CHAPTER 6. Electromagnetic Wave Equations

Reading assignments: Cheng Ch.6-4~6-5, Ulaby Ch.6-1~6-2, Halliday Chs.31, 33

1. Review of Maxwell's Equations and Wave Equations

A. Maxwell's Equations

1) Differential and Integral forms of Maxwell's Equations

Differential form (point expression)	<u>Integral Form</u> (global expression)	Physical Law (significance)	
$\nabla \times E = -\frac{\partial B}{\partial t}$	$\oint_C \mathbf{E} \cdot d1 = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s}$	Faraday's law	(6-45,46a)
$\nabla \times H = J + \frac{\partial D}{\partial t}$	$\oint_{C} H \cdot dI = \int_{S} \left(J + \frac{\partial D}{\partial t} \right) \cdot ds$	Ampere's law	(6-45,46b)
$\nabla \cdot D = \rho_v$	$\oint_{S} \boldsymbol{D} \cdot d\boldsymbol{s} = \int_{V} \rho_{v} dv$	Gauss's law	(6-45,46c)
$\nabla \cdot \boldsymbol{B} = 0$	$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{s} = 0$	No isolated maget	(6-45, 46d)

2) Constitutive Relations

For linear isotropic medium

 $D = \varepsilon E = \varepsilon_o \varepsilon_r E = \varepsilon_o (1 + \chi_e) E = \varepsilon_o E + P$ (3-67, 62)

$$B = \mu H = \mu_o \mu_r H = \mu_o (1 + \chi_m) H = \mu_o H + \mu_o M$$
(5-65, 60)

$$(J = \sigma E : Ohm's law)$$
(4-10)

In general,

 ∇

$$D = \stackrel{\leftrightarrow}{\epsilon} \cdot E, \qquad B = \stackrel{\leftrightarrow}{\mu} \cdot H, \quad (J = \stackrel{\leftrightarrow}{\sigma} \cdot E)$$

3) Relationship between Sources and Fields

a) Stationary charges \Rightarrow Electric fields

 $abla \cdot \pmb{D} = \rho_v \qquad \qquad (\rho_v = \rho_f \text{ free charge}) \qquad \qquad (3-63)$

$$abla \cdot {\pmb P} = -
ho_{pv}$$
 ($ho_{pv} =
ho_b$ bound polarization charge) (3-59)

•
$$E = (\rho_v + \rho_{pv})/\epsilon_o = \rho_t/\epsilon_o$$
 (total charge) (3-60)

b) Moving charges (Currents) \Rightarrow Magnetic fields

$$abla imes H = J + rac{\partial D}{\partial t} = J + J_d$$
 ($J = J_f$ free + J_d displacement currents) (6-44)

$$abla \times M = J_{mv}$$
 $(J_{mv} = J_b \text{ bound magnetization current})$ (5-51)
 $abla \times B = \mu_o (J + J_{mv} + J_d)$ (total current) (5-56)

4) Conservation of electric charge (Equation of current continuity)

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho_v}{\partial t} \tag{4-20}, \tag{6-41}$$

B. Boundary Conditions

$$\hat{n} \times (E_1 - E_2) = 0 : \text{tangential E} \quad (3-79)(6-47a)$$

$$\hat{n} \times (H_1 - H_2) = J_s : \text{tangential H} \quad (5-71)(6-47b)$$

$$\hat{n} \cdot (D_1 - D_2) = \rho_s : \text{normal D} \quad (3-80)(6-47c)$$

$$\hat{n} \cdot (B_1 - B_2) = 0 : \text{normal B} \quad (5-68)(6-47d)$$

$$\hat{n} \cdot (J_1 - J_2) = 0 : \text{normal J} \quad (4-34)$$
Note)
$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\epsilon_1}{\epsilon_2} = \frac{\mu_1}{\mu_2} = \frac{\sigma_1}{\sigma_2} \quad (3-83),$$

C. Properties of Electromagnetic Fields

1) Electromagnetic Forces

 $F = F_e + F_m = q(E + u \times B)$: Lorentz's force on an individual charge (5-5) $f = f_e + f_m = \rho_v E + J \times B$: e.m. body force in plasmas

