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CHAPTER 4. Steady Electric Currents

1. Electric Currents and Ohm's Law

A. Electric Currents Caused by Moving Charges

1) Convection current by mass transfer (hydrodynamic motion) of net

charge in charged medium (or in a vacuum or rarefied gas)

2) Conduction current by charge carrier drift in neutral medium (metal)

governed by Ohm's law

� Charge carriers (species)

- Dielectrics or insulators (quartz, paraffin, glass): polarized charges

- Metals (Cu, Ag, Fe): free (or valence) electrons in crystal structure

- Plasma, gas or electrolyte: electrons, ions (cation, anion)

- Intrinsic (pure) semiconductors (Ge, Si): electrons, holes

- n-type semiconductors (IV+V donor): electrons > holes

- p-type semiconductors (IV+III acceptor): holes > electrons

B. Convection Current

Consider charged particles moving

with velocity  due to fluid or particle motion.

Electric current passing through ∆:

∆  ∆

∆
∆

⋅∆∆
 ⋅∆

Convection current density:

 ≡ ∆
∆

    (A/m2) (4-3, 4-6)

Total current flowing thru :

  


⋅ (A) (4-5)

 

≡
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C. Conduction Current

1) Mobilty

Consider free charge carriers moving

with drift velocity  due to collisions

in the medium in externally applied .

Equation of motion for a single charge carrier:




    (1)

where      : initial condition (IC)

Steady-state (


 ) drift velocity from (1):

   (4-8)

where  ≡  is the mobility of the charge carrier.

For a transient period after applying , the solution of (1) with IC is

      
  (3)

where  ≡  is the relaxation time or mean collision time.

Notes) i) (3) → (4-8) as  → ∞ .

ii) ≈  s in metals, 
 
in semiconductors

Therefore, the mobility of the charge carrier is

  

 
 


(m2/V�s) (4)

Notes) i) 
≈

≈


ii)  ≫  in plasmas




⊕
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2) Current density and Ohm's law - Field equation

For a single charge carrier in a linear medium, the current density of

the carrier is

 ≡ ∆

∆
     

∴        : point form of Ohm's law (Constitutive relation) (4-10)

where  ≡     


(S/m or /m) : conductivity (5)

 ≡ 


 



(V�m/A or Ω�m) : resistivity (6)

Notes)

i) For multi-species (s=e, i, h, .... ),

  
  

 


  


    (4-8), (4-10)*

where   
  

 


 (5)*

   in metal;     in semiconductor;     in plasma and electrolyte

ii) In general,    (nonlinear) and   ⋅ (anisotropic)

iii) Temperature dependence of  (or )

Cause of electric resistance in metals:

Scattering of conduction electrons by thermal vibration of lattice①

atoms, and by any impurities or geometric imperfections②

     

⇒   





∼ 


(7)

(eg)  at 

Cu 0.0068, Au 0.004

Nichrome 0.0004

NaCl solution -0.005

Ge (pure) -0.048 (eg) : NbTi 9.5 K, Nb3Sn 18.2 K

iv) In unmagnetized plasmas,

①   



∝


for weakly-ionized plasmas

②  ≡ 










 

for fully-ionized plasmas (6)*

(eg)   ×  Ω�m at

(cf)   × 

,   × 
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3) Current and Ohm's law - Circuit equation

Equivalent circuit

For uniform fields,   

  


⋅      
 

⇒    or    : Ohm's law (4-15)

where   

 


( ) : ResistanceΩ (4-16)

 ≡ 


 


(S or ) : Conductance (4-17)

2. Equation of Current Continuity and Kirchhoff's Current Law

A. Charge Conservation and Current Continuity Equation

Total charge conservation over a control (stationary) volume V:

Time rate of charge accumulation in V

= Inflow of current thru S

- Outflow of current thru S

= Net inflow of current thru S

⇒ 

 


⋅ ⇒ 

 

  



∇⋅  

⇒ 



∇⋅    

⇒ 


∇⋅   (A/m3): Equation of current continuity (4-20)

(cf) Hydrodynamic equation of continuity (Mass conservation):




 ∇⋅   ⇒ 


 ∇⋅   (7)

 ≡  : particle flux

Note) × becomes (4-20).
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Circuit equation form of (4-20):




⋅ 






⇒   


(8)

For steady (   ) currents,

∇⋅   (4-21)

Notes) Steady electric currents are solenoidal (no flow source  ),

and current streamlines close upon themselves.

