CHAPTER 4. Steady Electric Currents

Reading assignmenits: Cheng Ch.4, Ulaby Ch.3, Hayt Ch 5,
Halliday Chs.26-27

1. Electric Currents and Ohm's Law

A. Electric Currents Caused by Moving Charges

1) Convection current by mass transfer (hydrodynamic motion) of net
charge in charged medium (or in a vacuum or rarefied gas)

2) Conduction current by charge carrier drift in neutral medium (metal)
governed by Ohm's law

» Charge carriers (species)
- Dielectrics or insulators (quartz, paraffin, glass): polarized charges
- Metals (Cu, Ag, Fe): free (or valence) electrons in crystal structure
- Plasma, gas or electrolyte: electrons, ions (cation, anion)
- Intrinsic (pure) semiconductors (Ge, Si): electrons, holes
- n—type semiconductors (IV+V donor): electrons > holes
- p-type semiconductors (IV+lIl acceptor): holes > electrons

B. Convection Current
Consider charged particles moving
with velocity v due to fluid or particle motion.

Electric current passing through As:

Il
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Convection current density: g
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= — =nqu = p,u (A/m?)  (4-3, 4-6)
As FIGURE 4—1

Total current flowing thru S:

= f J-ds  (A) -5
S



C. Conduction Current
1) Mobilty
Consider free charge carriers moving
with drift velocity u; due to collisions

in the medium in externally applied FE.
Equation of motion for a single charge carrier:

m—— =qF — bud due to collisions with lattice atoms (1)

where wu,(t=0) = 0 : initial condition (IC)
d ) .
Steady—state (E: 0) drift velocity from (1):
ug = pFE (4-8)
where p = q/b is the mobility of the charge carrier.
For a transient period after applying F, the solution of (1) with IC is

uy(t) = pnE(1— e ) (3)
where 7 = m /b is the relaxation time or mean collision time.

Notes) i) (3) — (4-8) as t— oo.

13

i) 7= 107 s in metals, 10 *° in semiconductors

Therefore, the mobility of the charge carrier is

p=1T= 1 (mvs) (4)
o

/<. collision frequency

NOI'QS) l) /J}semicon ~ 10”;emicon ~ 100 M?ewl

e

i) p, > p,; in plasmas

Mobility, Charge density,
[l A Cm™?
Relative
Electrons Holes Electrons Conductivity  permittivity,
I, Th p. (= py) Um™! dimensionless
Semiconductors (pure):
Germanium (Ge) 0.39 0.19 4 2.3 12
Silicon (Si) 0.14 0.05 0.002 0.0004 16
Gallium-arsenide (GaAs)  0.68 0.07 11
Indium-antimony (InSb) 8.0 0.40 2 x 103 1.7 x 104 16
Conductors (pure):
Aluminum (Al) 0.0014 2.5 x 1010 3.5 % 107
Copper (Cu) 0.0040 1.4 x 10'° 5.7 x 107
Silver (Ag) 0.0050 1.2 % 10+ 6.1 x 107




2) Current density and Ohm's law — Field equation
For a single charge carrier in a linear medium, the current density of

the carrier is

AT
= AN WU T pUaT P E
= o E= E/n : point form of Ohm's law (Constitutive relation) (4-10)
TLC]2
where o = p, = nqu = o (S/m or ¢gr/m) : conductivity (5)
1 o
n=—= m—z (V.m/A or Qm) : resistivity (6)
o nq
Notes)
i) For multi-species (s=e, i, h, .... ),
J= D Py, = En gy = En ) E=oE  (4-9), (4-10)x
s=e,i,h
where o= Y pop, = D g, (5)+
s =e,i,h s

s =-e in metal; s = e, h in semiconductor; s = e, 7 in plasma and electrolyte

i) In general, J = o(E)E (nonlinear) and J = ¢ - E (anisotropic)

iii) Temperature dependence of n (or o)
Cause of electric resistance in metals:
Scattering of conduction electrons M by thermal vibration of lattice
atoms, and @ by any impurities or geometric imperfections

n(T) =n,[1+a(T— T,)] _J(f\
1 d”'? 1 ,:,."1!““"\‘ !r\"“lf‘.[r ik . e
“ar T T P et ome