2) Electromagnetic Torques

T = p imes E : electric torque (5-124)*

$$T = m \times B$$
 : magnetic torque (5-124)

3) Electromagnetic Energy

 $w = \frac{1}{2} (\mathbf{D} \cdot \mathbf{E} + \mathbf{H} \cdot \mathbf{B}) = \frac{\epsilon E^2}{2} + \frac{B^2}{2\mu}$: e.m. energy density (3-108), (5-108)

Note) Conservation of electromagnetic energy = Poynting's theorem:

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) + \frac{\partial}{\partial t} \left(\frac{\mathbf{E} \cdot \mathbf{D}}{2} + \frac{\mathbf{H} \cdot \mathbf{B}}{2} \right) + \mathbf{E} \cdot \mathbf{J} = 0$$
 (7-64)

D. Electromagnetic Potential Functions and Wave Equations

1) Electromagnetic Potential Functions

$$B =
abla imes A \,\,$$
 > vector magnetic potential A (6-50)

$$E = -\nabla V - \frac{\partial A}{\partial t} \Rightarrow$$
 scalar electric potential V (6-53)

2) Nonhomogeneous Wave Equations for A and V

(6-53) in (6-45c):
$$\nabla^2 V = -\frac{\rho_v}{\epsilon} - \frac{\partial}{\partial t} (\nabla \cdot A)$$
 (6-45c),

(6-50, 53) in (6-45b) :
$$\nabla^2 A - \mu \epsilon \frac{\partial^2 A}{\partial t^2} = -\mu J + \nabla (\nabla \cdot A + \mu \epsilon \frac{\partial V}{\partial t})$$
 (6-55)

With Lorentz condition, $\nabla \cdot \mathbf{A} + \mu \epsilon \frac{\partial V}{\partial t} = 0$ (6-56)

 \Rightarrow Nonhomogeneous wave equations :

$$\nabla^2 \boldsymbol{A} - \mu \epsilon \frac{\partial^2 \boldsymbol{A}}{\partial t^2} = -\mu \boldsymbol{J}$$
(6-57)

$$\nabla^2 V - \mu \epsilon \frac{\partial^2 V}{\partial t^2} = -\frac{\rho_v}{\epsilon}$$
(6-58)

3) Solutions of Nonhomogeneous Wave Equations

a) Time-independent solutions :

$$V(\mathbf{R}) = \frac{1}{4\pi\epsilon} \int_{V'} \frac{\rho_v}{R} dv', \quad \mathbf{E}(\mathbf{R}) = \frac{1}{4\pi\epsilon} \int_{V'} \hat{\mathbf{R}} \frac{\rho_v}{R^2} dv'$$
(3-38, 16)

$$\boldsymbol{A}(\boldsymbol{R}) = \frac{\mu}{4\pi} \int_{V'} \frac{\boldsymbol{J}}{R} dv', \quad \boldsymbol{B}(\boldsymbol{R}) = \frac{\mu I}{4\pi} \oint_{C'} \frac{d\boldsymbol{l}' \times \hat{\boldsymbol{R}}}{R^2} : \text{ Biot-Savart law (5-22, 31)}$$

b) Time-dependent solutions \implies Retarded potentials Consider an element point charge $\rho_v dv'$ at the origin at time t.

$$\Delta V(R) = \frac{\rho_v(t) \Delta v'}{4\pi\epsilon R} \quad (6-65)$$

$$R \quad V(R, t)$$

$$R \quad v_p = 1/\sqrt{\mu\epsilon}$$

$$\rho_v dv' \quad \rho_v \left(t - R/u_p\right)$$

At a distance R far away from O in spherical symmetry,

$$\frac{1}{R^2}\frac{\partial}{\partial R}\left(R^2\frac{\partial V}{\partial R}\right) - \mu\epsilon\frac{\partial^2 V}{\partial t^2} = 0.$$
 (6-59)

Change of variable:
$$V(R,t) = U(R,t)/R$$
 (6-60)