B. Kirchhoff's Current Law




 with divergence theorem:



⋅   (4-22)

If conductors form a network inside volume and meet at a junction P,




   (A) : Kirchhoff's 2nd law (Junction theorem) (4-23)

Algebraic sum of all currents at a junction is zero

C. Electrostatic Equilibrium in a Conductor

: ∃  on the conductor surface,

   &    &    inside the conductor

(Proof)

    (4-10) and ∇⋅    (3-63) in (4-20):




 


   (4-25)

where         : initial condition (IC)

Solution:

   
 

(C/m3) (4-26)

where   


  (s) (4-27)

: Relaxation time = a measure of how fast the medium

reaches an electrostatic equilibrium

(eg) For Cu ( × ≈ × ),

× 

⇒ Net charge within a conductor is zero.

If present, it must reside on the surface.

∙
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3. Governing Equations and BCs For Steady 

A. Governing Equations

For steady currents,

(4-21) ⇒ ∇⋅   (4-32)

(4-10) Ohm's law        in ∇×  

⇒ ∇× 
    or ∇×    (4-33)

Integral form:




 and divergence theorem

⇒ 


⋅   (4-32)*




 and Stokes's theorem

⇒ 


⋅  


⋅   (4-33)*

Once (4-32) and (4-33) are specified,  is determined according to

Helmholtz's theorem.

B. Boundary Conditions

1) Insulator-Conductor Interface

insulator (  )

conductor (  )

∇× 
    and    ⇒    (9)

∇×   ⇒      (10)

(cf)      (3-45) for an electrostatics case with no 

∇⋅   ⇒    ⇒      (11)

Note)

 ≫ since   





→ 
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(eg) Coaxial transmission line

2) Conductor-Conductor Interface

conductor ( )

conductor ( )

For steady currents,

∇⋅   ⇒    or ⋅    (4-33)

  

∇× 
    ⇒ 


 


or  ×






 

 


   (4-34)

   or ∇×   ⇒    or  ×    

(4-34)*

Note)

(4-33) / (4-34) ⇒




 


 


 


(12)

: similar to Snell's Law of refraction 


 


 




  (7-118)
(cf) At a dielectric-dielectric interface (e.g. 3-14),




 


 


(3-83)
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4. Ohmic Power Dissipation and Joule's Law

Work done by the electric field  on a charge carrier  moving a

distance ∆:

∆  ⋅∆

Power dissipated as ohmic (Joule) heating by collisions of charge

carrier with lattice atoms:

  lim
∆→
∆

∆
 ⋅ (4-28)

Total power delivered to all charge carriers in a volume:

  
 

  ⋅


  ⋅ 

∴ Dissipated ohmic power density at a point is




 ⋅       (W/m3) (4-29)

Total electric power converted into heat becomes

  

⋅ 






         (W)

: Joule's law (4-30), (4-31)

5. Resistance Calculations

Capacitance :   






⋅




⋅

(4-36)

Resistance :   






⋅




⋅

from  obtained by BVPs (4-37)

⇒   

 


⇒   

 
  from known  (4-38)

     

   

  ∇
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(e.g. 4-3) Find the leakage resistance per unit length : 

a) For a lossy coaxial line,

(e.g. 3-16), (3-90) ⇒

≡ 






(3-38) ⇒

≡


 



  (Ω�m)
(4-39)

b) For a two-wire transmission line,

(e.g. 3-25), (3-165) ⇒

≡ 







(3-38) ⇒

 ≡

 




 
 














 



 



 (Ω�m) (4-40)

(e.g. 4-4) A quarter of a circular washer :      

BVP

Laplace's equation:





 , ≤≤ ①

BCs:       ②

      ③

General solution :     ④

, in :② ③ ④    ,    ⑤

⑤ in :④   


 (4-43)

   ∇   




 


(4-44)

 

⋅  





  

















(4-45)

∴   


  


( )Ω (4-46)

 

 


& 
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Homework Set 5

1) P.4-3

2) P.4-6

3) P.4-7

4) P.4-11

5) P.4-12