(eg) o at 20°C
Cu 0.0068, Au 0.004

Nichrome 0.0004 A T,m”t =
NaCl solution —0.005 eeaiperatire)
Ge (pure) -0.048 (eg) T.. NbTi 9.5 K, NbsSn 18.2 K

iv) In unmagnetized plasmas,

meyen nn . .
®n= ,— o« — for weakly-ionized plasmas
ne n
® ey | _Emnd o onized o
= = or fully—ionized plasmas (6)*
7 ne’ 1671'62(]{5 )3/2_:;, . ,
<— collisionless at high T

(eg) n=5x10""Qmat T,= 10°K
(cf) n, =2x10"°%, n,,=7x10""
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3) Current and Ohm's law — Circuit equation

¢ WA C-onductor
ﬁ"ﬂ’f;f c 1 Resistance R _
e ) Current |  =—— )
- Vollage V o
5 . 5 — Length { ————»|
FIGURE 4—2 -
i ﬁvufﬁﬁ Equivalent circuit
H’ MWW
R
I
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For uniform fields, (4—10) ‘Vu:El
/ L [oS
x \
I= fJ- ds =JS = oES < ("T)v12
5
— Vi, =RI or I=GV,y: Ohm's law (4-15)
l l
where R =—F =n— Q) © Resistance 4-16
-5 g (Q) (4-16)
1 S .
G = =07 (S or &) : Conductance (4-17)

2. Equation of Current Continuity and Kirchhoff's Current Law

A. Charge Conservation and Current Continuity Equation

Total charge conservation over a control (stationary) volume V:

Time rate of charge accumulation in V
Inflow of current thru S

— Outflow of current thru S

Net inflow of current thru S

0__ ¢ al =]
= a SJ ds = — v = V(v e
ap, \\(]/,'(,‘(’,I‘.(/(’,f)(',(’, theorem
v\ ot

op,
o +v - J =0 (A/m®: Equation of current continuity  (4-20)

S

=

(cf) Hydrodynamic equation of continuity (Mass conservation):

on on
—+ . — e —+ . =
P VvV - (nuw) 0 / Py V 1 0 (N
I' = nu : particle flux
Note) ¢qx (7) becomes (4-20).
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Circuit equation form of (4-20):

- §£J. ds = [ 2Ly
s y ot

_ dQ
= I= o (8)
For steady (8 /at= 0) currents,
V--J=0 (4-21)

Notes) Steady electric currents are solenoidal (no flow source p, =0),
and current streamlines close upon themselves.

B. Kirchhoff's Current Law Iy I

D/ (4—21)dv with divergence theorem: v g
V R
f J-ds =10 (4-22) L
5 I

If conductors form a network inside volume and meet at a junction P,

ZIJ =0 (A) : Kirchhoff's 2nd law (Junction theorem) (4-23)
J

Algebraic sum of all currents at a junction is zero

C. Electrostatic Equilibrium in a Conductor
3 p, on the conductor surface,
p,=0 & E=0 & V =const inside the conductor
(Proof)
J=o0E (4-10) and v - E=p,/e (3-63) in (4-20):

aaiu + %pv =0 , (4-25)
where  p,(r,t)l,_, = p,(r) : initial condition (IC) )
Solution: .
() = p, (e T (C/m) s ?368;,
where 7= % =ne (s) (4-27) 0 T t

. Relaxation time = a measure of how fast the medium
reaches an electrostatic equilibrium

(eg) For Cu (6=5.8x10", e=e,=885x10, ), 7=153x10""s

— Net charge within a conductor is zero.
If present, it must reside on the surface.
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3. Governing Equations and BCs For Steady J

A. Governing Equations

For steady currents,

(4-21) = Vv -J=0 (4-32)
(4-10) Ohm's law J=c E=E/nin VXE=0
= VX(%) =0 o Vx(nJ)=0 (4-33)

Integral form:

/ (4—32)dv and divergence theorem
.
= 9§ J-ds =0 (4-32)*
5
56 (4—33)ds and Stokes's theorem

S
= fakrﬂ:fmrﬂzo (4-33)x
C C

Once (4-32) and (4-33) are specified, J is determined according to
Helmholtz's theorem.