(6-59)
$$\Rightarrow \frac{\partial^2 U}{\partial R^2} - \mu \epsilon \frac{\partial^2 U}{\partial t^2} = 0$$
 : 1-D homogeneous wave equation (6-61)

Solution:
$$U(R,t) = f(t - R\sqrt{\mu\epsilon}) = f(t - R/u_p)$$
: ftn. of retarded time (6-62)
where $u_p = 1/\sqrt{\mu\epsilon}$: wave phase velocity (6-63)

: Solution of (6-59):
$$V(R,t) = f(t - R\sqrt{\mu\epsilon}) / R = f(t - R/u_p) / R$$
 (6-64)

(6-64) in (6-65) :
$$\Delta f(t - R/u_p) = \frac{\rho_v(t - R/u_p) \Delta v'}{4\pi\epsilon}$$
 (6-66)

Retarded scalar potential at R, t due to a charge distribution over V':

$$V(R,t) = \frac{1}{4\pi\epsilon} \int_{V'} \frac{\rho_v(t - R/u_p)}{R} dv' \quad (\forall)$$
(6-67)

Similarly, retarded vector magnetic potential :

$$A(R, t) = \frac{\mu}{4\pi} \int_{V'} \frac{J(t - R/u_p)}{R} dv' \quad \text{(Wb/m)}$$
(6-68)

E. Homogeneous Electromagnetic Wave Equations

Maxwell's equations in source-free nonconducting media :

$$\nabla \times E = -\mu \frac{\partial H}{\partial t}$$
 (6-94a)

$$\nabla \times H = \varepsilon \frac{\partial E}{\partial t}$$
(6-94b)

$$\nabla \cdot \boldsymbol{E} = 0 \tag{6-94c}$$

$$\nabla \cdot B = 0 \tag{6-94d}$$

(6-94b) in
$$\nabla \times (6-94a)$$
 using $\nabla \times \nabla \times \boldsymbol{E} = \nabla (\nabla \cdot \boldsymbol{E}) - \nabla^2 \boldsymbol{E} = -\nabla^2 \boldsymbol{E}$:

$$\nabla^2 E - \mu \epsilon \frac{\partial^2 E}{\partial t^2} = 0$$
: electric wave equation (6-96)

In a similar way, (6-94a) in $\nabla \times (6-94b)$:

$$\nabla^2 H - \mu \epsilon \frac{\partial^2 H}{\partial t^2} = 0$$
: magnetic wave equation (6-97)

2. Review of Field-Circuit Relations and Phasors

A. Relations between Field and Circuit Theory

1) Basic relations

Field quantities: *E*, *D*, *B*, *H*, *J* ϵ , μ , $\sigma \rightarrow$ function of *r* and *t*; More general in distributed medium

Circuit quantities: V, I C, L, R \rightarrow function of two-terminal ($L_s \ll \lambda$) and t; Simple in lumped medium

$$V = -\int \boldsymbol{E} \cdot d\boldsymbol{l} \tag{3-28}$$

$$I = \oint \mathbf{H} \cdot d\mathbf{l} = \int_{S} \mathbf{J} \cdot d\mathbf{s}$$
(5-10) (4-5)

$$C = \frac{Q}{V} = \frac{\oint_{S} \boldsymbol{D} \cdot d\boldsymbol{s}}{-\int_{S} \boldsymbol{E} \cdot d\boldsymbol{l}} = \epsilon \frac{S}{d}$$
(3-87)(4-36)

$$L = \frac{\Lambda}{I} = \frac{\int \boldsymbol{B} \cdot d\boldsymbol{s}}{\oint \boldsymbol{H} \cdot d\boldsymbol{l}} = \mu \frac{S}{d}$$
(5-77)

$$R = \frac{V}{I} = \frac{-\int \mathbf{E} \cdot d\mathbf{l}}{\oint \mathbf{H} \cdot d\mathbf{l}} = \frac{-\int \mathbf{E} \cdot d\mathbf{l}}{\oint_{S} \sigma \mathbf{E} \cdot d\mathbf{s}} = \frac{1}{\sigma} \frac{d}{S}$$
(4-37)

