical meaning of V

Work done by external force

in moving q along dl:

 $dW = -\mathbf{F} \cdot d\mathbf{l} = -q\mathbf{E} \cdot d\mathbf{l} \quad (11)$

Differential electric potential:

$$dV \equiv \frac{dW}{q} = -\mathbf{E} \cdot d\mathbf{l} \tag{12}$$

Electric potential difference (Voltage) between points P_1 and P_2 :

$$V_{21} \equiv V_2 - V_1 = -\int_{P_1}^{P_2} E \cdot dl$$
 (V or J/C) (3-28)

= Work done in moving a unit charge from P_1 to P_2 (path independent)

: single-value function, one value independent of path,

solely depend on potentials at two points

For a closed path (path ① - path ②),

$$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = \int_{P_{1}}^{P_{2}} \mathbf{E} \cdot d\mathbf{l} + \int_{P_{2}}^{P_{1}} \mathbf{E} \cdot d\mathbf{l} = -(V_{2} - V_{1}) - (V_{1} - V_{2}) = 0,$$

which is identical with (3-7) resulted by Stokes's theorem for $\nabla \times E = 0$.

Electric scalar potential at any point

= Work per Coulomb required to move a positive test charge

from a reference-zero position to a position R in question

$$V(\mathbf{R}) = -\int_{\infty}^{\mathbf{R}} \mathbf{E} \cdot d\mathbf{l} \qquad (V \text{ or } J/C)$$
(13)

when a reference zero-potential point is chosen at $R=\infty\,,$

i.e.,
$$V|_{R \to \infty} = 0.$$

 $m{E} \perp$ Conducting surface [$\because V_{cond.~surf.}$ = const.(equipot.)] ② Irrotational (curl-free) field

③ Conservative field (path-independent, only end-point dependent)

3) Electric potential V due to charge distributions

At a distance R from a point charge q,

$$(3-8) \quad \boldsymbol{E}(\boldsymbol{R}) = \hat{\boldsymbol{R}} \frac{1}{4\pi\epsilon_o} \frac{q}{R^2} \text{ in (13):}$$

$$\boldsymbol{V}(\boldsymbol{R}) = -\int_{-\infty}^{\boldsymbol{R}} \boldsymbol{E} \cdot d\boldsymbol{l} = -\int_{-\infty}^{\boldsymbol{R}} \left(\hat{\boldsymbol{R}} \frac{1}{4\pi\epsilon_o} \frac{q}{R^2} \right) \cdot \left(\hat{\boldsymbol{R}} d\boldsymbol{R} \right) = \frac{1}{4\pi\epsilon_o} \frac{q}{R} \quad (\forall) \quad (3-29)$$

Between any two points $P_1(R_1)$ and $P_2(R_2)$,

$$V_{21} \equiv V_2 - V_1 = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\mathbf{l} = \frac{q}{4\pi\epsilon_o} \left(\frac{1}{R_2} - \frac{1}{R_1}\right)$$

For a system of discrete point charges, V at R by the superposition principle using (3-14):

$$V(\mathbf{R}) = \frac{1}{4\pi\epsilon_o} \sum_{k=1}^n \frac{q_k}{|\mathbf{R} - \mathbf{R_k}'|}$$
 (V) (3-31)

Total electric potential in various charge distributions of points, line, surface and volume by the superposition principle:

where p = qd is the electric dipole moment.

$$\boldsymbol{E}(R) = -\nabla V = -\hat{\boldsymbol{R}}\frac{\partial V}{\partial R} - \hat{\boldsymbol{\theta}}\frac{\partial V}{\partial \theta} = \frac{p}{4\pi\epsilon_o R^3} (\hat{\boldsymbol{R}} 2\cos\theta + \hat{\boldsymbol{\theta}}\sin\theta) \quad (3-37)$$

Quadrupole

Notes)

Octopole

(e.g. 3-8) Uniformly charged circular disk

- [+ for z > 0 (above the disk), (3-42a) - for z < 0 (below the disk)] (3-42b)
- (cf) If $z \ll b \to \infty$, then the disk becomes an infinite sheet and $|z|(z^2 + b^2)^{-1/2} \to 0$ in (3.42).

$$\therefore E = \pm \hat{z} \frac{\rho_s}{2\epsilon_o} \equiv (3-25)$$

E. Electrostatic Systems and Applications

2) Ink-Jet printer

3) Corona discharge

4) Electrostatic precipitator

5) Xerographic copying machine

7) Electrostatic painting

8) Van de Graaff accelerator

- 12 -

Homework Set 3

- 1) P.3-1
- 2) P.3-4
- 3) P.3-7
- 4) P.3-8
- 5) P.3-11
- 6) P.3-12