B. Boundary Conditions
1) Insulator—-Conductor Interface

E E
J=0 I

insulator (e, o, =0)

IO

conductor (e, o, = finite) Ps E,,
 —
J=ocF
J
V X P =0and J=0F = Jyy = 09 By, (9)
VXE=0 = E,=E, =J,/o, (10)

(cf) E,, = E,, = 0 (3-45) for an electrostatics case with no J

\V4 'D:PU d Dlnzps g El’n:ps/el - (1)

Note)

Iy finite
E, >FE i E,=F,=— = Il
1n > By since By, = Ey, oy large — sma

Insulator

Conductor



(eg) Coaxial transmission line

\ Outer

conductor

Eq ui- {
potentials

Inner
conductor

3 6 T
|
i O

Field lines

T I

conductor (¢, o)

conductor (e, o)

4 [ E,
For Steady currents,
vV-J=0 = J,=J, o n-[J—J= (4-33)
UIEITL = UZEZTL
J, J. - J, J.
Vx(i)zo = L= o x| 2-2=0 (4-34)
g 0q 09 0q 09

J=0F or VXE=0 = FE,=E, or nx|E—FE)|=

(4-34)*
Note)
(4-33) / (4-34) =
tana; log) gy E,,
tana, - 0_2 - J_Qt - E, 12
. . sinoy €
: similar to Snell's Law of refraction Sina, = n = o ) (7-118)
(cf) At a dielectric—dielectric interface (e.g. 3-14),
tanay € E,,
tana, = 6—2 = B, (3-83)



4. Ohmic Power Dissipation and Joule's Law

Work done by the electric field £ on a charge carrier ¢ moving a
distance Al:

Aw = qFE - Al

Power dissipated as ohmic (Joule) heating by collisions of charge
carrier with lattice atoms:

p=lim——

=qF - u
At—0 At 1 a

(4-28)

Total power delivered to all charge carriers in a volume:

dP= Y p,=E- O nguy)dv =F - Jdv
s=e,i,h s (4—8)
Dissipated ohmic power density at a point is
dP
—- =E- J/z nJ? = E*/n (W/m®) (4-29)
YV g=E/y
Total electric power converted into heat becomes

P:fE-Jd = [ Edl | Jds = VI= ’R=V?/R (W)
v ’ /L /SS 7 /

Joule's law V=IR (4-30), (4-31)

0. Resistance Calculations

lossy dielectric (e, U)
J=0oFE : legkage current
R= V,,/I: leakage resistance
" — FIGURE 4-3

Capacitance : C = Q =

(4-36)

Resistance : R = = —& from E obtained by BVPs (4-37)
I §6 oE-ds
s

C € e 1
- = - & L _
— RC G = R (0) from known C (4-38)



(e.g. 4-3) Find the leakage resistance per unit length @ R,

a) For a lossy coaxial line, Lossy

Dielectric, € & o

(e.g. 3-16), (3-90) =
== 2me l
L In(b/a) ¢, R,
(3-38) = | u? FIGURE 3—21
v 1 b >
R, = /o T ln(—) (@m) J\ //\
C, 20 \a P
(4-39) \/“”/
b) For a two-wire transmission line,
(e.g. 3-25), (3-165) = frumid ‘}”’ :
C . C _ 7T€0 ',—J'.I/_ 60’ o ,-.I r,l;/.
'L cosh 1 (D/2a) .P— C,. R, _I.." |
(3-38) = e i I;’lIGﬁE 3-29
R T -
R, = c — cosh 5
1 D D \?
= In + ( ) — 1] (Q.m) (4-40)
o 2a 2a
(e.g. 4-4) A quarter of a circular washer : R= V/I=7
BVP '
l S T Ogmm g -
Laplace's equation: hﬂu — > = hdr
| )SV 1 Vol
2 |
dZZO, 0<op<mn/2 )
do
BCs: V(p)l,_p=0 @
V(¢)|¢:7r/2 - Vo @
General solution : V(¢) = ¢, ¢+ ¢, @
@, ®in @ =0, c¢=2V,/m7 ®&
2V,
® in @: Vigp) = - ¢\ (4-43)
_ . Lo dVe 20V,
J —UE(Qb) =—oVV= ?Ty [0) - (4-44)
b 20V, b 20hV,
1= [goas= [ re)mar £ 70 [0 < nl s
S /' a ™ a T ///// s a
e R rd
ds=—¢hdr Vo A -
T R= = Q _
T = Zoh(ja) & @




Homework Set 5
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