2) Energy relations

$$W_e = \frac{1}{2}CV^2 = \frac{1}{2}\int_V D \cdot E \, dv = \frac{1}{2}\int_V \epsilon E^2 \, dv \qquad (3-110, \ 105, \ 106)$$

$$W_m = \frac{1}{2}LI^2 = \frac{1}{2}\int_V H \cdot B \, dv = \frac{1}{2}\int_V \mu H^2 \, dv \tag{5-104, 105, 106}$$

$$P_{ohmic} = I^2 R = \int_V \boldsymbol{E} \cdot \boldsymbol{J} dv = \int_V \sigma E^2 dv \qquad (4-31, 30)$$

3) Comparison of an RLC circuit

Consider a series circuit of resistor, inductor, and capacitor connected to a generator

electric fields in R = emf + induced fields by currents and charges

$$\Rightarrow \quad E = E_e + E_A + E_V$$

$$\Rightarrow \quad E_e = \frac{J}{\sigma} - \frac{\partial A}{\partial t} - \nabla V \quad : \quad \text{Field equation} \tag{1}$$

$$\Rightarrow \quad \oint E_e \cdot dl = \oint \left(\frac{J}{\sigma} - \frac{\partial A}{\partial t} - \nabla V\right) \cdot dl$$
sume $i(t)$ = same at all points of circuit at any $t_i(L_i \ll \lambda)$

Assume i(t)same at all points of circuit at any t $(L_s \ll \lambda)$.

then,
$$v(t) = \frac{JL}{\sigma} + \frac{d}{dt} \oint A \cdot dl + Ed$$

$$\begin{vmatrix} \frac{JL}{\sigma} = \frac{iL}{a\sigma} = iR \\ \frac{d}{dt} \oint A \cdot dl = \frac{d}{dt} \int_{S} (\nabla \times A) \cdot ds = \frac{d}{dt} \int_{S} B \cdot ds = \frac{d\Phi}{dt} = -L\frac{di}{dt} \\ Ed = \frac{D}{\epsilon} d = \frac{Q}{\epsilon A/d} = \frac{Q}{C} = \frac{1}{C} \int i dt$$

$$\therefore \qquad \underbrace{v(t) = Ri + L\frac{di}{dt} + \frac{1}{C} \int i dt}_{C} \text{ Circuit equation} \qquad (6-70)$$

Extension of (dc) Ohm's law to time-varying cases

B. Review of Phasors

1) Phasor representation of time-harmonic fields

Electric field varying sinusoidally with time (Instantaneous time-varying field):

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_{\boldsymbol{o}}(\boldsymbol{r})\cos\left(\omega t + \phi\right) = Re\left[\boldsymbol{E}_{\boldsymbol{o}}(\boldsymbol{r})e^{j\left(\omega t + \phi\right)}\right]$$
(6-69)*

where $|E_o(r)| =$ magnitude at r $\omega = 2\pi f = 2\pi / T$: angular frequency (rad/s) f = 1/T: frequency (Hz) T = (time) period (s) ϕ = phase angle (rad or deg) *Note*) Euler's identity : $e^{j\phi} = \cos\phi + j\sin\phi$ (2)

Phasor notation :

$$\boldsymbol{E}(\boldsymbol{r},t) = Re[\boldsymbol{E}_{\boldsymbol{o}}(\boldsymbol{r}) e^{j(\omega t + \phi)}] = Re[\boldsymbol{E}_{\boldsymbol{s}} e^{j\omega t}]$$
(6-79)

where $E_s = E_o(r) e^{j\phi}$: (vector) phasor (6-79)* = polar form of complex field containing amplitude and phase; independent of t

Notes) i)
$$E_{s} = E_{o}e^{j\phi} = E_{o}(\cos\phi + j\sin\phi)$$

 $= E_{r} + jE_{i} \quad (E_{r} = E_{o}\cos\phi, \ E_{i} = E_{o}\sin\phi)$
 $= E_{o} \angle \phi \quad \left(E_{o} = \sqrt{E_{r}^{2} + E_{i}^{2}}, \ \phi = \tan^{-1}\frac{E_{i}}{E_{r}}\right)$ (3)
ii) $\frac{\partial E}{\partial t} = Re\left[\frac{\partial (E_{s}e^{j\omega t})}{\partial t}\right] = Re(j\omega E_{s}e^{j\omega t}) = Re(j\omega E)$
 $\frac{\partial^{2}E}{\partial t^{2}} = Re\left[-\omega^{2}E\right]$ (4)
 $\int E dt = Re\left[\frac{1}{j\omega}E_{s}e^{j\omega t}\right] = Re\left(\frac{1}{j\omega}E\right)$

- 6 -

2) Time-harmonic responses of circuits

	Resistor	Inductor	Capacitor
	itt) R(II)	x(t) L(H)	i(t) C(F)
Current	i(t) = v(t) / R	$i(t) = \frac{1}{L} \int v(t) dt$	$i(t) = C \frac{dv(t)}{dt}$
Voltage	v(t) = R i(t)	$v(t) = L\frac{di}{dt} = L\frac{d^2Q}{dt^2}$	$v(t) = \frac{1}{C} \int i dt = \frac{Q}{C}$
DC response Time-harm. resp.	V = RI	V = 0	I = 0
$i(t) = I \cos \omega t$	$v(t) = RI\cos\omega t$	$v(t) = -\omega LI \sin \omega t$	$v(t) = \frac{1}{\omega C} I \sin \omega t$
$= Re[Ie^{j\omega t}]$	$= Re[R Ie^{j\omega t}]$	$= Re[j\omega LIe^{j\omega t}]$	$= Re\left[-\frac{j}{\omega C}Ie^{j\omega t}\right]$
	$= Re[R Ie^{j\omega t}]$	$= Re[jX_L Ie^{j\omega t}]$	$= Re\left[+jX_C \ Ie^{j\omega t}\right]$
Time diagram	in phase	leading wt	o lagging wit
Phasor diagram	I V=IR	$V = \omega \perp I = X_{L}I$	$\int_{V=-\frac{1}{\omega c}I}^{I} = X_{cI}$
Resistance or Reactance	R	$X_L = \omega L$ (inductive)	$\begin{array}{l} X_{C} = -\frac{1}{\omega C} \\ \text{(capacitive)} \end{array}$
Impedance	Z = R + j0	$Z = 0 + j X_L$	$Z = 0 + j X_C$
(Z = V/I)	$= R \angle 0$	$=\omega L \angle \frac{\pi}{2}$	$=\frac{1}{\omega C} \angle -\frac{\pi}{2}$
	$= R e^{j0}$	$=\omega L e^{j\frac{\pi}{2}}$	$= + \frac{1}{\omega C} e^{-j\frac{\pi}{2}}$
Power(p = iv)	$iv = i^2 R$	$\frac{1}{2}L\frac{di^2}{dt}$	$\frac{1}{2}C\frac{dv^2}{dt}$
$E = \int_0^T p dt$	$\frac{1}{2}RI^2$	$rac{1}{2}LI^2$	$rac{1}{2}CV^2$

3) Application to RLC circuit

(6-70):

$$v(t) = Ri + L\frac{di}{dt} + \frac{1}{C}\int i\,dt$$
 in a time domain (6-70)

where
$$v(t) = V_o \underbrace{\cos \omega t}_{o} = Re[(V_o e^{j0}) e^{j\omega t}] = Re(V_s e^{j\omega t})$$
 (6-72)

$$i(t) = I_o \cos(\omega t + \phi) = Re[(I_o e^{j\phi}) e^{j\omega t}] = Re(I_s e^{j\omega t}) \quad (6-69, 73)$$
(6-72, 73) in (6-70):

 $V_{s} = RI_{s} + j\omega LI_{s} + \frac{I_{s}}{j\omega C}$ $\Rightarrow V_{s} = \left[R + j\left(\omega L - \frac{1}{\omega C}\right)\right]I_{s} = \left[R + j\left(X_{L} + X_{C}\right)\right]I_{s} = ZI_{s} \quad (6-78)$

in a cosine-reference phasor domain

$$\Rightarrow I_{s} = \frac{V_{s}}{Z} = \frac{V_{s}}{R + j\left(\omega L - \frac{1}{\omega C}\right)}$$

$$= \frac{V_{o}}{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}} \left[R - j\left(\omega L - \frac{1}{\omega C}\right)\right]$$

$$= \frac{V_{o}}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} \angle \tan^{-1}\left[\frac{\left(\frac{1}{\omega C} - \omega L\right)}{R}\right] = I_{o}e^{j\phi} \quad (6-78)*$$

$$\Rightarrow i(t) = Re(I_s e^{j\omega t}) = Re[I_o e^{j(\omega t + \phi)}] = I_o \cos(\omega t + \phi)$$
(6-78)**

3. Time-Harmonic Electromagnetics and Helmholtz's Equations

A. Time-Harmonic Maxwell's Equations

Time-harmonic fields in terms of phasors:

$$\begin{split} \boldsymbol{E}(x,y,z;t) &= Re[\boldsymbol{E}_{\boldsymbol{s}}(x,y,z) \ e^{j\omega t}] \qquad (6-79) \\ \boldsymbol{H}(x,y,z;t) &= Re[\boldsymbol{H}_{\boldsymbol{s}}(x,y,z) \ e^{j\omega t}] \\ \boldsymbol{J}(x,y,z;t) &= Re[\boldsymbol{J}_{\boldsymbol{s}}(x,y,z) \ e^{j\omega t}] \\ \rho_{v}(x,y,z;t) &= Re[\rho_{vs}(x,y,z) \ e^{j\omega t}] \\ (6-79) \text{ in Maxwell's equations } (6-45) : \\ \nabla \times \boldsymbol{E}_{\boldsymbol{s}} &= -j\omega\mu \ \boldsymbol{H}_{\boldsymbol{s}} \end{split}$$

$$\nabla \times H_s = J_s + j\omega\varepsilon E_s \tag{6-80b}$$

$$\nabla \cdot \boldsymbol{E}_{\boldsymbol{s}} = \rho_{\boldsymbol{v}\boldsymbol{s}} / \varepsilon \tag{6-80c}$$

$$\nabla \cdot B_s = 0 \tag{6-80d}$$

B. Phasor Form of Time-Harmonic Wave Equations

1) Nonhomogeneous Helmholtz's Equations

$$V(x,y,z;t) = Re[V_s(x,y,z) e^{j\omega t}], \ \mathbf{A}(x,y,z;t) = Re[\mathbf{A}_{\mathbf{s}}(x,y,z) e^{j\omega t}] \ \text{in (6-57, 58)}:$$

$$\nabla^2 V_s + k^2 V_s = -\frac{\rho_{vs}}{\epsilon} \tag{6-81}$$

$$\nabla^2 \boldsymbol{A_s} + k^2 \boldsymbol{A_s} = -\mu \, \boldsymbol{J_s} \tag{6-83}$$

where
$$k = \omega \sqrt{\mu \epsilon} = \frac{\omega}{u_p} = \frac{2\pi f}{u_p} = \frac{2\pi}{\lambda}$$
: wavenumber (6-82)

Solutions of (6-81, 83) :

$$(6-82) \text{ in } (6-67, \ 68) \implies$$

$$\rho_v(x,y,z;t-R/u_p) = Re[\rho_v(x,y,z)e^{j\omega(t-R/u_p)}] = Re[\rho_v(x,y,z)e^{-jkR}e^{j\omega t}]$$

$$J(x,y,z;t-R/u_p) = Re[J(x,y,z)e^{j\omega(t-R/u_p)}] = Re[J(x,y,z)e^{-jkR}e^{j\omega t}]$$

$$V_s(\mathbf{R}) = \frac{1}{4\pi\epsilon} \int_{V'} \frac{\rho_v(e^{-jkR})}{R} dv' \quad : \text{ retarded electric potential} \qquad (6-84)$$

$$A_s(\mathbf{R}) = \frac{\mu}{4\pi} \int_{V'} \frac{J(e^{-jkR})}{R} dv' \quad : \text{ retarded vector magnetic potential} \qquad (6-85)$$

$$d = rac{\mu}{4\pi} \int_{V'} rac{J e^{-jkR}}{R} dv'$$
 : retarded vector magnetic potential (6-85)

Notes)

- i) For $R \ll \lambda$, $kR \ll 1$, *i.e.*, $e^{-jkR} \approx 1$ \Rightarrow (6-84, 85) for time-varying \approx (3-38)(5-52) for static ii) $E_s(R) = -\nabla V_s - j\omega A_s$, $B_s(R) = \nabla \times A_s$ in the phasor domain $\Rightarrow E(R,t) = Re[E_s(R)e^{j\omega t}], B(R,t) = Re[B_s(R)e^{j\omega t}]$ for cosine reference in the time domain
- iii) Formal procedure for determining time-harmonic fields
 - (1) Take cosine (or sine) reference for instantaneous time-varying fields and sources [(6-69), (6-69)*]
 - (2) Express the fields and sources as phasors [(6-79), (6-79)*]
 - (3) Recast Maxwell's or wave or circuit equations in phasor forms[(6-80, 6-81, 83, 78)], i.e., time-domain → phasor-domain equations
 - (4) Find phasors of fields by solving the phasor-domain equations [(6-84, 85), (6-78)*]
 - (5) Find the instantaneous fields for cosine (or sine) reference in the time domain [(6-79), (6-78)**]

(e.g. 6-9)

In a nonconducting dielectric medium with μ_o and $\epsilon = 9\epsilon_o$,

given
$$E(z,t) = \hat{y} 5 \cos(10^9 t - \beta z)$$
 (V/m) (6-88)
find H and β .

(1)
$$E(z,t) = \hat{y} 5 \cos(10^9 t - \beta z) = Re[(\hat{y} 5 e^{-j\beta z}) e^{j10^9 t}]$$

(2) $E_s(z) = \hat{y} 5 e^{-j\beta z}$ (6-89)

(3) (6-80a)
$$\Rightarrow$$
 $H_{s}(z) = -\frac{1}{j\omega\mu_{o}} \nabla \times E_{s}$ (6-80a)*

(6-80b) for nonconducting $\sigma = J = 0 \implies E_s(z) = \frac{1}{j\omega\epsilon} \nabla \times H_s$ (6-80b)*

(4) (6-89) in (6-80a)*
$$\Rightarrow$$
 $H_{s}(z) = -\hat{x} \frac{\beta}{\omega \mu_{o}} 5 e^{-j\beta z}$ (6-90)

(6-90) in (6-80b)*
$$\Rightarrow \quad E_s(z) = \hat{y} \frac{\beta^2}{\omega^2 \mu_o \epsilon} 5 e^{-j\beta z}$$
 (6-91)

$$\begin{array}{ll} \text{(6-89)} = \text{(6-91)} & \Rightarrow & \beta = \omega \sqrt{\mu_o \epsilon} = \frac{3\omega}{c} = \frac{3 \times 10^9}{3 \times 10^8} = 10 \quad \text{in (6-90)} \\ & \Rightarrow & \textbf{H}_{s}(z) = -\hat{\textbf{x}} \ 0.0398 \ e^{-j10z} \end{array} \tag{6-92}$$

(5)
$$H(z,t) = Re[H_s(z)e^{j10^9t}] = -\hat{x} 0.0398\cos(10^9t - 10z)$$
 (6-93)

2) Homogeneous Helmholtz's Equations

In source-free nonconducting media,

phasor representation of e.m. wave equations (6–96,97) with $\frac{\partial^2}{\partial t^2} \rightarrow -\omega^2$: $\nabla^2 E_s + \mu \epsilon \omega^2 E_s = 0 \implies \nabla^2 E_s + k^2 E_s = 0$ (6–98) $\nabla^2 H_s + \mu \epsilon \omega^2 H_s = 0 \implies \nabla^2 H_s + k^2 H_s = 0$ (6–99) where $k^2 = \mu \epsilon \omega^2 = \frac{\omega^2}{u_p^2} = \left(\frac{2\pi}{\lambda}\right)^2$ (6–82)

C. Electromagnetic Spectrum and Applications

Homework Set 1 1) P.6-17 2) P.6-18 3) P.6-19 4) P.6-20